Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The potential of endurance exercise-derived exosomes to treat metabolic diseases

Key Points

  • Epidemiological data demonstrate that endurance exercise confers multisystemic benefits on human health, and mitigates the effects of metabolic diseases including obesity and type 2 diabetes mellitus (T2DM)

  • A variety of peptides and microRNA (miRNA) species (exerkines) are altered in response to acute and chronic endurance exercise that can influence the pathophysiology of obesity and T2DM through endocrine-like effects

  • Exosomes are endocrine-like intercellular communication vesicles that carry proteins, miRNA and other nucleic acids between cells and tissues, and promote cross talk between organs

  • The specific physiological roles of exosomes and microvesicles have yet to be fully elucidated owing to controversies in current isolation methodologies

  • Isolation techniques and comprehensive particle characterization are essential factors to consider in the study of exosomes and microvesicles

  • We hypothesize that many of the exerkines that mitigate obesity and T2DM, and positively regulate metabolic health are contained within exosomes; future therapies for obesity and T2DM might involve modified exosomes enriched with exerkines

Abstract

Endurance exercise-mediated multisystemic adaptations are known to mitigate metabolism-related disorders such as obesity and type 2 diabetes mellitus (T2DM). However, the underlying molecular mechanisms that promote crosstalk between organs and orchestrate the pro-metabolic effects of endurance exercise remain unclear. Exercise-induced release of peptides and nucleic acids from skeletal muscle and other organs (collectively termed 'exerkines') has been implicated in mediating these systemic adaptations. Given that the extracellular milieu is probably not a hospitable environment for labile exerkines, a lipid vehicle-based mode of delivery has originated over the course of evolution. Two types of extracellular vesicles, exosomes and microvesicles, have been shown to contain proteins and nucleic acids that participate in a variety of physiological and pathological processes. Exosomes, in particular, have been shown to facilitate the exchange of peptides, microRNA, mRNA and mitochondrial DNA between cells and tissues. Intriguingly, circulatory extracellular vesicle content increases in an intensity-dependant manner in response to endurance exercise. We propose that the systemic benefits of exercise are modulated by exosomes and/or microvesicles functioning in an autocrine, paracrine and/or endocrine manner. Furthermore, we posit that native or modified exosomes, and/or microvesicles enriched with exerkines will have therapeutic utility in the treatment of obesity and T2DM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biogenesis and secretion of exosomes and microvesicles.
Figure 2: Exosomes mediate the systemic benefits of endurance exercise.
Figure 3: Acute endurance exercise promotes dynamic secretion of exosomes from skeletal muscle.

Similar content being viewed by others

References

  1. Bramble, D. M. & Lieberman, D. E. Endurance running and the evolution of Homo. Nature 432, 345–352 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Steensberg, A. et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J. Physiol. 537, 633–639 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Choi, D. S., Kim, D. K., Kim, Y. K. & Gho, Y. S. Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom. Rev. 34, 474–490 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Hagiwara, K., Ochiya, T. & Kosaka, N. A paradigm shift for extracellular vesicles as small RNA carriers: from cellular waste elimination to therapeutic applications. Drug Delivery Transl Res. 4, 31–37 (2014).

    Article  CAS  Google Scholar 

  7. Januszyk, K. & Lima, C. D. The eukaryotic RNA exosome. Curr. Opin. Struct. Biol. 24, 132–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Barutta, F. et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS ONE 8, e73798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Korc, M. Pancreatic cancer-associated diabetes is an 'exosomopathy'. Clin. Cancer Res. 21, 1508–1510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kranendonk, M. E. et al. Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc. Diabetol. 13, 37 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yanez-Mo, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    Article  PubMed  Google Scholar 

  12. Rahman, M. J., Regn, D., Bashratyan, R. & Dai, Y. D. Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes 63, 1008–1020 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zubiri, I. et al. Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis. J. Proteomics 96, 92–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Mendis, S., Davis, S. & Norrving, B. Organizational update: the world health organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. Stroke 46, e121–e122 (2015).

    Article  PubMed  Google Scholar 

  15. Katzmarzyk, P. T., Gledhill, N. & Shephard, R. J. The economic burden of physical inactivity in Canada. CMAJ 163, 1435–1440 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Katzmarzyk, P. T. & Janssen, I. The economic costs associated with physical inactivity and obesity in Canada: an update. Can. J. Appl. Physiol. 29, 90–115 (2004).

    Article  PubMed  Google Scholar 

  17. Chakravarty, E. F., Hubert, H. B., Lingala, V. B. & Fries, J. F. Reduced disability and mortality among aging runners: a 21-year longitudinal study. Arch. Intern. Med. 168, 1638–1164 (2008). A comprehensive epidemiological study that details the survival advantage and reduced burden of chronic diseases in community runners versus their sedentary counterparts.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Woodcock, J., Franco, O. H., Orsini, N. & Roberts, I. Non-vigorous physical activity and all-cause mortality: systematic review and meta-analysis of cohort studies. Int. J. Epidemiol. 40, 121–138 (2011).

    Article  PubMed  Google Scholar 

  19. Avery, L., Flynn, D., van Wersch, A., Sniehotta, F. F. & Trenell, M. I. Changing physical activity behavior in type 2 diabetes: a systematic review and meta-analysis of behavioral interventions. Diabetes Care 35, 2681–2689 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Helmrich, S. P., Ragland, D. R., Leung, R. W. & Paffenbarger, R. S. Jr. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 325, 147–152 (1991). An important epidemiological paper that highlights the therapeutic effect of increased physical activity in preventing non-insulin-dependent diabetes mellitus.

    Article  CAS  PubMed  Google Scholar 

  21. American Association of Diabetes Educators. Diabetes and physical activity. Diabetes Educ. 38, 129–132 (2012).

  22. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002). A seminal longitudinal study reporting that long-term physical activity reduces the incidence of diabetes and is more effective than metformin, the most prescribed medication for type 2 diabetes mellitus.

    Article  CAS  PubMed  Google Scholar 

  23. Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374, 1677–1686 (2009).

  24. Hawley, J. A. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab. Res. Rev. 20, 383–393 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Morino, K., Petersen, K. F. & Shulman, G. I. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55, S9–S15 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Joseph, A. M. & Hood, D. A. Relationships between exercise, mitochondrial biogenesis and type 2 diabetes. Med. Sport Sci. 60, 48–61 (2014).

    Article  PubMed  Google Scholar 

  27. Morino, K. et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J. Clin. Invest. 115, 3587–3593 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ritov, V. B. et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am. J. Physiol. Endocrinol. Metab. 298, E49–E58 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Simoneau, J. A., Colberg, S. R., Thaete, F. L. & Kelley, D. E. Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. FASEB J. 9, 273–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Lowell, B. B. & Shulman, G. I. Mitochondrial dysfunction and type 2 diabetes. Science 307, 384–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Petersen, K. F. & Shulman, G. I. Etiology of insulin resistance. Am. J. Med. 119, S10–16 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dela, F. et al. Physical training increases muscle GLUT4 protein and mRNA in patients with NIDDM. Diabetes 43, 862–865 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Greiwe, J. S., Holloszy, J. O. & Semenkovich, C. F. Exercise induces lipoprotein lipase and GLUT-4 protein in muscle independent of adrenergic-receptor signaling. J. Appl. Physiol. 89, 176–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Gulve, E. A. & Spina, R. J. Effect of 7–10 days of cycle ergometer exercise on skeletal muscle GLUT-4 protein content. J. Appl. Physiol. 79, 1562–1566 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Phillips, S. M., Han, X. X., Green, H. J. & Bonen, A. Increments in skeletal muscle GLUT-1 and GLUT-4 after endurance training in humans. Am. J. Physiol. 270, E456–E462 (1996).

    CAS  PubMed  Google Scholar 

  36. Ren, J. M., Semenkovich, C. F., Gulve, E. A., Gao, J. & Holloszy, J. O. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J. Biol. Chem. 269, 14396–14401 (1994).

    CAS  PubMed  Google Scholar 

  37. Langin, D. Recruitment of brown fat and conversion of white into brown adipocytes: strategies to fight the metabolic complications of obesity? Biochim. Biophys. Acta 1801, 372–376 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Lo, K. A. & Sun, L. Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci. Rep. 33, e00065 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bostrom, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012). An important paper that describes the discovery of a novel exercise-mediated myokine, irisin, and its role in promoting browning of white adipose tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kajimura, S., Spiegelman, B. M. & Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sidossis, L. S. et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 22, 219–227 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Albrecht, E. et al. Irisin — a myth rather than an exercise-inducible myokine. Sci. Rep. 5, 8889 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014). This study extensisvely characterized an exercise-induced myokine, meteorin-like, and its role in linking host-adaptive responses to regulation of energy homeostasis and tissue inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 19, 302–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patsouris, D. et al. Burn induces browning of the subcutaneous white adipose tissue in mice and humans. Cell Rep. 13, 1538–1544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boveris, A. & Navarro, A. Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic. Biol. Med. 44, 224–229 (2008). A comprehensive report that details mitochondrial adaptation to endurance exercise training in muscle and other distal tissues.

    Article  CAS  PubMed  Google Scholar 

  47. Safdar, A. et al. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc. Natl Acad. Sci. USA 108, 4135–4140 (2011). A seminal study that first described the effects of endurance exercise in mediating systemic mitochondrial rejuvenation, which in turn mitigated multisystem pathology and rescued progeroid ageing phenotypes in mtDNA mutator mice.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sutherland, L. N., Bomhof, M. R., Capozzi, L. C., Basaraba, S. A. & Wright, D. C. Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue. J. Physiol. 587, 1607–1617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clark-Matott, J. et al. Metabolomic analysis of exercise effects in the POLG mitochondrial DNA mutator mouse brain. Neurobiol. Aging 36, 2972–2983 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cameron, I., Alam, M. A., Wang, J. & Brown, L. Endurance exercise in a rat model of metabolic syndrome. Can. J. Physiol. Pharmacol. 90, 1490–1497 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Devries, M. C. et al. Endurance training modulates intramyocellular lipid compartmentalization and morphology in skeletal muscle of lean and obese women. J. Clin. Endocrinol. Metab. 98, 4852–4862 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Devries, M. C. et al. Endurance training without weight loss lowers systemic, but not muscle, oxidative stress with no effect on inflammation in lean and obese women. Free Radic. Biol. Med. 45, 503–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Dutheil, F. et al. Different modalities of exercise to reduce visceral fat mass and cardiovascular risk in metabolic syndrome: the RESOLVE randomized trial. Int. J. Cardiol. 168, 3634–3642 (2013).

    Article  PubMed  Google Scholar 

  54. Lalande, S., Petrella, R. J. & Shoemaker, J. K. Effect of exercise training on diastolic function in metabolic syndrome. Appl. Physiol. Nutr. Metab. 38, 545–550 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Landaeta-Diaz, L. et al. Mediterranean diet, moderate-to-high intensity training, and health-related quality of life in adults with metabolic syndrome. Eur. J. Prev. Cardiol. 20, 555–564 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Peters, S. J. et al. Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Appl. Physiol. Nutr. Metab. 37, 724–735 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Samjoo, I. A. et al. Markers of skeletal muscle mitochondrial function and lipid accumulation are moderately associated with the homeostasis model assessment index of insulin resistance in obese men. PLoS ONE 8, e66322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Samjoo, I. A., Safdar, A., Hamadeh, M. J., Raha, S. & Tarnopolsky, M. A. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr. Diabetes 3, e88 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mahoney, D. J., Parise, G., Melov, S., Safdar, A. & Tarnopolsky, M. A. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J. 19, 1498–1500 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Warburton, D. E., Charlesworth, S., Ivey, A., Nettlefold, L. & Bredin, S. S. A systematic review of the evidence for Canada's Physical Activity Guidelines for Adults. Int. J. Behav. Nutr. Phys. Act. 7, 39 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Stuart, M., Chard, S., Benvenuti, F. & Steinwachs, S. Community exercise: a vital component to healthy aging. Healthc. Pap. 10, 23–28; discussion 79–83 (2009).

    Article  PubMed  Google Scholar 

  63. Kruk, J. Physical activity and health. Asian Pac. J. Cancer Prev. 10, 721–728 (2009).

    PubMed  Google Scholar 

  64. Crane, J. D. et al. Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging. Aging Cell 14, 625–634 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Balbuena, L. & Casson, A. G. Physical activity, obesity and risk for esophageal adenocarcinoma. Future Oncol. 5, 1051–1063 (2009).

    Article  PubMed  Google Scholar 

  66. Brenner, I. Exercise performance by hemodialysis patients: a review of the literature. Physician Sportsmed. 37, 84–96 (2009).

    Article  Google Scholar 

  67. Buchner, D. M. Physical activity and prevention of cardiovascular disease in older adults. Clin. Geriatr. Med. 25, 661–675, viii (2009).

    Article  PubMed  Google Scholar 

  68. Stessman, J., Hammerman-Rozenberg, R., Cohen, A., Ein-Mor, E. & Jacobs, J. M. Physical activity, function, and longevity among the very old. Arch. Intern. Med. 169, 1476–1483 (2009).

    Article  PubMed  Google Scholar 

  69. Little, J. P., Safdar, A., Benton, C. R. & Wright, D. C. Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis. Appl. Physiol. Nutr. Metab. 36, 598–607 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Pedersen, B. K. The diseasome of physical inactivity — and the role of myokines in muscle–fat cross talk. J. Physiol. 587, 5559–5568 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pedersen, B. K. Edward, F. Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. J. Appl. Physiol. 107, 1006–1014 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Pedersen, B. K. Muscles and their myokines. J. Exp. Biol. 214, 337–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Pedersen, L. & Hojman, P. Muscle-to-organ cross talk mediated by myokines. Adipocyte 1, 164–167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, Z. Y. et al. Subfatin is a novel adipokine and unlike Meteorin in adipose and brain expression. CNS Neurosci. Ther. 20, 344–354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lombardi, G., Sanchis-Gomar, F., Perego, S., Sansoni, V. & Banfi, G. Implications of exercise-induced adipo-myokines in bone metabolism. Endocrine http://dx.doi.org/10.1007/s12020-015-0834-0 (2015).

  76. Little, J. P. & Safdar, A. Adipose–brain crosstalk: do adipokines have a role in neuroprotection? Neural Regen. Res. 10, 1381–1382 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gorgens, S. W., Eckardt, K., Jensen, J., Drevon, C. A. & Eckel, J. Exercise and regulation of adipokine and myokine production. Prog. Mol. Biol. Transl Sci. 135, 313–336 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Iroz, A., Couty, J. P. & Postic, C. Hepatokines: unlocking the multi-organ network in metabolic diseases. Diabetologia 58, 1699–1703 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Pedersen, B. K. et al. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc. Nutr. Soc. 63, 263–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Pedersen, B. K. IL-6 signalling in exercise and disease. Biochem. Soc. Trans. 35, 1295–1297 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Pedersen, B. K. & Fischer, C. P. Physiological roles of muscle-derived interleukin-6 in response to exercise. Curr. Opin. Clin. Nutr. Metab. Care 10, 265–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Pedersen, B. K. & Fischer, C. P. Beneficial health effects of exercise — the role of IL-6 as a myokine. Trends Pharmacol. Sci. 28, 152–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Wallenius, V. et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 8, 75–79 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Ellingsgaard, H. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and α cells. Nat. Med. 17, 1481–1489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Seldin, M. M. et al. Skeletal muscle-derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver. J. Biol. Chem. 288, 36073–36082 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Seldin, M. M., Peterson, J. M., Byerly, M. S., Wei, Z. & Wong, G. W. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J. Biol. Chem. 287, 11968–11980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Florholmen, G. et al. Leukaemia inhibitory factor stimulates glucose transport in isolated cardiomyocytes and induces insulin resistance after chronic exposure. Diabetologia 49, 724–731 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Matthews, V. B. et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52, 1409–1418 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Kim, K. H. et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Xu, J. et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250–259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hansen, J. S. et al. Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans. Mol. Metab. 4, 551–560 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Choi, S. B., Jang, J. S., Hong, S. M., Jun, D. W. & Park, S. Exercise and dexamethasone oppositely modulate β-cell function and survival via independent pathways in 90% pancreatectomized rats. J. Endocrinol. 190, 471–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Gregory, S. M. et al. Exercise-induced insulin-like growth factor I system concentrations after training in women. Med. Sci. Sports Exerc. 45, 420–428 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Mohajeri Tehrani, M. R., Tajvidi, M., Kahrizi, S. & Hedayati, M. Does endurance training affect IGF-1/IGFBP-3 and insulin sensitivity in patients with type 2 diabetes? J. Sports Med. Phys. Fitness 55, 1004–1012 (2015).

    CAS  PubMed  Google Scholar 

  95. Lickert, H. Betatrophin fuels β cell proliferation: first step toward regenerative therapy? Cell Metab. 18, 5–6 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Yi, P., Park, J. S. & Melton, D. A. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 153, 747–758 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gusarova, V. et al. ANGPTL8/betatrophin does not control pancreatic β cell expansion. Cell 159, 691–696 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Abu-Farha, M. et al. Lack of associations between betatrophin/ANGPTL8 level and C-peptide in type 2 diabetic subjects. Cardiovasc. Diabetol. 14, 112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, L. et al. Circulating levels of betatrophin and irisin are not associated with pancreatic β-cell function in previously diagnosed type 2 diabetes mellitus patients. J. Diabetes Res. 2016, 2616539 (2016).

    PubMed  Google Scholar 

  100. Abu-Farha, M. et al. Circulating ANGPTL8/betatrophin is increased in obesity and reduced after exercise training. PLoS ONE 11, e0147367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Adlakha, Y. K. & Saini, N. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol. Cancer 13, 33 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Barreiro, E. & Sznajder, J. I. Epigenetic regulation of muscle phenotype and adaptation: a potential role in COPD muscle dysfunction. J. Appl. Physiol. 114, 1263–1272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen, Y. & Verfaillie, C. M. MicroRNAs: the fine modulators of liver development and function. Liver Int. 34, 976–990 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Fernandez-Hernando, C. & Baldan, A. MicroRNAs and cardiovascular disease. Curr. Genet. Med. Rep. 1, 30–38 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kuppusamy, K. T., Sperber, H. & Ruohola-Baker, H. MicroRNA regulation and role in stem cell maintenance, cardiac differentiation and hypertrophy. Curr. Mol. Med. 13, 757–764 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tani, S., Kuraku, S., Sakamoto, H., Inoue, K. & Kusakabe, R. Developmental expression and evolution of muscle-specific microRNAs conserved in vertebrates. Evol. Dev. 15, 293–304 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Trounson, A. A rapidly evolving revolution in stem cell biology and medicine. Reprod. Biomed. Online 27, 756–764 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Romao, J. M., Jin, W., He, M., McAllister, T. & Guan, L. L. MicroRNAs in bovine adipogenesis: genomic context, expression and function. BMC Genomics 15, 137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Aoi, W. et al. The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity. Am. J. Physiol. Endocrinol. Metab. 298, E799–E806 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Hoppeler, H., Baum, O., Lurman, G. & Mueller, M. Molecular mechanisms of muscle plasticity with exercise. Compr. Physiol. 1, 1383–1412 (2011).

    PubMed  Google Scholar 

  111. Mooren, F. C., Viereck, J., Kruger, K. & Thum, T. Circulating microRNAs as potential biomarkers of aerobic exercise capacity. Am. J. Physiol. Heart Circulatory Physiol. 306, H557–H563 (2014).

    Article  CAS  Google Scholar 

  112. Nielsen, S. et al. Muscle specific miRNAs are induced by testosterone and independently upregulated by age. Front. Physiol. 4, 394 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Nielsen, S. et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J. Physiol. 588, 4029–4037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ooi, J. Y., Bernardo, B. C. & McMullen, J. R. The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy. Future Med. Chem. 6, 205–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Russell, A. P. et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J. Physiol. 591, 4637–4653 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Safdar, A., Abadi, A., Akhtar, M., Hettinga, B. P. & Tarnopolsky, M. A. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS ONE 4, e5610 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Timmons, J. A. Modulation of microRNAs during exercise and disease in human skeletal muscle. Exerc. Sport Sci. Rev. 39,218; author reply219 (2011).

    Article  Google Scholar 

  118. Granjon, A. et al. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes 58, 2555–2564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Parrizas, M. et al. Circulating miR-192 and miR-193b are markers of prediabetes and are modulated by an exercise intervention. J. Clin. Endocrinol. Metab. 100, E407–E415 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Filios, S. R. & Shalev, A. β-cell microRNAs: small but powerful. Diabetes 64, 3631–3644 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nesca, V. et al. Identification of particular groups of microRNAs that positively or negatively impact on β cell function in obese models of type 2 diabetes. Diabetologia 56, 2203–2212 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Nielsen, S. et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS ONE 9, e87308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Radom-Aizik, S. et al. Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clin. Transl Sci. 5, 32–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Guay, C., Menoud, V., Rome, S. & Regazzi, R. Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic β-cells. Cell Commun. Signal. 13, 17 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. McLean, C. S. et al. Gene and microRNA expression responses to exercise; relationship with insulin sensitivity. PLoS ONE 10, e0127089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Pilegaard, H., Saltin, B. & Neufer, P. D. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J. Physiol. 546, 851–858 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Safdar, A. et al. Exercise increases mitochondrial PGC-1α content and promotes nuclear–mitochondrial cross-talk to coordinate mitochondrial biogenesis. J. Biol. Chem. 286, 10605–10617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lin, J. et al. PGC-1β in the regulation of hepatic glucose and energy metabolism. J. Biol. Chem. 278, 30843–30848 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998). The first study that described the role of transcriptional co-activator Pgc-1a , the master regulator of mitochondrial biogenesis.

    Article  CAS  PubMed  Google Scholar 

  131. Sawada, N. et al. Endothelial PGC-1α mediates vascular dysfunction in diabetes. Cell Metab. 19, 246–258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Allen, J. et al. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat. Biotechnol. 21, 692–696 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. An, J. et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat. Med. 10, 268–274 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Nicholson, J. K. & Wilson, I. D. Understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2, 668–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Raamsdonk, L. M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Lewis, G. D. et al. Metabolic signatures of exercise in human plasma. Sci. Transl Med. 2, 33ra37 (2010). This study extensively characterized the plasma metabolic profiles of endurance exercise and linked them to exercise performance and cardiovascular disease susceptibility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Muhsen Ali, A. et al. Metabolomic profiling of submaximal exercise at a standardised relative intensity in healthy adults. Metabolites 6, 9 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  138. Van Hall, G. et al. Leg and arm lactate and substrate kinetics during exercise. Am. J. Physiol. Endocrinol. Metab. 284, E193–E205 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Sahlin, K., Katz, A. & Broberg, S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am. J. Physiol. 259, C834–C841 (1990).

    Article  CAS  PubMed  Google Scholar 

  140. Henriksson, J. Effect of exercise on amino acid concentrations in skeletal muscle and plasma. J. Exp. Biol. 160, 149–165 (1991).

    CAS  PubMed  Google Scholar 

  141. Gibala, M. J., MacLean, D. A., Graham, T. E. & Saltin, B. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am. J. Physiol. 275, E235–E242 (1998).

    CAS  PubMed  Google Scholar 

  142. Eriksson, L. S., Broberg, S., Bjorkman, O. & Wahren, J. Ammonia metabolism during exercise in man. Clin. Physiol. 5, 325–336 (1985).

    Article  CAS  PubMed  Google Scholar 

  143. Jang, C. et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22, 421–426 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sahlin, K., Gorski, J. & Edstrom, L. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Am. J. Physiol. 259, C409–C412 (1990).

    Article  CAS  PubMed  Google Scholar 

  145. Sapieha, P. et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat. Med. 14, 1067–1076 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Carriere, A. et al. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 63, 3253–3265 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Deatherage, B. L. & Cookson, B. T. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun. 80, 1948–1957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. McBroom, A. J., Johnson, A. P., Vemulapalli, S. & Kuehn, M. J. Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J. Bacteriol. 188, 5385–5392 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee, E. Y. et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9, 5425–5436 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Rivera, J. et al. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc. Natl Acad. Sci. USA 107, 19002–19007 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Ellen, A. F. et al. Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13, 67–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Rachel, R., Wyschkony, I., Riehl, S. & Huber, H. The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 1, 9–18 (2002). An informative paper that reported evidence of intracellular vesicle budding in an archaeon and illustrated the novel complex architecture of the cell envelope of Ignicoccus.

    Article  CAS  PubMed  Google Scholar 

  155. Sugiura, A., McLelland, G. L., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 2142–2156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Andrade-Navarro, M. A., Sanchez-Pulido, L. & McBride, H. M. Mitochondrial vesicles: an ancient process providing new links to peroxisomes. Curr. Opin. Cell Biol. 21, 560–567 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22, 135–141 (2012). An informative article that characterized a novel vesicular transport route shuttling cargo from mitochondria to lysosomes to modulate mitochondrial quality control.

    Article  CAS  PubMed  Google Scholar 

  158. McLelland, G. L., Soubannier, V., Chen, C. X., McBride, H. M. & Fon, E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Esquilin, Y., Queenan, C., Calabri, A. & Leonardi, D. mtDNA migration and the role of exosomes in horizontal gene transfer. Microsc. Microanal. 18, 286–287 (2012).

    Article  Google Scholar 

  160. Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983). A seminal study that alluded to the existence of extracellular vesicles as more than just cellular dust and defined one of their crucial physiological functions in the maturation of red blood cells.

    Article  CAS  PubMed  Google Scholar 

  161. Hwang, I. Cell–cell communication via extracellular membrane vesicles and its role in the immune response. Mol. Cells 36, 105–111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kalani, A., Tyagi, A. & Tyagi, N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol. Neurobiol. 49, 590–600 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Record, M., Carayon, K., Poirot, M. & Silvente-Poirot, S. Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim. Biophys. Acta 1841, 108–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mathivanan, S., Ji, H. & Simpson, R. J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics 73, 1907–1920 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Urbanelli, L. et al. Signaling pathways in exosomes biogenesis, secretion and fate. Genes 4, 152–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Stuffers, S., Sem Wegner, C., Stenmark, H. & Brech, A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10, 925–937 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Bianco, F. et al. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J. 28, 1043–1054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lachenal, G. et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci. 46, 409–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Savina, A., Fader, C. M., Damiani, M. T. & Colombo, M. I. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Skokos, D. et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J. Immunol. 170, 3037–3045 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Andre, F. et al. Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine 20 (Suppl. 4), A28–A31 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Aucher, A., Rudnicka, D. & Davis, D. M. MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J. Immunol. 191, 6250–6260 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Pope, S. M. & Lasser, C. Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation. J. Extracell. Vesicles 2, http://dx.doi.org/10.3402/jev.v2i0.22484 (2013).

  176. Ramakrishnaiah, V. et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc. Natl Acad. Sci. USA 110, 13109–13113 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7, 297–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Mathivanan, S. & Simpson, R. J. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9, 4997–5000 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Booth, A. M. et al. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol. 172, 923–935 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. El-Andaloussi, S. et al. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat. Protoc. 7, 2112–2126 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Lotvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    Article  PubMed  Google Scholar 

  182. Aswad, H. et al. Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia 57, 2155–2164 (2014). An important paper that details the role of muscle-derived exosomes in modifying muscle metabolic homeostasis with high-fat diet.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hood, D. A. Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J. Appl. Physiol. 90, 1137–1157 (2001).

    Article  CAS  PubMed  Google Scholar 

  184. Forterre, A. et al. Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast–myotube cross talk? PLoS ONE 9, e84153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ojimaa, K. O. et al. Proteomic analysis of secreted proteins from skeletal muscle cells during differentiation. EuPA Open Proteom. 5, 1–9 (2014).

    Article  CAS  Google Scholar 

  186. Fruhbeis, C., Helmig, S., Tug, S., Simon, P. & Kramer-Albers, E. M. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J. Extracell. Vesicles 4, 28239 (2015). The first study to map the release of extracellular vesicles into the circulation in response to acute endurance exercise.

    Article  PubMed  Google Scholar 

  187. Helmig, S., Fruhbeis, C., Kramer-Albers, E. M., Simon, P. & Tug, S. Release of bulk cell free DNA during physical exercise occurs independent of extracellular vesicles. Eur. J. Appl. Physiol. 115, 2271–2280 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Sahoo, S. et al. Exosomes from human CD34+ stem cells mediate their proangiogenic paracrine activity. Circ. Res. 109, 724–728 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lansford, K. A. et al. Effect of acute exercise on circulating angiogenic cell and microparticle populations. Exp. Physiol. 101, 155–167 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Harris, E., Rakobowchuk, M. & Birch, K. M. Sprint interval and sprint continuous training increases circulating CD34+ cells and cardio-respiratory fitness in young healthy women. PLoS ONE 9, e108720 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chaturvedi, P., Kalani, A., Medina, I., Familtseva, A. & Tyagi, S. C. Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise. J. Cell. Mol. Med. 19, 2153–2161 (2015). A seminal study defining a role of exercise-induced exosomes in mitigating cardiac fibrosis in patients with diabetes mellitus via the regulation of MMP9 expression through exosomal miR-29 and miR-455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wiklander, O. P. et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles 4, 26316 (2015).

    Article  PubMed  Google Scholar 

  193. Garcia, N. A., Moncayo-Arlandi, J., Sepulveda, P. & Diez-Juan, A. Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc. Res. 109, 397–408 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Sokolova, V. et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf. B Biointerfaces 87, 146–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Soekmadji, C., Russell, P. J. & Nelson, C. C. Exosomes in prostate cancer: putting together the pieces of a puzzle. Cancers (Basel) 5, 1522–1544 (2013).

    Article  CAS  Google Scholar 

  196. Little, J. P., Safdar, A., Bishop, D., Tarnopolsky, M. A. & Gibala, M. J. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am. J. Physiol. Reg. Integr. Comp. Physiol. 300, R1303–R1310 (2011).

    Article  CAS  Google Scholar 

  197. Earnest, C. P. et al. Interval training in men at risk for insulin resistance. Int. J. Sports Med. 34, 355–363 (2013).

    CAS  PubMed  Google Scholar 

  198. Tarnopolsky, M. et al. Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS ONE 2, e991 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. National Institutes of Health. Molecular transducers of physical activity in humans. https://commonfund.nih.gov/MolecularTransducers (2016).

Download references

Acknowledgements

M.A.T. receives grant support for work on exosomes and exercise from the Canadian Institutes of Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada (NSERC). A. Safdar is supported by a CIHR Banting Postdoctoral Fellowship during part of his tenure doing exercise and exosome research. A. Saleem is supported by an NSERC Postdoctoral Fellowship. The authors wish to thank Anusheh Saleem for her assistance with the original artwork submitted with this review.

Author information

Authors and Affiliations

Authors

Contributions

A. Safdar, A. Saleem and M.A.T. reviewed the literature, made substantial contributions to discussions of the content, wrote the article, and edited the manuscript prior to submission.

Corresponding author

Correspondence to Mark A. Tarnopolsky.

Ethics declarations

Competing interests

M.A.T. has an equity stake in Exerkine Corporation. M.A.T. is the Chief Executive Officer and President, and A. Safdar is the Chief Scientific Officer of Exerkine Corporation. Exerkine has filed patents for the use of exerkines and exersomes to treat metabolic disease, and the use of exosomes to treat genetic disorders.

Related links

FURTHER INFORMATION

Vesiclepedia

EVpedia

ExoCarta

PubMed

PowerPoint slides

Glossary

Endurance exercise

Long-duration exercise at submaximal intensities of 40–80% of maximal oxygen consumption.

Myokine

Any peptide, microRNA, mRNA or other circulating RNA species that is released by skeletal muscle into the circulation in response to exercise.

Exerkine

Any peptide, microRNA, mRNA or other circulating RNA species that is released into the circulation in response to exercise.

Extracellular vesicle

Any membrane-bound vesicle released into the extracellular fluid, including apoptotic bodies, microvesicles and exosomes.

Exosomes

The smallest (20–140 nm) form of extracellular vesicle derived from inward budding of the late endosome that are either released to the extracellular environment or to the lysosome.

Microvesicles

Intermediate sized (100–1,000 nm) extracellular vesicles formed from the plasma membrane and released into the extracellular environment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safdar, A., Saleem, A. & Tarnopolsky, M. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 12, 504–517 (2016). https://doi.org/10.1038/nrendo.2016.76

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.76

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing