Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global epidemiology of hyperthyroidism and hypothyroidism

Key Points

  • Thyroid disease is a global health problem that can substantially impact well-being, particularly in pregnancy and childhood.

  • In advanced economies, the prevalence of undiagnosed thyroid disease is falling owing to widespread thyroid function testing and relatively low thresholds for treatment initiation.

  • Iodine nutrition remains a key determinant of thyroid function worldwide, and continued vigilance against the resurgence of iodine deficiency in previously sufficient regions remains essential.

  • More studies are needed in developing countries, especially within Africa, to understand the role of ethnicity and iodine nutrition fluxes in current disease trends.

Abstract

Thyroid hormones are essential for growth, neuronal development, reproduction and regulation of energy metabolism. Hypothyroidism and hyperthyroidism are common conditions with potentially devastating health consequences that affect all populations worldwide. Iodine nutrition is a key determinant of thyroid disease risk; however, other factors, such as ageing, smoking status, genetic susceptibility, ethnicity, endocrine disruptors and the advent of novel therapeutics, including immune checkpoint inhibitors, also influence thyroid disease epidemiology. In the developed world, the prevalence of undiagnosed thyroid disease is likely falling owing to widespread thyroid function testing and relatively low thresholds for treatment initiation. However, continued vigilance against iodine deficiency remains essential in developed countries, particularly in Europe. In this report, we review the global incidence and prevalence of hyperthyroidism and hypothyroidism, highlighting geographical differences and the effect of environmental factors, such as iodine supplementation, on these data. We also highlight the pressing need for detailed epidemiological surveys of thyroid dysfunction and iodine status in developing countries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Map of overt hyperthyroidism prevalence (selective populations used when representative data not available).
Figure 2: Map of overt hypothyroidism prevalence (selective populations used when representative data not available).
Figure 3: Global iodine status and mandatory salt iodization.

References

  1. 1

    Dumont, J. et al. Ontogeny, anatomy, metabolism and physiology of the thyroid. Thyroid Disease Manager https://www.thyroidmanager.org/chapter/ontogeny-anatomy-metabolism-and-physiology-of-the-thyroid (2011).

    Google Scholar 

  2. 2

    De Leo, S., Lee, S. Y. & Braverman, L. E. Hyperthyroidism. Lancet 388, 906–918 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Chaker, L., Bianco, A. C., Jonklaas, J. & Peeters, R. P. Hypothyroidism. Lancet 390, 1550–1562 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Rice, S. P., Boregowda, K., Williams, M. T., Morris, G. C. & Okosieme, O. E. A. Welsh-sparing dysphasia. Lancet 382, 1608 (2013).

    PubMed  Google Scholar 

  5. 5

    Taylor, P. N. et al. Weekly intramuscular injection of levothyroxine following myxoedema: a practical solution to an old crisis. Case Rep. Endocrinol. 2015, 169194 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Persani, L. Clinical review: Central hypothyroidism: pathogenic, diagnostic, and therapeutic challenges. J. Clin. Endocrinol. Metab. 97, 3068–3078 (2012).

    CAS  PubMed  Google Scholar 

  7. 7

    Hadlow, N. C. et al. The relationship between TSH and free T4 in a large population is complex and nonlinear and differs by age and sex. J. Clin. Endocrinol. Metab. 98, 2936–2943 (2013).

    CAS  PubMed  Google Scholar 

  8. 8

    Pearce, S. H. et al. 2013 ETA guideline: management of subclinical hypothyroidism. Eur. Thyroid J. 2, 215–228 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Zimmermann, M. B. Iodine deficiency. Endocr. Rev. 30, 376–408 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Vanderpump, M. P. The epidemiology of thyroid disease. Br. Med. Bull. 99, 39–51 (2011).

    PubMed  Google Scholar 

  11. 11

    Medici, M. et al. Identification of novel genetic loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet. 10, e1004123 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. 12

    Aoki, Y. et al. Serum TSH and total T4 in the United States population and their association with participant characteristics: National Health and Nutrition Examination Survey (NHANES 1999–2002). Thyroid 17, 1211–1223 (2007).

    PubMed  Google Scholar 

  13. 13

    Sichieri, R. et al. Low prevalence of hypothyroidism among black and Mulatto people in a population-based study of Brazilian women. Clin. Endocrinol. 66, 803–807 (2007).

    Google Scholar 

  14. 14

    De Groot, L. et al. Management of thyroid dysfunction during pregnancy and postpartum: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 97, 2543–2565 (2012).

    CAS  PubMed  Google Scholar 

  15. 15

    Wiersinga, W. M. Smoking and thyroid. Clin. Endocrinol. 79, 145–151 (2013).

    CAS  Google Scholar 

  16. 16

    Wiersinga, W. M. Clinical relevance of environmental factors in the pathogenesis of autoimmune thyroid disease. Endocrinol. Metab. 31, 213–222 (2016).

    CAS  Google Scholar 

  17. 17

    Preau, L., Fini, J. B., Morvan-Dubois, G. & Demeneix, B. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochim. Biophys. Acta 1849, 112–121 (2015).

    CAS  PubMed  Google Scholar 

  18. 18

    Bulow Pedersen, I. et al. Serum selenium is low in newly diagnosed Graves' disease: a population-based study. Clin. Endocrinol. 79, 584–590 (2013).

    Google Scholar 

  19. 19

    Boelaert, K. et al. Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease. Am. J. Med. 123, 183.e1–183.e9 (2010).

    Google Scholar 

  20. 20

    Pierce, M. J., LaFranchi, S. H. & Pinter, J. D. Characterization of thyroid abnormalities in a large cohort of children with Down syndrome. Hormone Res. Paediatr. 87, 170–178 (2017).

    CAS  Google Scholar 

  21. 21

    Bartalena, L. et al. Diagnosis and management of amiodarone-induced thyrotoxicosis in Europe: results of an international survey among members of the European Thyroid Association. Clin. Endocrinol. 61, 494–502 (2004).

    Google Scholar 

  22. 22

    Shine, B., McKnight, R. F., Leaver, L. & Geddes, J. R. Long-term effects of lithium on renal, thyroid, and parathyroid function: a retrospective analysis of laboratory data. Lancet 386, 461–468 (2015).

    CAS  PubMed  Google Scholar 

  23. 23

    Laurberg, P. et al. Iodine intake as a determinant of thyroid disorders in populations. Best practice and research. Clin. Endocrinol. Metab. 24, 13–27 (2010).

    CAS  Google Scholar 

  24. 24

    Bould, H. et al. Investigation of thyroid dysfunction is more likely in patients with high psychological morbidity. Fam. Pract. 29, 163–167 (2012).

    CAS  PubMed  Google Scholar 

  25. 25

    Taylor, P. N. et al. Falling threshold for treatment of borderline elevated thyrotropin levels-balancing benefits and risks: evidence from a large community-based study. JAMA Intern. Med. 174, 32–39 (2014).

    CAS  PubMed  Google Scholar 

  26. 26

    Garmendia Madariaga, A., Santos Palacios, S., Guillen-Grima, F. & Galofre, J. C. The incidence and prevalence of thyroid dysfunction in Europe: a meta-analysis. J. Clin. Endocrinol. Metab. 99, 923–931 (2014).

    PubMed  Google Scholar 

  27. 27

    Hollowell, J. G. et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87, 489–499 (2002).

    CAS  PubMed  Google Scholar 

  28. 28

    Tunbridge, W. M. et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin. Endocrinol. 7, 481–493 (1977).

    CAS  Google Scholar 

  29. 29

    Furszyfer, J., Kurland, L. T., McConahey, W. M. & Elveback, L. R. Graves' disease in Olmsted County, Minnesota, 1935 through 1967. Mayo Clin. Proc. 45, 636–644 (1970).

    CAS  PubMed  Google Scholar 

  30. 30

    Vanderpump, M. P. et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin. Endocrinol. 43, 55–68 (1995).

    CAS  Google Scholar 

  31. 31

    Berglund, J., Ericsson, U. B. & Hallengren, B. Increased incidence of thyrotoxicosis in Malmo during the years 1988–1990 as compared to the years 1970–1974. J. Intern. Med. 239, 57–62 (1996).

    CAS  PubMed  Google Scholar 

  32. 32

    Nystrom, H. F., Jansson, S. & Berg, G. Incidence rate and clinical features of hyperthyroidism in a long-term iodine sufficient area of Sweden (Gothenburg) 2003–2005. Clin. Endocrinol. 78, 768–776 (2013).

    Google Scholar 

  33. 33

    Knudsen, N. et al. Comparative study of thyroid function and types of thyroid dysfunction in two areas in Denmark with slightly different iodine status. Eur. J. Endocrinol. 143, 485–491 (2000).

    CAS  PubMed  Google Scholar 

  34. 34

    Bjoro, T. et al. Prevalence of thyroid disease, thyroid dysfunction and thyroid peroxidase antibodies in a large, unselected population. The Health Study of Nord-Trondelag (HUNT). Eur. J. Endocrinol. 143, 639–647 (2000).

    CAS  PubMed  Google Scholar 

  35. 35

    Konno, N. et al. Screening for thyroid diseases in an iodine sufficient area with sensitive thyrotrophin assays, and serum thyroid autoantibody and urinary iodide determinations. Clin. Endocrinol. 38, 273–281 (1993).

    CAS  Google Scholar 

  36. 36

    Walsh, J. P. Managing thyroid disease in general practice. Med. J. Aust. 205, 179–184 (2016).

    PubMed  Google Scholar 

  37. 37

    Gopinath, B. et al. Five-year incidence and progression of thyroid dysfunction in an older population. Intern. Med. J. 40, 642–649 (2010).

    CAS  PubMed  Google Scholar 

  38. 38

    Laurberg, P., Pedersen, K. M., Vestergaard, H. & Sigurdsson, G. High incidence of multinodular toxic goitre in the elderly population in a low iodine intake area versus high incidence of Graves' disease in the young in a high iodine intake area: comparative surveys of thyrotoxicosis epidemiology in East-Jutland Denmark and Iceland. J. Intern. Med. 229, 415–420 (1991).

    CAS  PubMed  Google Scholar 

  39. 39

    Laurberg, P. et al. The Danish investigation on iodine intake and thyroid disease, DanThyr: status and perspectives. Eur. J. Endocrinol. 155, 219–228 (2006).

    CAS  PubMed  Google Scholar 

  40. 40

    Aghini-Lombardi, F. et al. The spectrum of thyroid disorders in an iodine-deficient community: the Pescopagano survey. J. Clin. Endocrinol. Metab. 84, 561–566 (1999).

    CAS  PubMed  Google Scholar 

  41. 41

    Du, Y. et al. Iodine deficiency and excess coexist in china and induce thyroid dysfunction and disease: a cross-sectional study. PLOS ONE 9, e111937 (2014).

    Google Scholar 

  42. 42

    Tan, L. et al. Prevalence of thyroid dysfunction with adequate and excessive iodine intake in Hebei Province, People's Republic of China. Public Health Nutr. 18, 1692–1697 (2015).

    PubMed  Google Scholar 

  43. 43

    Okosieme, O. E. Impact of iodination on thyroid pathology in Africa. J. R. Soc. Med. 99, 396–401 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Ogbera, A. O. & Kuku, S. F. Epidemiology of thyroid diseases in Africa. Indian J. Endocrinol. Metabolism 15, S82–S88 (2011).

    Google Scholar 

  45. 45

    Muller, G. M., Levitt, N. S. & Louw, S. J. Thyroid dysfunction in the elderly. South Afr. Med. J. 87, 1119–1123 (1997).

    CAS  Google Scholar 

  46. 46

    Kalk, W. J. Thyrotoxicosis in urban black Africans: a rising incidence. East Afr. Med. J. 58, 109–116 (1981).

    CAS  PubMed  Google Scholar 

  47. 47

    Sarfo-Kantanka, O., Sarfo, F. S., Ansah, E. O. & Kyei, I. Spectrum of Endocrine Disorders in Central Ghana. Int. J. Endocrinol. 2017, 7 (2017).

    Google Scholar 

  48. 48

    Sarfo-Kantanka, O., Kyei, I., Sarfo, F. S. & Ansah, E. O. Thyroid Disorders in Central Ghana: The Influence of 20 Years of Iodization. J. Thyroid Res. 2017, 8 (2017).

    Google Scholar 

  49. 49

    Biondi, B. & Kahaly, G. J. Cardiovascular involvement in patients with different causes of hyperthyroidism. Nature reviews. Endocrinology 6, 431–443 (2010).

    PubMed  Google Scholar 

  50. 50

    Ogbera, A. O., Fasanmade, O. & Adediran, O. Pattern of thyroid disorders in the southwestern region of Nigeria. Ethn. Dis. 17, 327–330 (2007).

    CAS  PubMed  Google Scholar 

  51. 51

    Tellez, M., Cooper, J. & Edmonds, C. Graves' ophthalmopathy in relation to cigarette smoking and ethnic origin. Clin. Endocrinol. 36, 291–294 (1992).

    CAS  Google Scholar 

  52. 52

    Okinaka, S. et al. The association of periodic paralysis and hyperthyroidism in Japan. J. Clin. Endocrinol. Metab. 17, 1454–1459 (1957).

    CAS  PubMed  Google Scholar 

  53. 53

    Kelley, D. E., Gharib, H., Kennedy, F. P., Duda, R. J. Jr & McManis, P. G. Thyrotoxic periodic paralysis. Report of 10 cases and review of electromyographic findings. Arch. Intern. Med. 149, 2597–2600 (1989).

    CAS  PubMed  Google Scholar 

  54. 54

    Tamai, H. et al. HLA and thyrotoxic periodic paralysis in Japanese patients. J. Clin. Endocrinol. Metab. 64, 1075–1078 (1987).

    CAS  PubMed  Google Scholar 

  55. 55

    Bartalena, L. & Fatourechi, V. Extrathyroidal manifestations of Graves' disease: a 2014 update. J. Endocrinol. Invest. 37, 691–700 (2014).

    CAS  PubMed  Google Scholar 

  56. 56

    Bartalena, L. et al. The phenotype of newly diagnosed Graves' disease in Italy in recent years is milder than in the past: results of a large observational longitudinal study. J. Endocrinol. Invest. 39, 1445–1451 (2016).

    CAS  PubMed  Google Scholar 

  57. 57

    Perros, P. et al. PREGO (presentation of Graves' orbitopathy) study: changes in referral patterns to European Group On Graves' Orbitopathy (EUGOGO) centres over the period from 2000 to 2012. Br. J. Ophthalmol. 99, 1531–1535 (2015).

    PubMed  Google Scholar 

  58. 58

    Vitti, P., Rago, T., Tonacchera, M. & Pinchera, A. Toxic multinodular goiter in the elderly. J. Endocrinol. Invest. 25, 16–18 (2002).

    CAS  PubMed  Google Scholar 

  59. 59

    Pearce, E. N., Farwell, A. P. & Braverman, L. E. Thyroiditis. N. Engl. J. Med. 348, 2646–2655 (2003).

    PubMed  Google Scholar 

  60. 60

    Nikolai, T. F., Brosseau, J., Kettrick, M. A., Roberts, R. & Beltaos, E. Lymphocytic thyroiditis with spontaneously resolving hyperthyroidism (silent thyroiditis). Arch. Intern. Med. 140, 478–482 (1980).

    CAS  PubMed  Google Scholar 

  61. 61

    Ross, D. S. Syndromes of thyrotoxicosis with low radioactive iodine uptake. Endocrinol. Metab. Clin. North Am. 27, 169–185 (1998).

    CAS  PubMed  Google Scholar 

  62. 62

    Alexander, E. K. et al. 2017 guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid 27, 315–389 (2017).

    PubMed  Google Scholar 

  63. 63

    Fatourechi, V., Aniszewski, J. P., Fatourechi, G. Z., Atkinson, E. J. & Jacobsen, S. J. Clinical features and outcome of subacute thyroiditis in an incidence cohort: Olmsted County, Minnesota, study. J. Clin. Endocrinol. Metab. 88, 2100–2105 (2003).

    CAS  PubMed  Google Scholar 

  64. 64

    Schwartz, F., Bergmann, N., Zerahn, B. & Faber, J. Incidence rate of symptomatic painless thyroiditis presenting with thyrotoxicosis in Denmark as evaluated by consecutive thyroid scintigraphies. Scand. J. Clin. Lab. Invest. 73, 240–244 (2013).

    CAS  PubMed  Google Scholar 

  65. 65

    Vitug, A. C. & Goldman, J. M. Silent (painless) thyroiditis. Evidence of a geographic variation in frequency. Arch. Intern. Med. 145, 473–475 (1985).

    CAS  PubMed  Google Scholar 

  66. 66

    Schneeberg, N. G. Silent thyroiditis. Arch. Intern. Med. 143, 2214 (1983).

    CAS  PubMed  Google Scholar 

  67. 67

    Martino, E., Bartalena, L., Bogazzi, F. & Braverman, L. E. The effects of amiodarone on the thyroid. Endocr. Rev. 22, 240–254 (2001).

    CAS  PubMed  Google Scholar 

  68. 68

    Bogazzi, F., Tomisti, L., Bartalena, L., Aghini-Lombardi, F. & Martino, E. Amiodarone and the thyroid: a 2012 update. J. Endocrinol. Invest. 35, 340–348 (2012).

    CAS  PubMed  Google Scholar 

  69. 69

    Zosin, I. & Balas, M. Amiodarone-induced thyroid dysfunction in an iodine-replete area: epidemiological and clinical data. Endokrynol. Polska 63, 2–9 (2012).

    Google Scholar 

  70. 70

    Tsang, W. & Houlden, R. L. Amiodarone-induced thyrotoxicosis: a review. Can. J. Cardiol. 25, 421–424 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Uchida, T. et al. Prevalence of amiodarone-induced thyrotoxicosis and associated risk factors in Japanese patients. Int. J. Endocrinol. 2014, 534904 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Cukier, P., Santini, F. C., Scaranti, M. & Hoff, A. O. Endocrine side effects of cancer immunotherapy. Endocr. Relat. Cancer 24, T331–T347 (2017).

    CAS  PubMed  Google Scholar 

  73. 73

    Barroso-Sousa, R. et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol. 4, 173–182 (2018).

    PubMed  Google Scholar 

  74. 74

    Daniels, G. H. et al. Alemtuzumab-related thyroid dysfunction in a phase 2 trial of patients with relapsing-remitting multiple sclerosis. J. Clin. Endocrinol. Metab. 99, 80–89 (2014).

    CAS  PubMed  Google Scholar 

  75. 75

    Carle, A., Andersen, S. L., Boelaert, K. & Laurberg, P. Management of endocrine disease: subclinical thyrotoxicosis: prevalence, causes and choice of therapy. Eur. J. Endocrinol. 176, R325–R337 (2017).

    CAS  PubMed  Google Scholar 

  76. 76

    Vadiveloo, T., Donnan, P. T., Cochrane, L. & Leese, G. P. The Thyroid Epidemiology, Audit, and Research Study (TEARS): the natural history of endogenous subclinical hyperthyroidism. J. Clin. Endocrinol. Metab. 96, E1–E8 (2011).

    CAS  PubMed  Google Scholar 

  77. 77

    Das, G. et al. Serum thyrotrophin at baseline predicts the natural course of subclinical hyperthyroidism. Clin. Endocrinol. 77, 146–151 (2012).

    CAS  Google Scholar 

  78. 78

    Rosario, P. W. Natural history of subclinical hyperthyroidism in elderly patients with TSH between 0.1 and 0.4 mIU/l: a prospective study. Clin. Endocrinol. 72, 685–688 (2010).

    CAS  Google Scholar 

  79. 79

    Stanbury, J. B. et al. Iodine-induced hyperthyroidism: occurrence and epidemiology. Thyroid 8, 83–100 (1998).

    CAS  PubMed  Google Scholar 

  80. 80

    Roti, E. & Uberti, E. D. Iodine excess and hyperthyroidism. Thyroid 11, 493–500 (2001).

    CAS  PubMed  Google Scholar 

  81. 81

    Lee, S. Y. et al. A review: Radiographic iodinated contrast media-induced thyroid dysfunction. J. Clin. Endocrinol. Metab. 100, 376–383 (2015).

    CAS  PubMed  Google Scholar 

  82. 82

    Cooper, D. S. & Laurberg, P. Hyperthyroidism in pregnancy. Lancet Diabetes Endocrinol. 1, 238–249 (2013).

    CAS  PubMed  Google Scholar 

  83. 83

    Korevaar, T. I. M., Medici, M., Visser, T. J. & Peeters, R. P. Thyroid disease in pregnancy: new insights in diagnosis and clinical management. Nat. Rev. Endocrinol. 13, 610–622 (2017).

    CAS  PubMed  Google Scholar 

  84. 84

    Korelitz, J. J. et al. Prevalence of thyrotoxicosis, antithyroid medication use, and complications among pregnant women in the United States. Thyroid 23, 758–765 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Andersen, S. L., Olsen, J., Carle, A. & Laurberg, P. Hyperthyroidism incidence fluctuates widely in and around pregnancy and is at variance with some other autoimmune diseases: a Danish population-based study. J. Clin. Endocrinol. Metab. 100, 1164–1171 (2015).

    CAS  PubMed  Google Scholar 

  86. 86

    Okosieme, O. E. & Lazarus, J. H. Important considerations in the management of Graves' disease in pregnant women. Expert Rev. Clin. Immunol. 11, 947–957 (2015).

    CAS  PubMed  Google Scholar 

  87. 87

    Taylor, P. N. & Vaidya, B. Side effects of anti-thyroid drugs and their impact on the choice of treatment for thyrotoxicosis in pregnancy. Eur. Thyroid J. 1, 176–185 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Vaidya, B., Williams, G. R., Abraham, P. & Pearce, S. H. Radioiodine treatment for benign thyroid disorders: results of a nationwide survey of UK endocrinologists. Clin. Endocrinol. 68, 814–820 (2008).

    Google Scholar 

  89. 89

    Agboola-Abu, C. F. & Kuku, S. F. Experience in the use of radioactive iodine therapy for hyperthyroidism in Nigerian patients. A study of twenty-two patients. West Afr. J. Med. 22, 324–328 (2003).

    PubMed  Google Scholar 

  90. 90

    Bath, S. C., Steer, C. D., Golding, J., Emmett, P. & Rayman, M. P. Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Lancet 382, 331–337 (2013).

    CAS  PubMed  Google Scholar 

  91. 91

    Taylor, P. N., Okosieme, O. E., Dayan, C. M. & Lazarus, J. H. Therapy of endocrine disease: Impact of iodine supplementation in mild-to-moderate iodine deficiency: systematic review and meta-analysis. Eur. J. Endocrinol. 170, R1–R15 (2014).

    CAS  PubMed  Google Scholar 

  92. 92

    Vanderpump, M. P. et al. Iodine status of UK schoolgirls: a cross-sectional survey. Lancet 377, 2007–2012 (2011).

    CAS  PubMed  Google Scholar 

  93. 93

    Bath, S., Walter, A., Taylor, A. & Rayman, M. Iodine status of UK women of childbearing age. J. Hum. Nutr. Dietet. 21, 379–380 (2008).

    Google Scholar 

  94. 94

    Pearce, E. N. et al. Perchlorate and thiocyanate exposure and thyroid function in first-trimester pregnant women. J. Clin. Endocrinol. Metab. 95, 3207–3215 (2010).

    CAS  PubMed  Google Scholar 

  95. 95

    Lazarus, J. H. & Smyth, P. P. Iodine deficiency in the UK and Ireland. Lancet 372, 888 (2008).

    PubMed  Google Scholar 

  96. 96

    Delange, F. Iodine deficiency in Europe anno 2002. Thyroid Int. 5, 3–18 (2002).

    Google Scholar 

  97. 97

    Mazzarella, C. et al. Iodine status assessment in Campania (Italy) as determined by urinary iodine excretion. Nutrition 25, 926–929 (2009).

    CAS  PubMed  Google Scholar 

  98. 98

    Vitti, P., Delange, F., Pinchera, A., Zimmermann, M. & Dunn, J. T. Europe is iodine deficient. Lancet 361, 1226 (2003).

    PubMed  Google Scholar 

  99. 99

    Pearce, E. N., Andersson, M. & Zimmermann, M. B. Global iodine nutrition: where do we stand in 2013? Thyroid 23, 523–528 (2013).

    CAS  PubMed  Google Scholar 

  100. 100

    Parle, J. V., Franklyn, J. A., Cross, K. W., Jones, S. C. & Sheppard, M. C. Prevalence and follow-up of abnormal thyrotrophin (TSH) concentrations in the elderly in the United Kingdom. Clin. Endocrinol. 34, 77–83 (1991).

    CAS  Google Scholar 

  101. 101

    Gussekloo, J. et al. Thyroid status, disability and cognitive function, and survival in old age. JAMA 292, 2591–2599 (2004).

    CAS  PubMed  Google Scholar 

  102. 102

    Asvold, B. O., Vatten, L. J. & Bjoro, T. Changes in the prevalence of hypothyroidism: the HUNT Study in Norway. Eur. J. Endocrinol. 169, 613–620 (2013).

    CAS  PubMed  Google Scholar 

  103. 103

    McGrogan, A., Seaman, H. E., Wright, J. W. & de Vries, C. S. The incidence of autoimmune thyroid disease: a systematic review of the literature. Clin. Endocrinol. 69, 687–696 (2008).

    Google Scholar 

  104. 104

    Canaris, G. J., Manowitz, N. R., Mayor, G. & Ridgway, E. C. The Colorado thyroid disease prevalence study. Arch. Intern. Med. 160, 526–534 (2000).

    CAS  Google Scholar 

  105. 105

    Flynn, R. W., MacDonald, T. M., Morris, A. D., Jung, R. T. & Leese, G. P. The thyroid epidemiology, audit, and research study: thyroid dysfunction in the general population. J. Clin. Endocrinol. Metab. 89, 3879–3884 (2004).

    CAS  PubMed  Google Scholar 

  106. 106

    Valdes, S. et al. Population-based national prevalence of thyroid dysfunction in Spain and associated factors: Di@bet.es study. Thyroid 27, 156–166 (2017).

    CAS  PubMed  Google Scholar 

  107. 107

    Sgarbi, J. A., Matsumura, L. K., Kasamatsu, T. S., Ferreira, S. R. & Maciel, R. M. Subclinical thyroid dysfunctions are independent risk factors for mortality in a 7.5-year follow-up: the Japanese-Brazilian thyroid study. Eur. J. Endocrinol. 162, 569–577 (2010).

    CAS  PubMed  Google Scholar 

  108. 108

    Kasagi, K. et al. Thyroid function in Japanese adults as assessed by a general health checkup system in relation with thyroid-related antibodies and other clinical parameters. Thyroid 19, 937–944 (2009).

    CAS  PubMed  Google Scholar 

  109. 109

    Al Shahrani, A. S. et al. The epidemiology of thyroid diseases in the Arab world: a systematic review. J. Public Health Epidemiol. 8, 17–26 (2016).

    Google Scholar 

  110. 110

    Amouzegar, A. et al. Natural course of euthyroidism and clues for early diagnosis of thyroid dysfunction: Tehran Thyroid Study. Thyroid 27, 616–625 (2017).

    CAS  PubMed  Google Scholar 

  111. 111

    Amouzegar, A. et al. The prevalence, incidence and natural course of positive antithyroperoxidase antibodies in a population-based study: Tehran Thyroid Study. PLOS ONE 12, e0169283 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. 112

    Knudsen, N., Jorgensen, T., Rasmussen, S., Christiansen, E. & Perrild, H. The prevalence of thyroid dysfunction in a population with borderline iodine deficiency. Clin. Endocrinol. 51, 361–367 (1999).

    CAS  Google Scholar 

  113. 113

    Okosieme, O. E., Taylor, R. C., Ohwovoriole, A. E., Parkes, A. B. & Lazarus, J. H. Prevalence of thyroid antibodies in Nigerian patients. QJM 100, 107–112 (2007).

    CAS  PubMed  Google Scholar 

  114. 114

    Satti, H. et al. High rate of hypothyroidism among patients treated for multidrug-resistant tuberculosis in Lesotho. Int. J. Tuberculosis Lung Dis. 16, 468–472 (2012).

    CAS  Google Scholar 

  115. 115

    Munivenkatappa, S. et al. Drug-induced hypothyroidism during anti-tuberculosis treatment of multidrug-resistant tuberculosis: notes from the field. J. Tuberculosis Res. 4, 105–110 (2016).

    CAS  Google Scholar 

  116. 116

    Shan, Z. et al. Iodine status and prevalence of thyroid disorders after introduction of mandatory universal salt iodization for 16 years in China: a cross-sectional study in 10 cities. Thyroid 26, 1125–1130 (2016).

    CAS  PubMed  Google Scholar 

  117. 117

    Teng, W. et al. Effect of iodine intake on thyroid diseases in China. N. Engl. J. Med. 354, 2783–2793 (2006).

    CAS  PubMed  Google Scholar 

  118. 118

    Unnikrishnan, A. G. et al. Prevalence of hypothyroidism in adults: an epidemiological study in eight cities of India. Indian J. Endocrinol. Metab. 17, 647–652 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Bagcchi, S. Hypothyroidism in India: more to be done. Lancet Diabetes Endocrinol. 2, 778 (2014).

    PubMed  Google Scholar 

  120. 120

    Medici, M., Korevaar, T. I., Visser, W. E., Visser, T. J. & Peeters, R. P. Thyroid function in pregnancy: what is normal? Clin. Chem. 61, 704–713 (2015).

    CAS  PubMed  Google Scholar 

  121. 121

    Taylor, P. N., Okosieme, O. E., Premawardhana, L. & Lazarus, J. H. Should all women be screened for thyroid dysfunction in pregnancy? Womens Health 11, 295–307 (2015).

    CAS  Google Scholar 

  122. 122

    Krassas, G. E., Poppe, K. & Glinoer, D. Thyroid function and human reproductive health. Endocr. Rev. 31, 702–755 (2010).

    CAS  PubMed  Google Scholar 

  123. 123

    Stagnaro-Green, A. et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 21, 1081–1125 (2011).

    PubMed  PubMed Central  Google Scholar 

  124. 124

    Zhang, Y., Wang, H., Pan, X., Teng, W. & Shan, Z. Patients with subclinical hypothyroidism before 20 weeks of pregnancy have a higher risk of miscarriage: a systematic review and meta-analysis. PLOS ONE 12, e0175708 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. 125

    Korevaar, T. I. et al. Hypothyroxinemia and TPO-antibody positivity are risk factors for premature delivery: the generation R study. J. Clin. Endocrinol. Metab. 98, 4382–4390 (2013).

    CAS  PubMed  Google Scholar 

  126. 126

    Lazarus, J. H. et al. Antenatal thyroid screening and childhood cognitive function. N. Engl. J. Med. 366, 493–501 (2012).

    CAS  PubMed  Google Scholar 

  127. 127

    Casey, B. M. et al. Treatment of subclinical hypothyroidism or hypothyroxinemia in pregnancy. N. Engl. J. Med. 376, 815–825 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Dosiou, C. et al. Cost-effectiveness of universal and risk-based screening for autoimmune thyroid disease in pregnant women. J. Clin. Endocrinol. Metab. 97, 1536–1546 (2012).

    CAS  PubMed  Google Scholar 

  129. 129

    Gruters, A. & Krude, H. Update on the management of congenital hypothyroidism. Horm. Res. 68 (Suppl. 5), 107–111 (2007).

    PubMed  Google Scholar 

  130. 130

    Fisher, D. A. Second International Conference on Neonatal Thyroid Screening: progress report. J. Pediatr. 102, 653–654 (1983).

    CAS  PubMed  Google Scholar 

  131. 131

    Albert, B. B. et al. Etiology of increasing incidence of congenital hypothyroidism in New Zealand from 1993–2010. J. Clin. Endocrinol. Metab. 97, 3155–3160 (2012).

    CAS  PubMed  Google Scholar 

  132. 132

    Deladoey, J., Ruel, J., Giguere, Y. & Van Vliet, G. Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Quebec. J. Clin. Endocrinol. Metab. 96, 2422–2429 (2011).

    CAS  PubMed  Google Scholar 

  133. 133

    Ford, G. & LaFranchi, S. H. Screening for congenital hypothyroidism: a worldwide view of strategies. Best Pract. Res. Clin. Endocrinol. Metab. 28, 175–187 (2014).

    CAS  PubMed  Google Scholar 

  134. 134

    Gittoes, N. J. L. & Franklyn, J. A. Drug-induced thyroid disorders. Drug Safety 13, 46–55 (1995).

    CAS  PubMed  Google Scholar 

  135. 135

    Martino, E. et al. Environmental iodine intake and thyroid dysfunction during chronic amiodarone therapy. Ann. Intern. Med. 101, 28–34 (1984).

    CAS  PubMed  Google Scholar 

  136. 136

    Mahzari, M., Arnaout, A. & Freedman, M. S. Alemtuzumab induced thyroid disease in multiple sclerosis: a review and approach to management. Can. J. Neurol. Sci. 42, 284–291 (2015).

    PubMed  Google Scholar 

  137. 137

    Wolter, P. et al. The clinical implications of sunitinib-induced hypothyroidism: a prospective evaluation. Br. J. Cancer 99, 448–454 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Markou, K., Georgopoulos, N., Kyriazopoulou, V. & Vagenakis, A. G. Iodine-Induced hypothyroidism. Thyroid 11, 501–510 (2001).

    CAS  PubMed  Google Scholar 

  139. 139

    Leung, A. M. et al. Potential risks of excess iodine ingestion and exposure: statement by the american thyroid association public health committee. Thyroid 25, 145–146 (2015).

    PubMed  PubMed Central  Google Scholar 

  140. 140

    IGN. Iodine Global Network Annual Report 2016. IGN http://www.ign.org/ (2016).

  141. 141

    Dasgupta, P. K., Liu, Y. & Dyke, J. V. Iodine nutrition: iodine content of iodized salt in the United States. Environ. Sci. Technol. 42, 1315–1323 (2008).

    CAS  PubMed  Google Scholar 

  142. 142

    Premawardhana, L. D. et al. Increased prevalence of thyroglobulin antibodies in Sri Lankan schoolgirls — is iodine the cause? Eur. J. Endocrinol. 143, 185–188 (2000).

    CAS  PubMed  Google Scholar 

  143. 143

    Sundick, R. S., Bagchi, N. & Brown, T. R. The role of iodine in thyroid autoimmunity: from chickens to humans: a review. Autoimmunity 13, 61–68 (1992).

    CAS  PubMed  Google Scholar 

  144. 144

    Okosieme, O. E. et al. Thyroglobulin epitope recognition in a post iodine-supplemented Sri Lankan population. Clin. Endocrinol. 59, 190–197 (2003).

    CAS  Google Scholar 

  145. 145

    Bulow Pedersen, I. et al. A cautious iodization program bringing iodine intake to a low recommended level is associated with an increase in the prevalence of thyroid autoantibodies in the population. Clin. Endocrinol. 75, 120–126 (2011).

    Google Scholar 

  146. 146

    Pedersen, I. B. et al. An increased incidence of overt hypothyroidism after iodine fortification of salt in Denmark: a prospective population study. J. Clin. Endocrinol. Metab. 92, 3122–3127 (2007).

    CAS  PubMed  Google Scholar 

  147. 147

    Buziak-Bereza, M., Golkowski, F. & Szybinski, Z. Disturbances of thyroid function in adult population of the city of Cracow followed up for ten years observation [Polish]. Przegl. Lek. 62, 676–679 (2005).

    PubMed  Google Scholar 

  148. 148

    Laurberg, P. et al. Iodine intake and the pattern of thyroid disorders: a comparative epidemiological study of thyroid abnormalities in the elderly in Iceland and in Jutland, Denmark. J. Clin. Endocrinol. Metab. 83, 765–769 (1998).

    CAS  PubMed  Google Scholar 

  149. 149

    Konno, N., Makita, H., Yuri, K., Iizuka, N. & Kawasaki, K. Association between dietary iodine intake and prevalence of subclinical hypothyroidism in the coastal regions of Japan. J. Clin. Endocrinol. Metab. 78, 393–397 (1994).

    CAS  PubMed  Google Scholar 

  150. 150

    Hong, A., Stokes, B., Otahal, P., Owens, D. & Burgess, J. R. Temporal trends in thyroid-stimulating hormone (TSH) and thyroid peroxidase antibody (ATPO) testing across two phases of iodine fortification in Tasmania (1995–2013). Clin. Endocrinol. 87, 386–393 (2017).

    CAS  Google Scholar 

  151. 151

    Parveen, S., Latif, S. A., Kamal, M. M. & Uddin, M. M. Effects of long term iodized table salt consumption on serum T3, T4 and TSH in an iodine deficient area of Bangladesh. Mymensingh Med. J. 16, 57–60 (2007).

    CAS  PubMed  Google Scholar 

  152. 152

    Tammaro, A., Pigliacelli, F., Fumarola, A. & Persechino, S. Trends of thyroid function and autoimmunity to 5 years after the introduction of mandatory iodization in Italy. Eur. Ann. Allergy Clin. Immunol. 48, 77–81 (2016).

    CAS  PubMed  Google Scholar 

  153. 153

    Bourdoux, P. P., Ermans, A. M., Mukalay wa Mukalay, A., Filetti, S. & Vigneri, R. Iodine-induced thyrotoxicosis in Kivu, Zaire. Lancet 347, 552–553 (1996).

    CAS  PubMed  Google Scholar 

  154. 154

    Todd, C. H. et al. Increase in thyrotoxicosis associated with iodine supplements in Zimbabwe. Lancet 346, 1563–1564 (1995).

    CAS  PubMed  Google Scholar 

  155. 155

    Connolly, R. J. An increase in thyrotoxicosis in southern Tasmania after an increase in dietary iodine. Med. J. Aust. 1, 1268–1271 (1971).

    CAS  PubMed  Google Scholar 

  156. 156

    Elnagar, B. et al. The effects of different doses of oral iodized oil on goiter size, urinary iodine, and thyroid-related hormones. J. Clin. Endocrinol. Metab. 80, 891–897 (1995).

    CAS  PubMed  Google Scholar 

  157. 157

    Okosieme, O. E. Iodisation in displaced African populations. Lancet 373, 214 (2009).

    PubMed  Google Scholar 

  158. 158

    Aakre, I. et al. Development of thyroid dysfunction among women with excessive iodine intake — a 3-year follow-up. J. Trace Elem. Med. Biol. 31, 61–66 (2015).

    CAS  PubMed  Google Scholar 

  159. 159

    Marwaha, R. K. et al. Reference range of thyroid hormones in healthy school-age children: country-wide data from India. Clin. Biochem. 43, 51–56 (2010).

    CAS  PubMed  Google Scholar 

  160. 160

    Taylor, P. N. et al. Whole-genome sequence-based analysis of thyroid function. Nat. Commun. 6, 5681 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Kus, A. et al. The association of thyroid peroxidase antibody risk loci with susceptibility to and phenotype of Graves' disease. Clin. Endocrinol. 83, 556–562 (2015).

    CAS  Google Scholar 

  162. 162

    Meyerovitch, J. et al. Serum thyrotropin measurements in the community. Five-year follow-up in a large network of primary care physicians. Arch. Intern. Med. 167, 1533–1538 (2007).

    CAS  PubMed  Google Scholar 

  163. 163

    Stott, D. J. et al. Thyroid hormone therapy for older adults with subclinical hypothyroidism. N. Engl. J. Med. 376, 2534–2544 (2017).

    CAS  PubMed  Google Scholar 

  164. 164

    Collet, T. H. et al. Thyroid antibody status, subclinical hypothyroidism, and the risk of coronary heart disease: an individual participant data analysis. J. Clin. Endocrinol. Metab. 99, 3353–3362 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Cooper, D. S. & Biondi, B. Subclinical thyroid disease. Lancet 379, 1142–1154 (2012).

    PubMed  PubMed Central  Google Scholar 

  166. 166

    Taylor, P. N., Razvi, S., Pearce, S. H. & Dayan, C. M. Clinical review: A review of the clinical consequences of variation in thyroid function within the reference range. J. Clin. Endocrinol. Metab. 98, 3562–3571 (2013).

    CAS  PubMed  Google Scholar 

  167. 167

    Rieben, C. et al. Subclinical thyroid dysfunction and the risk of cognitive decline: a meta-analysis of prospective cohort studies. J. Clin. Endocrinol. Metab. 101, 4945–4954 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168

    Eligar, V., Taylor, P., Okosieme, O., Leese, G. & Dayan, C. Thyroxine replacement: a clinical endocrinologist's viewpoint. Ann. Clin. Biochem. 53, 421–433 (2016).

    CAS  PubMed  Google Scholar 

  169. 169

    IGN Iodine Global Network. IGN http://www.ign.org/ (2018).

  170. 170

    Vanderpump, M. in Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text (ed. Utiger, R. D. & Braverman, L. E.) 398–496 (JB Lippincott-Raven, 2005).

    Google Scholar 

  171. 171

    Schultheiss, U. T. et al. A genetic risk score for thyroid peroxidase antibodies associates with clinical thyroid disease in community-based populations. J. Clin. Endocrinol. Metab. 100, E799–E807 (2015).

    PubMed  PubMed Central  Google Scholar 

  172. 172

    Marinò, M., Latrofa, F., Menconi, F., Chiovato, L. & Vitti, P. Role of genetic and non-genetic factors in the etiology of Graves' disease. J. Endocrinol. Invest. 38, 283–294 (2015).

    PubMed  Google Scholar 

  173. 173

    Prummel, M. F. & Wiersinga, W. M. Smoking and risk of Graves' disease. JAMA 269, 479–482 (1993).

    CAS  PubMed  Google Scholar 

  174. 174

    Nyirenda, M. J., Taylor, P. N., Stoddart, M., Beckett, G. J. & Toft, A. D. Thyroid-stimulating hormone-receptor antibody and thyroid hormone concentrations in smokers versus nonsmokers with Graves disease treated with carbimazole. JAMA 301, 162–164 (2009).

    CAS  PubMed  Google Scholar 

  175. 175

    Strieder, T. G., Prummel, M. F., Tijssen, J. G., Endert, E. & Wiersinga, W. M. Risk factors for and prevalence of thyroid disorders in a cross-sectional study among healthy female relatives of patients with autoimmune thyroid disease. Clin. Endocrinol. 59, 396–401 (2003).

    Google Scholar 

  176. 176

    Belin, R. M., Astor, B. C., Powe, N. R. & Ladenson, P. W. Smoke exposure is associated with a lower prevalence of serum thyroid autoantibodies and thyrotropin concentration elevation and a higher prevalence of mild thyrotropin concentration suppression in the third National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 89, 6077–6086 (2004).

    CAS  PubMed  Google Scholar 

  177. 177

    Asvold, B. O., Bjoro, T., Nilsen, T. I. & Vatten, L. J. Tobacco smoking and thyroid function: a population-based study. Arch. Intern. Med. 167, 1428–1432 (2007).

    PubMed  Google Scholar 

  178. 178

    Carlé, A. et al. Moderate alcohol consumption may protect against overt autoimmune hypothyroidism: a population-based case–control study. Eur. J. Endocrinol. 167, 483–490 (2012).

    PubMed  Google Scholar 

  179. 179

    Tomer, Y. & Davies, T. F. Infection, thyroid disease, and autoimmunity. Endocr. Rev. 14, 107–120 (1993).

    CAS  PubMed  Google Scholar 

  180. 180

    Mogensen, E. F. & Green, A. The epidemiology of thyrotoxicosis in Denmark. Incidence and geographical variation in the Funen region 1972–1974. Acta Med. Scand. 208, 183–186 (1980).

    CAS  PubMed  Google Scholar 

  181. 181

    Berglund, J., Christensen, S. B. & Hallengren, B. Total and age-specific incidence of Graves' thyrotoxicosis, toxic nodular goitre and solitary toxic adenoma in Malmo 1970–1974. J. Intern. Med. 227, 137–141 (1990).

    CAS  PubMed  Google Scholar 

  182. 182

    Galofre, J. C. et al. Incidence of different forms of thyroid dysfunction and its degrees in an iodine sufficient area. Thyroidology 6, 49–54 (1994).

    CAS  PubMed  Google Scholar 

  183. 183

    Volzke, H. et al. The prevalence of undiagnosed thyroid disorders in a previously iodine-deficient area. Thyroid 13, 803–810 (2003).

    PubMed  Google Scholar 

  184. 184

    O'Leary, P. C. et al. Investigations of thyroid hormones and antibodies based on a community health survey: the Busselton thyroid study. Clin. Endocrinol. 64, 97–104 (2006).

    CAS  Google Scholar 

  185. 185

    Leese, G. P. et al. Increasing prevalence and incidence of thyroid disease in Tayside, Scotland: the Thyroid Epidemiology Audit and Research Study (TEARS). Clin. Endocrinol. 68, 311–316 (2008).

    CAS  Google Scholar 

  186. 186

    Lucas, A. et al. Undiagnosed thyroid dysfunction, thyroid antibodies, and iodine excretion in a Mediterranean population. Endocr 38, 391–396 (2010).

    CAS  Google Scholar 

  187. 187

    Delshad, H., Mehran, L., Tohidi, M., Assadi, M. & Azizi, F. The incidence of thyroid function abnormalities & natural course of subclinical thyroid disorders, Tehran, I. R. Iran. J. Endocrinol. Invest. 35, 516–521 (2012).

    CAS  PubMed  Google Scholar 

  188. 188

    Sriphrapradang, C. et al. Reference ranges of serum TSH, FT4 and thyroid autoantibodies in the Thai population: the national health examination survey. Clin. Endocrinol. 80, 751–756 (2014).

    CAS  Google Scholar 

  189. 189

    Hoogendoorn, E. H. et al. Thyroid function and prevalence of anti-thyroperoxidase antibodies in a population with borderline sufficient iodine intake: influences of age and sex. Clin. Chem. 52, 104–111 (2006).

    CAS  PubMed  Google Scholar 

  190. 190

    Marwaha, R. K. et al. The evolution of thyroid function with puberty. Clin. Endocrinol. 76, 899–904 (2012).

    CAS  Google Scholar 

  191. 191

    Laurberg, P., Bulow Pedersen, I., Pedersen, K. M. & Vestergaard, H. Low incidence rate of overt hypothyroidism compared with hyperthyroidism in an area with moderately low iodine intake. Thyroid 9, 33–38 (1999).

    CAS  PubMed  Google Scholar 

  192. 192

    Galofre, J. C., Fernandez-Calvet, L., Rios, M. & Garcia-Mayor, R. V. Increased incidence of thyrotoxicosis after iodine supplementation in an iodine sufficient area. J. Endocrinol. Invest. 17, 23–27 (1994).

    CAS  PubMed  Google Scholar 

  193. 193

    Yang, F. et al. Epidemiological survey on the relationship between different iodine intakes and the prevalence of hyperthyroidism. Eur. J. Endocrinol. 146, 613–618 (2002).

    CAS  PubMed  Google Scholar 

  194. 194

    Golkowski, F. et al. Increased prevalence of hyperthyroidism as an early and transient side-effect of implementing iodine prophylaxis. Public Health Nutr. 10, 799–802 (2007).

    PubMed  Google Scholar 

  195. 195

    Heydarian, P., Ordookhani, A. & Azizi, F. Goiter rate, serum thyrotropin, thyroid autoantibodies and urinary iodine concentration in Tehranian adults before and after national salt iodization. J. Endocrinol. Invest. 30, 404–410 (2007).

    CAS  PubMed  Google Scholar 

  196. 196

    Cerqueira, C. et al. Doubling in the use of thyroid hormone replacement therapy in Denmark: association to iodization of salt? Eur. J. Epidemiol. 26, 629–635 (2011).

    CAS  PubMed  Google Scholar 

  197. 197

    Aghini Lombardi, F. et al. The effect of voluntary iodine prophylaxis in a small rural community: the Pescopagano survey 15 years later. J. Clin. Endocrinol. Metab. 98, 1031–1039 (2013).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

P.N.T., D.A., A.S., G.G. and O.E.O. researched data for the article, made substantial contributions to discussion of content, wrote the article and reviewed and/or edited the manuscript before submission. C.M.D. and J.H.L. made substantial contributions to discussion of content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Peter N. Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Thyrotoxicosis

The clinical state that results from too much thyroid hormone in the body. In the overwhelming majority of cases, this is due to excess production from the thyroid gland (hyperthyroidism).

Silent thyroiditis

A self-limiting subacute disorder that results in temporary hyperthyroidism, usually followed by a brief period of hypothyroidism and then recovery of normal thyroid function. It most commonly occurs in females in the post-partum period.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taylor, P., Albrecht, D., Scholz, A. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol 14, 301–316 (2018). https://doi.org/10.1038/nrendo.2018.18

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing