Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Micronutrient deficiencies in pregnancy worldwide: health effects and prevention

Key Points

  • Micronutrient deficiencies during pregnancy are a global public health concern, yet the full extent of their burden and health consequences are unclear due to infrequent and inadequate assessment

  • Micronutrient deficiencies have been linked to compromised conception, length of gestation, and fetal development and growth, which can lead to pregnancy loss, preterm delivery, small birth size, birth defects and long-term metabolic disturbances

  • Antenatal supplementation with multiple micronutrients can improve birth outcomes and merits policy and program consideration in low-income settings

  • Preconception and periconception intervention research is needed to further assess the full public health effect of micronutrient adequacy on pregnancy outcomes

Abstract

Micronutrients, vitamins and minerals accessible from the diet, are essential for biologic activity. Micronutrient status varies widely throughout pregnancy and across populations. Women in low-income countries often enter pregnancy malnourished, and the demands of gestation can exacerbate micronutrient deficiencies with health consequences for the fetus. Examples of efficacious single micronutrient interventions include folic acid to prevent neural tube defects, iodine to prevent cretinism, zinc to reduce risk of preterm birth, and iron to reduce the risk of low birth weight. Folic acid and vitamin D might also increase birth weight. While extensive mechanistic and association research links multiple antenatal micronutrients with plausible materno–fetal health advantages, hypothesized benefits have often been absent, minimal or unexpected in trials. These findings suggest a role for population context in determining health responses and filling extensive gaps in knowledge. Multiple micronutrient supplements reduce the risks of being born with low birth weight, small for gestational age or stillborn in undernourished settings, and justify micronutrient interventions with antenatal care. Measurable health effects of gestational micronutrient exposure might persist into childhood but few data exists on potential long-term benefits. In this Review, we discuss micronutrient intake recommendations, risks and consequences of deficiencies, and the effects of interventions with a particular emphasis on offspring.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The function and timing of micronutrients that affect outcomes in offspring.

References

  1. 1

    Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements (The National Academies Press, 2006).

  2. 2

    World Health Organisation & Food Agriculture Organization. Vitamin and Mineral Requirements in Human Nutrition (WHO, 2004).

  3. 3

    Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc (The National Academies Press, 2001).

  4. 4

    De Backer, G. & Hautvast, J. EURRECA (EURopean micronutrient RECommendations Aligned) network of excellence. Eur. J. Clin. Nutr. 64, S1 (2010).

    Article  Google Scholar 

  5. 5

    Stamm, R. A. & Houghton, L. A. Nutrient intake values for folate during pregnancy and lactation vary widely around the world. Nutrients 5, 3920–3947 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Hanson, M. A. et al. The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: 'Think Nutrition First'. Int. J. Gynaecol. Obstet. 131, S213–S253 (2015).

    Article  Google Scholar 

  7. 7

    World Health Organization, World Food Programme & United Nations International Children's Emergency Fund. Preventing and controlling micronutrient deficiences in populations affected by an emergency [online], (2007).

  8. 8

    United Nations International Children's Emergency Fund, World Health Organization & United Nations University. Composition of a Multi-Micronutrient Supplement to be Used in Pilot Programmes Among Pregnant Women in Developing Countries (UNICEF, 1999).

  9. 9

    Haider, B. A. & Bhutta, Z. A. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst. Rev. 11, CD004905 (2015).

    Google Scholar 

  10. 10

    Torheim, L. E., Ferguson, E. L., Penrose, K. & Arimond, M. Women in resource-poor settings are at risk of inadequate intakes of multiple micronutrients. J. Nutr. 140, 2051S–2058S (2010).

    Article  CAS  Google Scholar 

  11. 11

    Muthayya, S. et al. The global hidden hunger indices and maps: an advocacy tool for action. PLoS ONE 8, e67860 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Black, R. E. et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427–451 (2013).

    Article  Google Scholar 

  13. 13

    World Health Organization. Global Prevalence of Vitamin A Deficiency in Populations at Risk 1995-2005: WHO Global Database on Vitamin A Deficiency (WHO, 2009).

  14. 14

    Wong, E. M., Sullivan, K. M., Perrine, C. G., Rogers, L. M. & Pena-Rosas, J. P. Comparison of median urinary iodine concentration as an indicator of iodine status among pregnant women, school-age children, and nonpregnant women. Food Nutr. Bull. 32, 206–212 (2011).

    Article  Google Scholar 

  15. 15

    Jiang, T., Christian, P., Khatry, S. K., Wu, L. & West, K. P. Jr. Micronutrient deficiencies in early pregnancy are common, concurrent, and vary by season among rural Nepali pregnant women. J. Nutr. 135, 1106–1112 (2005).

    Article  CAS  Google Scholar 

  16. 16

    Akhtar, S. Zinc status in South Asian populations — an update. J. Health Popul. Nutr. 31, 139–149 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Lindstrom, E. et al. Prevalence of anemia and micronutrient deficiencies in early pregnancy in rural Bangladesh, the MINIMat trial. Acta Obstet. Gynecol. Scand. 90, 47–56 (2011).

    Article  Google Scholar 

  18. 18

    Shamim, A. A. et al. Plasma zinc, vitamin B12 and α-tocopherol are positively and plasma gamma-tocopherol is negatively associated with Hb concentration in early pregnancy in north-west Bangladesh. Publ. Health Nutr. 16, 1354–1361 (2013).

    Article  Google Scholar 

  19. 19

    Pathak, P. et al. Iron, folate, and vitamin B12 stores among pregnant women in a rural area of Haryana State, India. Food Nutr. Bull. 28, 435–438 (2007).

    Article  Google Scholar 

  20. 20

    Siddiqua, T. J. et al. Vitamin B12 supplementation during pregnancy and postpartum improves B12 status of both mothers and infants but vaccine response in mothers only: a randomized clinical trial in Bangladesh. 55, 281–293 Eur. J. Nutr. (2015).

    Article  CAS  Google Scholar 

  21. 21

    Shamim, A. A. et al. First-trimester plasma tocopherols are associated with risk of miscarriage in rural Bangladesh. Am. J. Clin. Nutr. 101, 294–301 (2015).

    Article  CAS  Google Scholar 

  22. 22

    Campbell, R. K. et al. Seasonal dietary intakes and socioeconomic status among women in the Terai of Nepal. J. Health Popul. Nutr. 32, 198–216 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. 23

    Palacios, C. & Gonzalez, L. Is vitamin D deficiency a major global public health problem? J. Steroid Biochem. Mol. Biol. 144, 138–145 (2014).

    Article  CAS  Google Scholar 

  24. 24

    Hilger, J. et al. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 111, 23–45 (2014).

    Article  CAS  Google Scholar 

  25. 25

    Lee, S. E., Talegawkar, S. A., Merialdi, M. & Caulfield, L. E. Dietary intakes of women during pregnancy in low- and middle-income countries. Publ Health Nutr. 16, 1340–1353 (2013).

    Article  Google Scholar 

  26. 26

    Berner, L. A., Keast, D. R., Bailey, R. L. & Dwyer, J. T. Fortified foods are major contributors to nutrient intakes in diets of US children and adolescents. J. Acad. Nutr. Diet 114, 1009–1022.e8 (2014).

    Article  Google Scholar 

  27. 27

    Branum, A. M., Bailey, R. & Singer, B. J. Dietary supplement use and folate status during pregnancy in the United States. J. Nutr. 143, 486–492 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Parisi, F., Laoreti, A. & Cetin, I. Multiple micronutrient needs in pregnancy in industrialized countries. Ann Nutr. Metab. 65, 13–21 (2014).

    Article  CAS  Google Scholar 

  29. 29

    Blumfield, M. L., Hure, A. J., Macdonald-Wicks, L., Smith, R. & Collins, C. E. A systematic review and meta-analysis of micronutrient intakes during pregnancy in developed countries. Nutr. Rev. 71, 118–132 (2013).

    Article  Google Scholar 

  30. 30

    Troesch, B., Hoeft, B., McBurney, M., Eggersdorfer, M. & Weber, P. Dietary surveys indicate vitamin intakes below recommendations are common in representative Western countries. Br. J. Nutr. 108, 692–698 (2012).

    Article  CAS  Google Scholar 

  31. 31

    Trumpff, C. et al. Mild iodine deficiency in pregnancy in Europe and its consequences for cognitive and psychomotor development of children: a review. J. Trace Elem. Med. Biol. 27, 174–183 (2013).

    Article  CAS  Google Scholar 

  32. 32

    Gahche, J. J., Bailey, R. L., Mirel, L. B. & Dwyer, J. T. The prevalence of using iodine-containing supplements is low among reproductive-age women, NHANES 1999–2006. J. Nutr. 143, 872–877 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Pfeiffer, C. M., Schleicher, R. L., Johnson, C. L. & Coates, P. M. Assessing vitamin status in large population surveys by measuring biomarkers and dietary intake — two case studies: folate and vitamin D. Food Nutr. Res. 56, 5944 (2012).

    Article  CAS  Google Scholar 

  34. 34

    Crider, K. S., Bailey, L. B. & Berry, R. J. Folic acid food fortification — its history, effect, concerns, and future directions. Nutrients 3, 370–384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Looker, A. C. et al. Vitamin D status: United States, 2001–2006. NCHS Data Brief 59, 1–8 (2011).

    Google Scholar 

  36. 36

    Karras, S. N. et al. Maternal vitamin D status during pregnancy: the Mediterranean reality. Eur. J. Clin. Nutr. 68, 864–869 (2014).

    Article  CAS  Google Scholar 

  37. 37

    Mei, Z. et al. Assessment of iron status in US pregnant women from the National Health and Nutrition Examination Survey (NHANES), 1999–2006. Am. J. Clin. Nutr. 93, 1312–1320 (2011).

    Article  CAS  Google Scholar 

  38. 38

    Christian, P. Micronutrients, birth weight, and survival. Annu. Rev. Nutr. 30, 83–104 (2010).

    Article  CAS  Google Scholar 

  39. 39

    Steegers-Theunissen, R. P., Twigt, J., Pestinger, V. & Sinclair, K. D. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum. Reprod. Update 19, 640–655 (2013).

    Article  CAS  Google Scholar 

  40. 40

    Sinclair, K. D. et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl Acad. Sci. USA 104, 19351–19356 (2007).

    Article  Google Scholar 

  41. 41

    Khulan, B. et al. Periconceptional maternal micronutrient supplementation is associated with widespread gender related changes in the epigenome: a study of a unique resource in the Gambia. Hum. Mol. Genet. 21, 2086–2101 (2012).

    Article  CAS  Google Scholar 

  42. 42

    Lebold, K. M. & Traber, M. G. Interactions between α-tocopherol, polyunsaturated fatty acids, and lipoxygenases during embryogenesis. Free Radic. Biol. Med. 66, 13–19 (2014).

    Article  CAS  Google Scholar 

  43. 43

    Mistry, H. D. & Williams, P. J. The importance of antioxidant micronutrients in pregnancy. Oxid. Med. Cell. Longev. 2011, 841749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Stagnaro-Green, A. & Pearce, E. Thyroid disorders in pregnancy. Nat. Rev. Endocrinol. 8, 650–658 (2012).

    Article  CAS  Google Scholar 

  45. 45

    Cao, C. & O'Brien, K. O. Pregnancy and iron homeostasis: an update. Nutr. Rev. 71, 35–51 (2013).

    Article  Google Scholar 

  46. 46

    Zingg, J. M., Meydani, M. & Azzi, A. α-tocopheryl phosphate — an activated form of vitamin E important for angiogenesis and vasculogenesis? Biofactors 38, 24–33 (2012).

    Article  CAS  Google Scholar 

  47. 47

    Liu, N. Q. & Hewison, M. Vitamin D, the placenta and pregnancy. Arch. Biochem. Biophys. 523, 37–47 (2012).

    Article  CAS  Google Scholar 

  48. 48

    Levine, M. J. & Teegarden, D. 1α, 25-dihydroxycholecalciferol increases the expression of vascular endothelial growth factor in C3H10T½ mouse embryo fibroblasts. J. Nutr. 134, 2244–2250 (2004).

    Article  CAS  Google Scholar 

  49. 49

    Cantorna, M. T. Mechanisms underlying the effect of vitamin D on the immune system. Proc. Nutr. Soc. 69, 286–289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Fabri, M. et al. Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci. Transl. Med. 3, 104ra102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Allen, L. H. Biological mechanisms that might underlie iron's effects on fetal growth and preterm birth. J. Nutr. 131, 581S–589S (2001).

    Article  CAS  Google Scholar 

  52. 52

    Uriu-Adams, J. Y. & Keen, C. L. Zinc and reproduction: effects of zinc deficiency on prenatal and early postnatal development. Birth Defects Res. B Dev. Reprod. Toxicol. 89, 313–325 (2010).

    Article  CAS  Google Scholar 

  53. 53

    Tian, X., Anthony, K., Neuberger, T. & Diaz, F. J. Preconception zinc deficiency disrupts postimplantation fetal and placental development in mice. Biol. Reprod. 90, 83 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Gluckman, P. D. & Pinal, C. S. Maternal-placental-fetal interactions in the endocrine regulation of fetal growth: role of somatotrophic axes. Endocrine 19, 81–89 (2002).

    Article  CAS  Google Scholar 

  55. 55

    Gernand, A. D. et al. Effects of prenatal multiple micronutrient supplementation on fetal growth factors: a cluster-randomized, controlled trial in rural Bangladesh. PLoS ONE 10, e0137269 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Roberfroid, D. et al. Effect of maternal multiple micronutrient supplements on cord blood hormones: a randomized controlled trial. Am. J. Clin. Nutr. 91, 1649–1658 (2010).

    Article  CAS  Google Scholar 

  57. 57

    Akram, S. K., Akram, M., Bhutta, Z. A. & Soder, O. Human placental IGF-I and IGF-II expression: correlating maternal and infant anthropometric variables and micronutrients at birth in the Pakistani population. Acta Paediatr. 97, 1443–1448 (2008).

    Article  CAS  Google Scholar 

  58. 58

    Akman, I. et al. Maternal zinc and cord blood zinc, insulin-like growth factor-1, and insulin-like growth factor binding protein-3 levels in small-for-gestational-age newborns. Clin. Exp. Obstet. Gynecol. 33, 238–240 (2006).

    CAS  PubMed  Google Scholar 

  59. 59

    Hanna, L. A., Clegg, M. S., Ellis-Hutchings, R. G., Niles, B. J. & Keen, C. L. The influence of gestational zinc deficiency on the fetal insulin-like growth factor axis in the rat. Exp. Biol. Med. (Maywood) 235, 206–214 (2010).

    Article  CAS  Google Scholar 

  60. 60

    Fowden, A. L. & Moore, T. Maternal-fetal resource allocation: co-operation and conflict. Placenta 33 (Suppl. 2), e11–e15 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Sandovici, I., Hoelle, K., Angiolini, E. & Constancia, M. Placental adaptations to the maternal-fetal environment: implications for fetal growth and developmental programming. Reprod. Biomed. Online 25, 68–89 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Antony, A. C. In utero physiology: role of folic acid in nutrient delivery and fetal development. Am. J. Clin. Nutr. 85, 598S–603S (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Donangelo, C. M. & King, J. C. Maternal zinc intakes and homeostatic adjustments during pregnancy and lactation. Nutrients 4, 782–798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Dror, D. K. & Allen, L. H. Interventions with vitamins B6, B12 and C in pregnancy. Paediatr. Perinat. Epidemiol. 26 (Suppl. 1), 55–74 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Clagett-Dame, M. & Knutson, D. Vitamin A in reproduction and development. Nutrients 3, 385–428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Kovacs, C. S. The role of vitamin D in pregnancy and lactation: insights from animal models and clinical studies. Annu. Rev. Nutr. 32, 97–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Emmett, S. D. & West, K. P. Jr. Gestational vitamin A deficiency: a novel cause of sensorineural hearing loss in the developing world? Med. Hypotheses 82, 6–10 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Szostak-Wegierek, D. Intrauterine nutrition: long-term consequences for vascular health. Int. J. Womens Health 6, 647–656 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69

    Christian, P. & Stewart, C. P. Maternal micronutrient deficiency, fetal development, and the risk of chronic disease. J. Nutr. 140, 437–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Georgieff, M. K. Nutrition and the developing brain: nutrient priorities and measurement. Am. J. Clin. Nutr. 85, 614S–620S (2007).

    CAS  PubMed  Google Scholar 

  71. 71

    Williams, G. R. Neurodevelopmental and neurophysiological actions of thyroid hormone. J. Neuroendocrinol. 20, 784–794 (2008).

    Article  CAS  Google Scholar 

  72. 72

    Morse, N. L. Benefits of docosahexaenoic acid, folic acid, vitamin D and iodine on foetal and infant brain development and function following maternal supplementation during pregnancy and lactation. Nutrients 4, 799–840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Levenson, C. W. & Morris, D. Zinc and neurogenesis: making new neurons from development to adulthood. Adv. Nutr. 2, 96–100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Georgieff, M. K. The role of iron in neurodevelopment: fetal iron deficiency and the developing hippocampus. Biochem. Soc. Trans. 36, 1267–1271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Prado, E. L. & Dewey, K. G. Nutrition and brain development in early life. Nutr. Rev. 72, 267–284 (2014).

    Article  Google Scholar 

  76. 76

    Siddappa, A. M., Rao, R., Long, J. D., Widness, J. A. & Georgieff, M. K. The assessment of newborn iron stores at birth: a review of the literature and standards for ferritin concentrations. Neonatology 92, 73–82 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Allen, L. H. Maternal micronutrient malnutrition: effects on breast milk and infant nutrition, and priorities for intervention. SCN News 11, 21–24 (1994).

    Google Scholar 

  78. 78

    Tuttle, S., Aggett, P. J., Campbell, D. & MacGillivray, I. Zinc and copper nutrition in human pregnancy: a longitudinal study in normal primigravidae and in primigravidae at risk of delivering a growth retarded baby. Am. J. Clin. Nutr. 41, 1032–1041 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Wu, G., Imhoff-Kunsch, B. & Girard, A. W. Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr. Perinat. Epidemiol. 26 (Suppl. 1), 4–26 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Kumar, K. A. et al. Maternal dietary folate and/or vitamin B12 restrictions alter body composition (adiposity) and lipid metabolism in Wistar rat offspring. J. Nutr. Biochem. 24, 25–31 (2013).

    Article  CAS  Google Scholar 

  81. 81

    Rao, K. R., Padmavathi, I. J. & Raghunath, M. Maternal micronutrient restriction programs the body adiposity, adipocyte function and lipid metabolism in offspring: a review. Rev. Endocr. Metab. Disord. 13, 103–108 (2012).

    Article  CAS  Google Scholar 

  82. 82

    Ba, A. Perinatal thiamine deficiency-induced spontaneous abortion and pup-killing responses in rat dams. Nutr. Neurosci. 16, 69–77 (2013).

    Article  CAS  Google Scholar 

  83. 83

    Abdulah, R. et al. Reduced serum selenium concentration in miscarriage incidence of Indonesian subjects. Biol. Trace Elem. Res. 154, 1–6 (2013).

    Article  CAS  Google Scholar 

  84. 84

    Gaskins, A. J. et al. Maternal prepregnancy folate intake and risk of spontaneous abortion and stillbirth. Obstet. Gynecol. 124, 23–31 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Rumbold, A., Middleton, P., Pan, N. & Crowther, C. A. Vitamin supplementation for preventing miscarriage. Cochrane Database Syst. Rev. 1, CD004073 (2011).

    Google Scholar 

  86. 86

    Ramakrishnan, U., Grant, F., Goldenberg, T., Zongrone, A. & Martorell, R. Effect of women's nutrition before and during early pregnancy on maternal and infant outcomes: a systematic review. Paediatr. Perinat. Epidemiol. 26 (Suppl. 1), 285–301 (2012).

    Article  Google Scholar 

  87. 87

    West, K. P. Jr et al. Effect of maternal multiple micronutrient versus iron-folic acid supplementation on infant mortality and adverse birth outcomes in rural Bangladesh: the JiVitA-3 randomized trial. JAMA 312, 2649–2658 (2014).

    Article  CAS  Google Scholar 

  88. 88

    Au, K. S., Ashley-Koch, A. & Northrup, H. Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev. Disabil. Res. Rev. 16, 6–15 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Allagh, K. P. et al. Birth prevalence of neural tube defects and orofacial clefts in India: a systematic review and meta-analysis. PLoS ONE 10, e0118961 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Hibbard, B. M., Hibbard, E. D. & Jeffcoate, T. N. Folic acid and reproduction. Acta Obstet. Gynecol. Scand. 44, 375–400 (1965).

    Article  CAS  Google Scholar 

  91. 91

    Molloy, A. M., Brody, L. C., Mills, J. L., Scott, J. M. & Kirke, P. N. The search for genetic polymorphisms in the homocysteine/folate pathway that contribute to the etiology of human neural tube defects. Birth Defects Res. A Clin. Mol. Teratol. 85, 285–294 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    De-Regil, L. M., Fernandez-Gaxiola, A. C., Dowswell, T. & Pena-Rosas, J. P. Effects and safety of periconceptional folate supplementation for preventing birth defects. Cochrane Database Syst. Rev. 10, CD007950 (2010).

    Google Scholar 

  93. 93

    Williams, J. et al. Updated estimates of neural tube defects prevented by mandatory folic acid fortification — United States, 1995–2011. MMWR Morb. Mortal. Wkly Rep. 64, 1–5 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Czeizel, A. E., Dudas, I., Vereczkey, A. & Banhidy, F. Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects. Nutrients 5, 4760–4775 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Bortolus, R. et al. Prevention of congenital malformations and other adverse pregnancy outcomes with 4.0 mg of folic acid: community-based randomized clinical trial in Italy and the Netherlands. BMC Pregnancy Childbirth 14, 166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Krapels, I. P. et al. Maternal dietary B vitamin intake, other than folate, and the association with orofacial cleft in the offspring. Eur. J. Nutr. 43, 7–14 (2004).

    Article  CAS  Google Scholar 

  97. 97

    Botto, L. D., Olney, R. S. & Erickson, J. D. Vitamin supplements and the risk for congenital anomalies other than neural tube defects. Am. J. Med. Genet. C Semin. Med. Genet. 125C, 12–21 (2004).

  98. 98

    [No authors listed.] Recommendations for vitamin A use during pregnancy. Teratology 35, 269–275 (1987).

  99. 99

    McCormick, M. C. The contribution of low birth weight to infant mortality and childhood morbidity. N. Engl. J. Med. 312, 82–90 (1985).

    Article  CAS  Google Scholar 

  100. 100

    Katz, J. et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet 382, 417–425 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. 101

    Haider, B. A. et al. Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: systematic review and meta-analysis. BMJ 346, f3443 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  102. 102

    Pena-Rosas, J. P., De-Regil, L. M., Garcia-Casal, M. N. & Dowswell, T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst. Rev. 7, CD004736 (2015).

    Google Scholar 

  103. 103

    Lassi, Z. S., Salam, R. A., Haider, B. A. & Bhutta, Z. A. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst. Rev. 3, CD006896 (2013).

    Google Scholar 

  104. 104

    World Health Organization. Guideline: daily iron and folic acid supplementation in pregnant women (WHO, 2012).

  105. 105

    De-Regil, L. M., Palacios, C., Lombardo, L. K. & Pena-Rosas, J. P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 1, CD008873 (2016).

    Google Scholar 

  106. 106

    Lawn, J. E. et al. Every Newborn: progress, priorities, and potential beyond survival. Lancet 384, 189–205 (2014).

    Article  Google Scholar 

  107. 107

    Platt, M. J. Outcomes in preterm infants. Publ. Health 128, 399–403 (2014).

    Article  CAS  Google Scholar 

  108. 108

    Christian, P. et al. Risk of childhood undernutrition related to small-for-gestational age and preterm birth in low- and middle-income countries. Int. J. Epidemiol. 42, 1340–1355 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. 109

    Mwaniki, M. K., Atieno, M., Lawn, J. E. & Newton, C. R. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet 379, 445–452 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  110. 110

    Imdad, A. & Bhutta, Z. A. Routine iron/folate supplementation during pregnancy: effect on maternal anaemia and birth outcomes. Paediatr. Perinat. Epidemiol. 26 (Suppl. 1), 168–177 (2012).

    Article  Google Scholar 

  111. 111

    Ota, E. et al. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst. Rev. 2, CD000230 (2015).

    Google Scholar 

  112. 112

    Christian, P. et al. Effects of alternative maternal micronutrient supplements on low birth weight in rural Nepal: double blind randomised community trial. BMJ 326, 571 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  113. 113

    Christian, P. et al. Antenatal and postnatal iron supplementation and childhood mortality in rural Nepal: a prospective follow-up in a randomized, controlled community trial. Am. J. Epidemiol. 170, 1127–1136 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    Kupka, R. et al. Randomized, double-blind, placebo-controlled trial of selenium supplements among HIV-infected pregnant women in Tanzania: effects on maternal and child outcomes. Am. J. Clin. Nutr. 87, 1802–1808 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Shankar, A. H. et al. Effect of maternal multiple micronutrient supplementation on fetal loss and infant death in Indonesia: a double-blind cluster-randomised trial. Lancet 371, 215–227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Potdar, R. D. et al. Improving women's diet quality preconceptionally and during gestation: effects on birth weight and prevalence of low birth weight — a randomized controlled efficacy trial in India (Mumbai Maternal Nutrition Project). Am. J. Clin. Nutr. 100, 1257–1268 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Lu, W. P., Lu, M. S., Li, Z. H. & Zhang, C. X. Effects of multimicronutrient supplementation during pregnancy on postnatal growth of children under 5 years of age: a meta-analysis of randomized controlled trials. PLoS ONE 9, e88496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Stewart, C. P., Christian, P., LeClerq, S. C., West, K. P. Jr & Khatry, S. K. Antenatal supplementation with folic acid + iron + zinc improves linear growth and reduces peripheral adiposity in school-age children in rural Nepal. Am. J. Clin. Nutr. 90, 132–140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Vaidya, A. et al. Effects of antenatal multiple micronutrient supplementation on children's weight and size at 2 years of age in Nepal: follow-up of a double-blind randomised controlled trial. Lancet 371, 492–499 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Stewart, C. P. et al. Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal. J. Nutr. 139, 1575–1581 (2009).

    Article  CAS  Google Scholar 

  121. 121

    Hawkesworth, S. et al. Combined food and micronutrient supplements during pregnancy have limited impact on child blood pressure and kidney function in rural Bangladesh. J. Nutr. 143, 728–734 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Zile, M. H. Function of vitamin A in vertebrate embryonic development. J. Nutr. 131, 705–708 (2001).

    Article  CAS  Google Scholar 

  123. 123

    Biesalski, H. K. & Nohr, D. New aspects in vitamin a metabolism: the role of retinyl esters as systemic and local sources for retinol in mucous epithelia. J. Nutr. 134, 3453S–3457S (2004).

    Article  CAS  Google Scholar 

  124. 124

    Bhat, P. V. & Manolescu, D. C. Role of vitamin A in determining nephron mass and possible relationship to hypertension. J. Nutr. 138, 1407–1410 (2008).

    Article  CAS  Google Scholar 

  125. 125

    Pino-Lagos, K., Benson, M. J. & Noelle, R. J. Retinoic acid in the immune system. Ann. NY Acad. Sci. 1143, 170–187 (2008).

    Article  CAS  Google Scholar 

  126. 126

    Checkley, W. et al. Maternal vitamin A supplementation and lung function in offspring. N. Engl. J. Med. 362, 1784–1794 (2010).

    Article  CAS  Google Scholar 

  127. 127

    Palmer, A. C., Schulze, K. J., Khatry, S. K., De Luca, L. M. & West, K. P. Jr. Maternal vitamin A supplementation increases natural antibody concentrations of preadolescent offspring in rural Nepal. Nutrition 31, 813–819 (2015).

    Article  CAS  Google Scholar 

  128. 128

    Stewart, C. P. et al. Maternal supplementation with vitamin A or β-carotene and cardiovascular risk factors among pre-adolescent children in rural Nepal. J. Dev. Orig Health Dis. 1, 262–270 (2010).

    Article  CAS  Google Scholar 

  129. 129

    Zhou, S. J., Anderson, A. J., Gibson, R. A. & Makrides, M. Effect of iodine supplementation in pregnancy on child development and other clinical outcomes: a systematic review of randomized controlled trials. Am. J. Clin. Nutr. 98, 1241–1254 (2013).

    Article  CAS  Google Scholar 

  130. 130

    Bougma, K., Aboud, F. E., Harding, K. B. & Marquis, G. S. Iodine and mental development of children 5 years old and under: a systematic review and meta-analysis. Nutrients 5, 1384–1416 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Pharoah, P. O., Buttfield, I. H. & Hetzel, B. S. Neurological damage to the fetus resulting from severe iodine deficiency during pregnancy. Lancet 1, 308–310 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Szajewska, H., Ruszczynski, M. & Chmielewska, A. Effects of iron supplementation in nonanemic pregnant women, infants, and young children on the mental performance and psychomotor development of children: a systematic review of randomized controlled trials. Am. J. Clin. Nutr. 91, 1684–1690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Zhou, S. J., Gibson, R. A., Crowther, C. A., Baghurst, P. & Makrides, M. Effect of iron supplementation during pregnancy on the intelligence quotient and behavior of children at 4 y of age: long-term follow-up of a randomized controlled trial. Am. J. Clin. Nutr. 83, 1112–1117 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Christian, P. et al. Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA 304, 2716–2723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Caulfield, L. E. et al. Maternal gestational zinc supplementation does not influence multiple aspects of child development at 54 mo of age in Peru. Am. J. Clin. Nutr. 92, 130–136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Hamadani, J. D., Fuchs, G. J., Osendarp, S. J., Huda, S. N. & Grantham-McGregor, S. M. Zinc supplementation during pregnancy and effects on mental development and behaviour of infants: a follow-up study. Lancet 360, 290–294 (2002).

    Article  CAS  Google Scholar 

  137. 137

    Tofail, F. et al. Effects of prenatal food and micronutrient supplementation on infant development: a randomized trial from the Maternal and Infant Nutrition Interventions, Matlab (MINIMat) study. Am. J. Clin. Nutr. 87, 704–711 (2008).

    Article  CAS  Google Scholar 

  138. 138

    Li, Q. et al. Effects of maternal multimicronutrient supplementation on the mental development of infants in rural western China: follow-up evaluation of a double-blind, randomized, controlled trial. Pediatrics 123, e685–e692 (2009).

    Article  Google Scholar 

  139. 139

    Prado, E. L. et al. Maternal multiple micronutrient supplements and child cognition: a randomized trial in Indonesia. Pediatrics 130, e536–e546 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  140. 140

    McGrath, N. et al. Effect of maternal multivitamin supplementation on the mental and psychomotor development of children who are born to HIV-1-infected mothers in Tanzania. Pediatrics 117, e216–e225 (2006).

    Article  Google Scholar 

  141. 141

    Darnton-Hill, I. & Mkparu, U. C. Micronutrients in pregnancy in low- and middle-income countries. Nutrients 7, 1744–1768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    World Health Organization. Guideline: Intermittent Iron and Folic Acid Supplementation in Menstruating Women (WHO, 2011).

  143. 143

    Andersson, M., de Benoist, B., Delange, F. & Zupan, J. Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: conclusions and recommendations of the Technical Consultation. Publ. Health Nutr. 10, 1606–1611 (2007).

    Article  CAS  Google Scholar 

  144. 144

    World Health Organization. Guideline: Vitamin A Supplementation in Pregnant Women (WHO, 2011).

  145. 145

    Sununtnasuk, C., D'Agostino, A. & Fiedler, J. L. Iron+folic acid distribution and consumption through antenatal care: identifying barriers across countries. Public Health Nutr. 19, 1–11 (2015).

    Google Scholar 

  146. 146

    Koletzko, B. et al. German national consensus recommendations on nutrition and lifestyle in pregnancy by the 'Healthy Start — Young Family Network'. Ann. Nutr. Metab. 63, 311–322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Christian, P. in Handbook of Nutrition and Pregnancy (eds Lammi-Keefe, C. J., Couch, S. C. & Philipson, E.) 319–336 (Humana Press, 2008).

    Book  Google Scholar 

  148. 148

    [No authors listed.] CDC Grand Rounds: additional opportunities to prevent neural tube defects with folic acid fortification. MMWR Morb. Mortal. Wkly Rep. 59, 980–984 (2010).

  149. 149

    Sultan, S., Anjum, F. M., Butt, M. S., Huma, N. & Suleria, H. A. Concept of double salt fortification; a tool to curtail micronutrient deficiencies and improve human health status. J. Sci. Food Agric. 94, 2830–2838 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Martorell, R. et al. Effectiveness evaluation of the food fortification program of Costa Rica: impact on anemia prevalence and hemoglobin concentrations in women and children. Am. J. Clin. Nutr. 101, 210–217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Velu, G., Ortiz-Monasterio, I., Cakmak, I., Hao, Y. & Singh, R. P. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 59, 365–372 (2014).

    Article  CAS  Google Scholar 

  152. 152

    Das, J. K., Salam, R. A., Kumar, R. & Bhutta, Z. A. Micronutrient fortification of food and its impact on woman and child health: a systematic review. Syst. Rev. 2, 67 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  153. 153

    Institute Of Medicine. Dietary reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline (The National Academies Press, 1998).

  154. 154

    Institute Of Medicine. Dietary Reference Intakes for calcium and vitamin D (The National Academies Press, 2011).

  155. 155

    Institute Of Medicine. Dietary reference intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (The National Academies Press, 2000).

  156. 156

    Faupel-Badger, J. M., Hsieh, C. C., Troisi, R., Lagiou, P. & Potischman, N. Plasma volume expansion in pregnancy: implications for biomarkers in population studies. Cancer Epidemiol. Biomarkers Prev. 16, 1720–1723 (2007).

    Article  CAS  Google Scholar 

  157. 157

    McCauley, M. E., van den Broek, N., Dou, L. & Othman, M. Vitamin A supplementation during pregnancy for maternal and newborn outcomes. Cochrane Database Syst. Rev. 10, CD008666 (2015).

    Google Scholar 

  158. 158

    Salam, R. A., Zuberi, N. F. & Bhutta, Z. A. Pyridoxine (vitamin B6) supplementation during pregnancy or labour for maternal and neonatal outcomes. Cochrane Database Syst. Rev. 6, CD000179 (2015).

    Google Scholar 

  159. 159

    Rumbold, A., Ota, E., Nagata, C., Shahrook, S. & Crowther, C. A. Vitamin C supplementation in pregnancy. Cochrane Database Syst. Rev. 9, CD004072 (2015).

    Google Scholar 

  160. 160

    United States Department of Agriculture. DRI Tables and application reports. [online], (2016).

Download references

Acknowledgements

The authors wish to thank R. Guida and C. Reynolds, Pennsylvania State University, PA, USA for assistance with the literature review. A.D.G. is supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under BIRCWH award number K12HD055882, 'Career Development Program in Women's Health Research at Penn State'. C.P.S. is supported by the Bill and Melinda Gates Foundation (Grant OPPGD759) and the Thrasher Research Fund (award number 11860). K.J.S, K.P.W. Jr. and P.C. gratefully acknowledge support from the Bill and Melinda Gates Foundation (Grants GH614 and OPP5241), Seattle, Washington, USA, and the Sight and Life Global Nutrition Research Institute, Baltimore, Maryland, USA. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or Bill and Melinda Gates Foundation.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this article

Corresponding author

Correspondence to Keith P. West Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gernand, A., Schulze, K., Stewart, C. et al. Micronutrient deficiencies in pregnancy worldwide: health effects and prevention. Nat Rev Endocrinol 12, 274–289 (2016). https://doi.org/10.1038/nrendo.2016.37

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing