Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma

Key Points

  • RET proto-oncogene alterations are crucial events for thyroid cancer development

  • Different mechanisms of RET activation, point mutations and gene rearrangements characterize medullary and papillary thyroid carcinoma

  • RET genetic screening is an important tool for the diagnosis of patients with medullary thyroid cancer and can assist in the presurgical diagnosis of papillary thyroid cancer

  • RET mutations are a very strong factor for poor prognosis in medullary thyroid cancer

  • RET/PTC rearrangements, especially RET/PTC3, are associated with the most aggressive histological variant of papillary thyroid cancer

  • The knowledge of tumour biology is crucial for the identification of drugs able to block tumour development

Abstract

The rearranged during transfection (RET) proto-oncogene was identified in 1985 and, very soon thereafter, a rearrangement named RET/PTC was discovered in papillary thyroid carcinoma (PTC). After this discovery, other RET rearrangements were found in PTCs, particularly in those induced by radiation. For many years, it was thought that these genetic alterations only occurred in PTC, but, in the past couple of years, some RET/PTC rearrangements have been found in other human tumours. 5 years after the discovery of RET/PTC rearrangements in PTC, activating point mutations in the RET proto-oncogene were discovered in both hereditary and sporadic forms of medullary thyroid carcinoma (MTC). In contrast to the alterations found in PTC, the activation of RET in MTC is mainly due to activating point mutations. Interestingly, in the past year, RET rearrangements that were different to those described in PTC were observed in sporadic MTC. The identification of RET mutations is relevant to the early diagnosis of hereditary MTC and the prognosis of sporadic MTC. The diagnostic and prognostic role of the RET/PTC rearrangements in PTC is less relevant but still important in patient management, particularly for deciding if a targeted therapy should be initiated. In this Review, we discuss the pathogenic, diagnostic and prognostic roles of the RET proto-oncogene in both PTC and MTC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different modalities of activation of the RET receptor.
Figure 2: The genotype–phenotype correlation between RET proto-oncogene mutations and the three MEN2 syndromes.
Figure 3: The prevalence of RET somatic mutations in sporadic MTC.
Figure 4: Schematic representation of shorter and longer RET/PTC1 and RET/PTC3 rearrangements reported in papillary thyroid carcinoma.

Similar content being viewed by others

References

  1. Pellegriti, G., Frasca, F., Regalbuto, C., Squatrito, S. & Vigneri, R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J. Cancer Epidemiol. 2013, 965212 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brito, J. P. & Davies, L. Is there really an increased incidence of thyroid cancer? Curr. Opin. Endocrinol. Diabetes Obes. 21, 405–408 (2014).

    Article  PubMed  Google Scholar 

  3. Enewold, L. et al. Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005. Cancer Epidemiol. Biomarkers Prev. 18, 784–791 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. Morris, L. G. & Myssiorek, D. Improved detection does not fully explain the rising incidence of well-differentiated thyroid cancer: a population-based analysis. Am. J. Surg. 200, 454–461 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Elisei, R. & Pinchera, A. Advances in the follow-up of differentiated or medullary thyroid cancer. Nat. Rev. Endocrinol. 8, 466–475 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. DeLellis, R. A. & Williams, E. D. in World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Endocrine Organs (eds DeLellis, R. A. et al.) 51–56 (IARC Press, 2004).

    Google Scholar 

  7. Lodish, M. B. & Stratakis, C. A. RET oncogene in MEN2, MEN2B, MTC and other forms of thyroid cancer. Expert Rev. Anticancer Ther. 8, 625–632 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Romei, C., Pardi, E., Cetani, F. & Elisei, R. Genetic and clinical features of multiple endocrine neoplasia types 1 and 2. J. Oncol. 2012, 705036 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wohllk, N. et al. Multiple endocrine neoplasia type 2. Best Pract. Res. Clin. Endocrinol. Metab. 24, 371–387 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Grieco, M. et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60, 557–563 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Mulligan, L. M. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363, 458–460 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Eng, C. et al. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum. Mol. Genet. 3, 237–241 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi, M., Ritz, J. & Cooper, G. M. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42, 581–588 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Arighi, E., Borrello, M. G. & Sariola, H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 16, 441–467 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Anders, J., Kjar, S. & Ibanez, C. F. Molecular modeling of the extracellular domain of the RET receptor tyrosine kinase reveals multiple cadherin-like domains and a calcium-binding site. J. Biol. Chem. 276, 35808–35817 (2001).

    CAS  PubMed  Google Scholar 

  16. Ibanez, C. F. Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb. Perspect. Biol. http://dx.doi.org/10.1101/cshperspect.a009134 (2013).

  17. Goodman, K. M. et al. RET recognition of GDNF-GFRα1 ligand by a composite binding site promotes membrane-proximal self-association. Cell Rep. 8, 1894–1904 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Pasini, B. et al. The physical map of the human RET proto-oncogene. Oncogene 11, 1737–1743 (1995).

    CAS  PubMed  Google Scholar 

  19. Myers, S. M., Eng, C., Ponder, B. A. & Mulligan, L. M. Characterization of RET proto-oncogene 3′ splicing variants and polyadenylation sites: a novel C-terminus for RET. Oncogene 11, 2039–2045 (1995).

    CAS  PubMed  Google Scholar 

  20. Richardson, D. S. et al. Alternative splicing results in RET isoforms with distinct trafficking properties. Mol. Biol. Cell 23, 3838–3850 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Takahashi, M. et al. Characterization of the ret proto-oncogene products expressed in mouse L cells. Oncogene 8, 2925–2929 (1993).

    CAS  PubMed  Google Scholar 

  22. Baloh, R. H., Enomoto, H., Johnson, E. M. Jr & Milbrandt, J. The GDNF family ligands and receptors — implications for neural development. Curr. Opin. Neurobiol. 10, 103–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Baloh, R. H. et al. GFRα3 is an orphan member of the GDNF/neurturin/persephin receptor family. Proc. Natl Acad. Sci. USA 95, 5801–5806 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jing, S. et al. GDNF-induced activation of the Ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell 85, 1113–1124 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Santoro, M., Melillo, R. M., Carlomagno, F., Vecchio, G. & Fusco, A. Minireview: RET: normal and abnormal functions. Endocrinology 145, 5448–5451 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Takaya, K. et al. Expression of the RET proto-oncogene in normal human tissues, pheochromocytomas, and other tumors of neural crest origin. J. Mol. Med. (Berl.) 74, 617–621 (1996).

    Article  CAS  Google Scholar 

  28. Kimura, E. T. et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC−RAS−BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63, 1454–1457 (2003).

    CAS  PubMed  Google Scholar 

  29. Ciampi, R. et al. Oncogenic AKAP9BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Invest. 115, 94–101 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fusco, A. et al. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 328, 170–172 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Uchino, S. et al. Somatic mutations in RET exons 12 and 15 in sporadic medullary thyroid carcinomas: different spectrum of mutations in sporadic type from hereditary type. Jpn J. Cancer Res. 90, 1231–1237 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Eng, C. et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 276, 1575–1579 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Cerrato, A., De Falco, V. & Santoro, M. Molecular genetics of medullary thyroid carcinoma: the quest for novel therapeutic targets. J. Mol. Endocrinol. 43, 143–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Romei, C. et al. RET genetic screening of sporadic medullary thyroid cancer (MTC) allows the preclinical diagnosis of unsuspected gene carriers and the identification of a relevant percentage of hidden familial MTC (FMTC). Clin. Endocrinol. (Oxf.) 74, 241–247 (2011).

    Article  CAS  Google Scholar 

  35. Wells, S. A. Jr, Pacini, F., Robinson, B. G. & Santoro, M. Multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma: an update. J. Clin. Endocrinol. Metab. 98, 3149–3164 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Elisei, R. et al. RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J. Clin. Endocrinol. Metab. 92, 4725–4729 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Niccoli-Sire, P. et al. Familial medullary thyroid carcinoma with noncysteine ret mutations: phenotype−genotype relationship in a large series of patients. J. Clin. Endocrinol. Metab. 86, 3746–3753 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Margraf, R. L. et al. Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum. Mutat. 30, 548–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Gimm, O. et al. Germline dinucleotide mutation in codon 883 of the RET proto-oncogene in multiple endocrine neoplasia type 2B without codon 918 mutation. J. Clin. Endocrinol. Metab. 82, 3902–3904 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Cosci, B. et al. In silico and in vitro analysis of rare germline allelic variants of RET oncogene associated with medullary thyroid cancer. Endocr. Relat. Cancer 18, 603–612 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Prazeres, H. et al. In vitro transforming potential, intracellular signaling properties, and sensitivity to a kinase inhibitor (sorafenib) of RET proto-oncogene variants Glu511Lys, Ser649Leu, and Arg886Trp. Endocr. Relat. Cancer 18, 401–412 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Machens, A., Hauptmann, S. & Dralle, H. Modification of multiple endocrine neoplasia 2A phenotype by cell membrane proximity of RET mutations in exon 10. Endocr. Relat. Cancer 16, 171–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Frank-Raue, K. et al. Risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germline RET mutations located in exon 10. Hum. Mutat. 32, 51–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Bihan, H. et al. The clinical spectrum of RET proto-oncogene mutations in codon 790. Eur. J. Endocrinol. 169, 271–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Frank-Raue, K. et al. Difference in development of medullary thyroid carcinoma among carriers of RET mutations in codons 790 and 791. Clin. Endocrinol. (Oxf.) 69, 259–263 (2008).

    Article  CAS  Google Scholar 

  46. Erlic, Z. et al. Pathogenicity of DNA variants and double mutations in multiple endocrine neoplasia type 2 and von Hippel−Lindau syndrome. J. Clin. Endocrinol. Metab. 95, 308–313 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Toledo, R. A. et al. Comprehensive assessment of the disputed RET Y791F variant shows no association with medullary thyroid carcinoma susceptibility. Endocr. Relat. Cancer 22, 65–76 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Elisei, R. et al. Identification of a novel point mutation in the RET gene (Ala883Thr), which is associated with medullary thyroid carcinoma phenotype only in homozygous condition. J. Clin. Endocrinol. Metab. 89, 5823–5827 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Romei, C. et al. Twenty years of lesson learning: how does the RET genetic screening test impact the clinical management of medullary thyroid cancer? Clin. Endocrinol. (Oxf.) 82, 892–899 (2015).

    Article  CAS  Google Scholar 

  50. Orgiana, G. et al. A new germline RET mutation apparently devoid of transforming activity serendipitously discovered in a patient with atrophic autoimmune thyroiditis and primary ovarian failure. J. Clin. Endocrinol. Metab. 89, 4810–4816 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Karki, R., Pandya, D., Elston, R. C. & Ferlini, C. Defining 'mutation' and 'polymorphism' in the era of personal genomics. BMC Med. Genom. 8, 37 (2015).

    Article  CAS  Google Scholar 

  52. Crockett, D. K. et al. Predicting phenotypic severity of uncertain gene variants in the RET proto-oncogene. PLoS ONE 6, e18380 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Miyauchi, A. et al. Two germline missense mutations at codons 804 and 806 of the RET proto-oncogene in the same allele in a patient with multiple endocrine neoplasia type 2B without codon 918 mutation. Jpn J. Cancer Res. 90, 1–5 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Menko, F. H. et al. Atypical MEN type 2B associated with two germline RET mutations on the same allele not involving codon 918. J. Clin. Endocrinol. Metab. 87, 393–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Tessitore, A. et al. A novel case of multiple endocrine neoplasia type 2A associated with two de novo mutations of the RET protooncogene. J. Clin. Endocrinol. Metab. 84, 3522–3527 (1999).

    CAS  PubMed  Google Scholar 

  56. Machens, A. et al. Early malignant progression of hereditary medullary thyroid cancer. N. Engl. J. Med. 349, 1517–1525 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Frank-Raue, K. et al. Mutations of the ret protooncogene in German multiple endocrine neoplasia families: relation between genotype and phenotype. German Medullary Thyroid Carcinoma Study Group. J. Clin. Endocrinol. Metab. 81, 1780–1783 (1996).

    CAS  PubMed  Google Scholar 

  58. Romei, C. et al. Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes. Eur. J. Endocrinol. 163, 301–308 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Ji, J. H. et al. Identification of driving ALK fusion genes and genomic landscape of medullary thyroid cancer. PLoS Genet. 11, e1005467 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Romei, C. et al. Low prevalence of the somatic M918T RET mutation in micro-medullary thyroid cancer. Thyroid 22, 476–481 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Ciampi, R. et al. Evidence of a low prevalence of RAS mutations in a large medullary thyroid cancer series. Thyroid 23, 50–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Moura, M. M., Cavaco, B. M., Pinto, A. E. & Leite, V. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J. Clin. Endocrinol. Metab. 96, E863–E868 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Oriola, J., Halperin, I., Rivera-Fillat, F. & Donis-Keller, H. The finding of a somatic deletion in RET exon 15 clarified the sporadic nature of a medullary thyroid carcinoma suspected to be familial. J. Endocrinol. Invest. 25, 25–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Moura, M. M., Cavaco, B. M. & Leite, V. RAS proto-oncogene in medullary thyroid carcinoma. Endocr. Relat. Cancer 22, R235–R252 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Simbolo, M. et al. High-throughput mutation profiling improves diagnostic stratification of sporadic medullary thyroid carcinomas. Virchows Arch. 465, 73–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Goutas, N. et al. BRAF and K-RAS mutation in a Greek papillary and medullary thyroid carcinoma cohort. Anticancer Res. 28, 305–308 (2008).

    PubMed  Google Scholar 

  67. Ceccherini, I. et al. Somatic in frame deletions not involving juxtamembranous cysteine residues strongly activate the RET proto-oncogene. Oncogene 14, 2609–2612 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Marsh, D. J. et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinoma. Clin. Endocrinol. (Oxf.) 44, 249–257 (1996).

    Article  CAS  Google Scholar 

  69. Kato, M. et al. Molecular mechanism of activation and superactivation of Ret tyrosine kinases by ultraviolet light irradiation. Antioxid. Redox Signal. 2, 841–849 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Kato, M. et al. Ultraviolet light induces redox reaction-mediated dimerization and superactivation of oncogenic Ret tyrosine kinases. Mol. Biol. Cell 11, 93–101 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Santoro, M. et al. Molecular characterization of RET/PTC3; a novel rearranged version of the RETproto-oncogene in a human thyroid papillary carcinoma. Oncogene 9, 509–516 (1994).

    CAS  PubMed  Google Scholar 

  72. Greco, A., Borrello, M. G., Miranda, C., Degl'Innocenti, D. & Pierotti, M. A. Molecular pathology of differentiated thyroid cancer. Q. J. Nucl. Med. Mol. Imaging 53, 440–453 (2009).

    CAS  PubMed  Google Scholar 

  73. Santoro, M. et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 12, 1821–1826 (1996).

    CAS  PubMed  Google Scholar 

  74. Santoro, M., Melillo, R. M. & Fusco, A. RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur. J. Endocrinol. 155, 645–653 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Bongarzone, I. et al. Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RI alpha of cyclic AMP-dependent protein kinase A. Mol. Cell. Biol. 13, 358–366 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Fugazzola, L. et al. Molecular and biochemical analysis of RET/PTC4, a novel oncogenic rearrangement between RET and ELE1 genes, in a post-Chernobyl papillary thyroid cancer. Oncogene 13, 1093–1097 (1996).

    CAS  PubMed  Google Scholar 

  77. Klugbauer, S., Demidchik, E. P., Lengfelder, E. & Rabes, H. M. Detection of a novel type of RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved RET-fused gene RFG5. Cancer Res. 58, 198–203 (1998).

    CAS  PubMed  Google Scholar 

  78. Klugbauer, S. & Rabes, H. M. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 18, 4388–4393 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Nakata, T. et al. Fusion of a novel gene, ELKS, to RET due to translocation t(10;12)(q11;p13) in a papillary thyroid carcinoma. Genes Chromosomes Cancer 25, 97–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Salassidis, K. et al. Translocation t(10;14)(q11.2:q22.1) fusing the kinetin to the RET gene creates a novel rearranged form (PTC8) of the RET proto-oncogene in radiation-induced childhood papillary thyroid carcinoma. Cancer Res. 60, 2786–2789 (2000).

    CAS  PubMed  Google Scholar 

  81. Klugbauer, S., Jauch, A., Lengfelder, E., Demidchik, E. & Rabes, H. M. A novel type of RET rearrangement (PTC8) in childhood papillary thyroid carcinomas and characterization of the involved gene (RFG8). Cancer Res. 60, 7028–7032 (2000).

    CAS  PubMed  Google Scholar 

  82. Corvi, R., Berger, N., Balczon, R. & Romeo, G. RET/PCM-1: a novel fusion gene in papillary thyroid carcinoma. Oncogene 19, 4236–4242 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Saenko, V. et al. Novel tumorigenic rearrangement, Δrfp/ret, in a papillary thyroid carcinoma from externally irradiated patient. Mutat. Res. 527, 81–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Ciampi, R., Giordano, T. J., Wikenheiser-Brokamp, K., Koenig, R. J. & Nikiforov, Y. E. HOOK3-RET: a novel type of RET/PTC rearrangement in papillary thyroid carcinoma. Endocr. Relat. Cancer 14, 445–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014).

  86. Hamatani, K. et al. A novel RET rearrangement (ACBD5/RET) by pericentric inversion, inv(10)(p12.1;q11.2), in papillary thyroid cancer from an atomic bomb survivor exposed to high-dose radiation. Oncol. Rep. 32, 1809–1814 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Klugbauer, S., Demidchik, E. P., Lengfelder, E. & Rabes, H. M. Molecular analysis of new subtypes of ELE/RET rearrangements, their reciprocal transcripts and breakpoints in papillary thyroid carcinomas of children after Chernobyl. Oncogene 16, 671–675 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Elisei, R. et al. New breakpoints in both the H4 and RET genes create a variant of PTC-1 in a post-Chernobyl papillary thyroid carcinoma. Clin. Endocrinol. (Oxf.) 53, 131–136 (2000).

    Article  CAS  Google Scholar 

  89. Caudill, C. M., Zhu, Z., Ciampi, R., Stringer, J. R. & Nikiforov, Y. E. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to γ-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J. Clin. Endocrinol. Metab. 90, 2364–2369 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Ameziane-El-Hassani, R. et al. Role of H2O2 in RET/PTC1 chromosomal rearrangement produced by ionizing radiation in human thyroid cells. Cancer Res. 70, 4123–4132 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Gandhi, M., Evdokimova, V. & Nikiforov, Y. E. Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma. Mol. Cell. Endocrinol. 321, 36–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Gandhi, M., Medvedovic, M., Stringer, J. R. & Nikiforov, Y. E. Interphase chromosome folding determines spatial proximity of genes participating in carcinogenic RET/PTC rearrangements. Oncogene 25, 2360–2366 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Gandhi, M., Evdokimova, V. & Nikiforov, Y. E. Frequency of close positioning of chromosomal loci detected by FRET correlates with their participation in carcinogenic rearrangements in human cells. Genes Chromosomes Cancer 51, 1037–1044 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Schneider, A. B. Radiation-induced thyroid tumors. Endocrinol. Metab. Clin. North Am. 19, 495–508 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Ron, E. et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat. Res. 141, 259–277 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Cardis, E. et al. Cancer consequences of the Chernobyl accident: 20 years on. J. Radiol. Prot. 26, 127–140 (2006).

    Article  PubMed  Google Scholar 

  98. Cardis, E. et al. Risk of thyroid cancer after exposure to 131I in childhood. J. Natl Cancer Inst. 97, 724–732 (2005).

    Article  PubMed  Google Scholar 

  99. Gandhi, M., Dillon, L. W., Pramanik, S., Nikiforov, Y. E. & Wang, Y. H. DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells. Oncogene 29, 2272–2280 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Elisei, R. et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J. Clin. Endocrinol. Metab. 86, 3211–3216 (2001).

    CAS  PubMed  Google Scholar 

  101. Nikiforov, Y. E. RET/PTC rearrangement in thyroid tumors. Endocr. Pathol. 13, 3–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Ricarte-Filho, J. C. et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J. Clin. Invest. 123, 4935–4944 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Nikiforov, Y. E., Rowland, J. M., Bove, K. E., Monforte-Munoz, H. & Fagin, J. A. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 57, 1690–1694 (1997).

    CAS  PubMed  Google Scholar 

  104. Fenton, C. L. et al. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J. Clin. Endocrinol. Metab. 85, 1170–1175 (2000).

    CAS  PubMed  Google Scholar 

  105. Jarzab, B. & Handkiewicz-Junak, D. Differentiated thyroid cancer in children and adults: same or distinct disease? Hormones (Athens) 6, 200–209 (2007).

    Google Scholar 

  106. Rabes, H. M. et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-Chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin. Cancer Res. 6, 1093–1103 (2000).

    CAS  PubMed  Google Scholar 

  107. Romei, C. et al. Modifications in the papillary thyroid cancer gene profile over the last 15 years. J. Clin. Endocrinol. Metab. 97, E1758–E1765 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Smyth, P. et al. ret/PTC and BRAF act as distinct molecular, time-dependant triggers in a sporadic Irish cohort of papillary thyroid carcinoma. Int. J. Surg. Pathol. 13, 1–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Domingues, R., Mendonca, E., Sobrinho, L. & Bugalho, M. J. Searching for RET/PTC rearrangements and BRAF V599E mutation in thyroid aspirates might contribute to establish a preoperative diagnosis of papillary thyroid carcinoma. Cytopathology 16, 27–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Guerra, A. et al. Prevalence of RET/PTC rearrangement in benign and malignant thyroid nodules and its clinical application. Endocr. J. 58, 31–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Rhoden, K. J. et al. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto's thyroiditis share low-level recombination events with a subset of papillary carcinoma. J. Clin. Endocrinol. Metab. 91, 2414–2423 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Sheils, O. M. et al. ret/PTC-1 activation in Hashimoto thyroiditis. Int. J. Surg. Pathol. 8, 185–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Wirtschafter, A. et al. Expression of the RET/PTC fusion gene as a marker for papillary carcinoma in Hashimoto's thyroiditis. Laryngoscope 107, 95–100 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Ishizaka, Y. et al. Detection of retTPC/PTC transcripts in thyroid adenomas and adenomatous goiter by an RT-PCR method. Oncogene 6, 1667–1672 (1991).

    CAS  PubMed  Google Scholar 

  115. Bounacer, A. et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 15, 1263–1273 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Zhu, Z., Ciampi, R., Nikiforova, M. N., Gandhi, M. & Nikiforov, Y. E. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J. Clin. Endocrinol. Metab. 91, 3603–3610 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Nikiforov, Y. E. RET/PTC rearrangement — a link between Hashimoto's thyroiditis and thyroid cancer...or not. J. Clin. Endocrinol. Metab. 91, 2040–2042 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Liu, Z. et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J. Clin. Endocrinol. Metab. 93, 3106–3116 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Mochizuki, K. et al. RET rearrangements and BRAF mutation in undifferentiated thyroid carcinomas having papillary carcinoma components. Histopathology 57, 444–450 (2010).

    Article  PubMed  Google Scholar 

  120. Sheils, O. M., O'Leary, J. J. & Sweeney, E. C. Assessment of ret/PTC-1 rearrangements in neoplastic thyroid tissue using TaqMan RT-PCR. J. Pathol. 192, 32–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Ricarte-Filho, J. C. et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 69, 4885–4893 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Tallini, G. et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin. Cancer Res. 4, 287–294 (1998).

    CAS  PubMed  Google Scholar 

  123. Soares, P., Fonseca, E., Wynford-Thomas, D. & Sobrinho-Simoes, M. Sporadic ret-rearranged papillary carcinoma of the thyroid: a subset of slow growing, less aggressive thyroid neoplasms? J. Pathol. 185, 71–78 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Mayr, B. et al. ret/PTC-1, -2, and -3 oncogene rearrangements in human thyroid carcinomas: implications for metastatic potential? J. Clin. Endocrinol. Metab. 82, 1306–1307 (1997).

    CAS  PubMed  Google Scholar 

  125. Grubbs, E. G. et al. RET fusion as a novel driver of medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 100, 788–793 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Flavin, R. et al. RET/PTC rearrangement occurring in primary peritoneal carcinoma. Int. J. Surg. Pathol. 17, 187–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Ballerini, P. et al. RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia 26, 2384–2389 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Bossi, D. et al. Functional characterization of a novel FGFR1OP-RET rearrangement in hematopoietic malignancies. Mol. Oncol. 8, 221–231 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Kohno, T. et al. KIF5BRET fusions in lung adenocarcinoma. Nat. Med. 18, 375–377 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wang, R. et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J. Clin. Oncol. 30, 4352–4359 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Drilon, A. et al. Response to cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov. 3, 630–635 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Lira, M. E. et al. A single-tube multiplexed assay for detecting ALK, ROS1, and RET fusions in lung cancer. J. Mol. Diagn. 16, 229–243 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Nakaoku, T. et al. Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. Clin. Cancer Res. 20, 3087–3093 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Kebebew, E., Ituarte, P. H., Siperstein, A. E., Duh, Q. Y. & Clark, O. H. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer 88, 1139–1148 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Pelizzo, M. R. et al. Natural history, diagnosis, treatment and outcome of medullary thyroid cancer: 37 years experience on 157 patients. Eur. J. Surg. Oncol. 33, 493–497 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Elisei, R. et al. The timing of total thyroidectomy in RET gene mutation carriers could be personalized and safely planned on the basis of serum calcitonin: 18 years experience at one single center. J. Clin. Endocrinol. Metab. 97, 426–435 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Pacini, F. et al. Early treatment of hereditary medullary thyroid carcinoma after attribution of multiple endocrine neoplasia type 2 gene carrier status by screening for ret gene mutations. Surgery 118, 1031–1035 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Lips, C. J. et al. Clinical screening as compared with DNA analysis in families with multiple endocrine neoplasia type 2A. N. Engl. J. Med. 331, 828–835 (1994).

    Article  CAS  PubMed  Google Scholar 

  139. Frilling, A. et al. Presymptomatic genetic screening in families with multiple endocrine neoplasia type 2. J. Mol. Med. (Berl.) 73, 229–233 (1995).

    Article  CAS  Google Scholar 

  140. Skinner, M. A. et al. Prophylactic thyroidectomy in multiple endocrine neoplasia type 2A. N. Engl. J. Med. 353, 1105–1113 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Kloos, R. T. et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19, 565–612 (2009).

    Article  PubMed  Google Scholar 

  142. Elisei, R., Alevizaki, M., Conte-Devolx, B., Frank-Raue, K. & Lette, V. 2012 European Thyroid Association guidelines for genetic testing and its clinical consequences in medullary thyroid cancer. Eur. Thyroid J. 1, 216–231 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Baloch, Z. W. & LiVolsi, V. A. Fine-needle aspiration of the thyroid: today and tomorrow. Best Pract. Res. Clin. Endocrinol. Metab. 22, 929–939 (2008).

    Article  PubMed  Google Scholar 

  144. Cooper, D. S. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19, 1167–1214 (2009).

    Article  PubMed  Google Scholar 

  145. Pacini, F. et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur. J. Endocrinol. 154, 787–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Cantara, S. et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J. Clin. Endocrinol. Metab. 95, 1365–1369 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Nikiforov, Y. E. et al. Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid 25, 1217–1223 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Rossi, M. et al. Relevance of BRAFV600E mutation testing versus RAS point mutations and RET/PTC rearrangements evaluation in the diagnosis of thyroid cancer. Thyroid 25, 221–228 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Elisei, R. et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J. Clin. Endocrinol. Metab. 93, 682–687 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Moura, M. M. et al. Correlation of RET somatic mutations with clinicopathological features in sporadic medullary thyroid carcinomas. Br. J. Cancer 100, 1777–1783 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Mian, C. et al. Combined RET and Ki-67 assessment in sporadic medullary thyroid carcinoma: a useful tool for patient risk stratification. Eur. J. Endocrinol. 164, 971–976 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Salvatore, D. et al. Increased in vivo phosphorylation of ret tyrosine 1062 is a potential pathogenetic mechanism of multiple endocrine neoplasia type 2B. Cancer Res. 61, 1426–1431 (2001).

    CAS  PubMed  Google Scholar 

  153. Russo, R. et al. MEN IIB. A case report [Italian]. Radiol. Med. 87, 168–171 (1994).

    CAS  PubMed  Google Scholar 

  154. Wells, S. A. Jr. et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25, 567–610 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Thomas, G. A. et al. High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J. Clin. Endocrinol. Metab. 84, 4232–4238 (1999).

    CAS  PubMed  Google Scholar 

  156. Romei, C. et al. BRAFV600E mutation, but not RET/PTC rearrangements, is correlated with a lower expression of both thyroperoxidase and sodium iodide symporter genes in papillary thyroid cancer. Endocr. Relat. Cancer 15, 511–520 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Jhiang, S. M. & Mazzaferri, E. L. The RET/PTC oncogene in papillary thyroid carcinoma. J. Lab. Clin. Med. 123, 331–337 (1994).

    CAS  PubMed  Google Scholar 

  158. Sugg, S. L. et al. Oncogene profile of papillary thyroid carcinoma. Surgery 125, 46–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Yip, L. et al. Tumor genotype determines phenotype and disease-related outcomes in thyroid cancer: a study of 1510 patients. Ann. Surg. 262, 519–525 (2015).

    Article  PubMed  Google Scholar 

  160. Gharib, H. et al. Medullary thyroid carcinoma: clinicopathologic features and long-term follow-up of 65 patients treated during 1946 through 1970. Mayo Clin. Proc. 67, 934–940 (1992).

    Article  CAS  PubMed  Google Scholar 

  161. Klein Hesselink, E. N. et al. Therapy of endocrine disease: response and toxicity of small-molecule tyrosine kinase inhibitors in patients with thyroid carcinoma: a systematic review and meta-analysis. Eur. J. Endocrinol. 172, R215–R225 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Carlomagno, F. et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 62, 7284–7290 (2002).

    CAS  PubMed  Google Scholar 

  163. Sherman, S. I. Targeted therapies for thyroid tumors. Mod. Pathol. 24, S44–S52 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Schlumberger, M. & Sherman, S. I. Approach to the patient with advanced differentiated thyroid cancer. Eur. J. Endocrinol. 166, 5–11 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Elisei, R. et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 31, 3639–3646 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Wells, S. A. Jr. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 30, 134–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Brose, M. S. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384, 319–328 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Schlumberger, M. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 372, 621–630 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Leboulleux, S. et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol. 13, 897–905 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this article.

Corresponding author

Correspondence to Rossella Elisei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romei, C., Ciampi, R. & Elisei, R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol 12, 192–202 (2016). https://doi.org/10.1038/nrendo.2016.11

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.11

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer