Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The best of both worlds — managing the cancer, saving the bone

Key Points

  • Metastatic tumours represent the greatest threat to the survival of patients with cancer

  • The development of therapies that impede the growth and/or function of tumour cells, while sparing normal host cells, is critical to improving the care of patients with cancer

  • In the case of bone metastases, cells within the bone marrow niche mediate many of the orthopaedic consequences of tumour progression as well as resistance to the antitumour effects of existing therapies

  • Osteocytes have a key role in the activation and progression of osteolytic metastases

Abstract

In the context of breast cancer, the importance of the skeleton in the regulation of primary tumour development and as a site for subsequent metastasis is well characterized. Our understanding of the contributions made by the host bone and bone marrow cells increasingly demonstrates the extent of the interaction between tumour cells and normal host cells. As a result, the need to develop and utilize therapies that can impede the growth and/or function of tumour cells while sparing normal host bone and bone marrow cells is immense and expanding. The need for these new treatments is, however, superimposed on the orthopaedic management of patients' quality of life, where pain control and continued locomotion are paramount. Indeed, the majority of the anticancer therapies used to date often result in direct or indirect damage to bone. Thus, although the bone microenvironment regulates tumour cell growth in bone, cells within the bone marrow niche also mediate many of the orthopaedic consequences of tumour progression as well as resistance to the antitumour effects of existing therapies. In this Review, we highlight the effects of existing cancer treatments on bone and the bone marrow microenvironment as well as the mechanisms mediating these effects and the current utility of modern orthopaedic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cells in the bone and bone marrow microenvironment.
Figure 2: Presentation of lytic, blastic and mixed bone lesions.

Similar content being viewed by others

References

  1. Suva, L. J., Washam, C., Nicholas, R. W. & Griffin, R. J. Bone metastasis: mechanisms and therapeutic opportunities. Nat. Rev. Endocrinol. 7, 208–218 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Roodman, G. D. Mechanisms of bone metastasis. N. Engl. J. Med. 350, 1655–1664 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Suva, L. J., Gaddy, D., Perrien, D. S., Thomas, R. L. & Findlay, D. M. Regulation of bone mass by mechanical loading: microarchitecture and genetics. Curr. Osteoporos. Rep. 3, 46–51 (2005).

    Article  PubMed  Google Scholar 

  4. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yin, T. & Li, L. The stem cell niches in bone. J. Clin. Invest. 116, 1195–1201 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ying, H. et al. Aberrant accumulation of PTTG1 induced by a mutated thyroid hormone β receptor inhibits mitotic progression. J. Clin. Invest. 116, 2972–2984 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Guise, T. A. et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J. Clin. Invest. 98, 1544–1549 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mundy, G. R. & Edwards, J. R. PTH-related peptide (PTHrP) in hypercalcemia. J. Am. Soc. Nephrol. 19, 672–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Kir, S. et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513, 100–104 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bonewald, L. F. Osteocyte messages from a bony tomb. Cell Metab. 5, 410–411 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Dallas, S. L., Prideaux, M. & Bonewald, L. F. The osteocyte: an endocrine cell and more. Endocr. Rev. 34, 658–690 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235–1241 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Mori, G., D'Amelio, P., Faccio, R. & Brunetti, G. Bone–immune cell crosstalk: bone diseases. J. Immunol. Res. 2015, 108451 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Roato, I. Interaction among cells of bone, immune system, and solid tumors leads to bone metastases. Clin. Dev. Immunol. 2013, 315024 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Coleman, R. E., Gregory, W., Marshall, H., Wilson, C. & Holen, I. The metastatic microenvironment of breast cancer: clinical implications. Breast 22 (Suppl. 2), S50–S56 (2013).

    Article  PubMed  Google Scholar 

  17. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Minn, A. J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115, 44–55 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bendre, M. S. et al. Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res. 62, 5571–5579 (2002).

    CAS  PubMed  Google Scholar 

  23. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 133, 571–573 (1889).

    Article  Google Scholar 

  24. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer 14, 611–622 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jo, H., Jia, Y., Subramanian, K. K., Hattori, H. & Luo, H. R. Cancer cell-derived clusterin modulates the phosphatidylinositol 3'-kinase–Akt pathway through attenuation of insulin-like growth factor 1 during serum deprivation. Mol. Cell. Biol. 28, 4285–4299 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Schewe, D. M. & Aguirre-Ghiso, J. A. ATF6α–Rheb–mTOR signaling promotes survival of dormant tumor cells in vivo. Proc. Natl Acad. Sci. USA 105, 10519–10524 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mani, S., Wang, C., Wu, K., Francis, R. & Pestell, R. Cyclin-dependent kinase inhibitors: novel anticancer agents. Expert Opin. Investig. Drugs 9, 1849–1870 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Romero, I., Garrido, F. & Garcia-Lora, A. M. Metastases in immune-mediated dormancy: a new opportunity for targeting cancer. Cancer Res. 74, 6750–6757 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Muller-Hermelink, N. et al. TNFR1 signaling and IFN-γ signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13, 507–518 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Coleman, R. E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 12, 6243s–6249s (2006).

    Article  PubMed  Google Scholar 

  31. Kaplan, R. N., Psaila, B. & Lyden, D. Niche-to-niche migration of bone-marrow-derived cells. Trends Mol. Med. 13, 72–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Sheridan, C. et al. CD44+/CD24 breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 8, R59 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Furusato, B., Mohamed, A., Uhlen, M. & Rhim, J. S. CXCR4 and cancer. Pathol. Int. 60, 497–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Cojoc, M. et al. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco. Targets. Ther. 6, 1347–1361 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Leon, X., Quer, M., Orus, C., de Dios, E. & Recher, K. Treatment of neck nodes after induction chemotherapy in patients with primary advanced tumours. Eur. Arch. Otorhinolaryngol. 257, 521–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Patten, R. M., Shuman, W. P. & Teefey, S. Metastases from malignant melanoma to the axial skeleton: a CT study of frequency and appearance. AJR Am. J. Roentgenol. 155, 109–112 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Stewart, A. F. et al. Quantitative bone histomorphometry in humoral hypercalcemia of malignancy: uncoupling of bone cell activity. J. Clin. Endocrinol. Metab. 55, 219–227 (1982).

    Article  CAS  PubMed  Google Scholar 

  39. Huang, Q. & Ouyang, X. Biochemical-markers for the diagnosis of bone metastasis: a clinical review. Cancer Epidemiol. 36, 94–98 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Demers, L. M., Costa, L. & Lipton, A. Biochemical markers and skeletal metastases. Clin. Orthop. Relat. Res. 415 (Suppl.) S138–S147 (2003).

    Article  Google Scholar 

  41. Lipton, A. et al. Normalization of bone markers is associated with improved survival in patients with bone metastases from solid tumors and elevated bone resorption receiving zoledronic acid. Cancer 113, 193–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Coleman, R. et al. Bone markers and their prognostic value in metastatic bone disease: clinical evidence and future directions. Cancer Treat. Rev. 34, 629–639 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Washam, C. L. et al. Identification of PTHrP(12–48) as a plasma biomarker associated with breast cancer bone metastasis. Cancer Epidemiol. Biomarkers Prev. 22, 972–983 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Martin, T. J. Manipulating the environment of cancer cells in bone: a novel therapeutic approach. J. Clin. Invest. 110, 1399–1401 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mundy, G. R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Weilbaecher, K. N., Guise, T. A. & McCauley, L. K. Cancer to bone: a fatal attraction. Nat. Rev. Cancer 11, 411–425 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ganguly, S. S., Li, X. & Miranti, C. K. The host microenvironment influences prostate cancer invasion, systemic spread, bone colonization, and osteoblastic metastasis. Front. Oncol. 4, 364 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bonewald, L. F. The amazing osteocyte. J. Bone Miner. Res. 26, 229–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Suva, L. J. Sclerostin and the unloading of bone. J. Bone Miner. Res. 24, 1649–1650 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Wijenayaka, A. R. et al. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS ONE 6, e25900 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Compton, J. T. & Lee, F. Y. A review of osteocyte function and the emerging importance of sclerostin. J. Bone Joint Surg. Am. 96, 1659–1668 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhou, J. Z. et al. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene 34, 1831–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Henriksen, K., Karsdal, M. A. & Martin, T. J. Osteoclast-derived coupling factors in bone remodeling. Calcif. Tissue Int. 94, 88–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Xiong, J. & O'Brien, C. A. Osteocyte RANKL: new insights into the control of bone remodeling. J. Bone Miner. Res. 27, 499–505 (2012).

    Article  PubMed  CAS  Google Scholar 

  55. Boyde, A., Jones, S. J., Binderman, I. & Harell, A. Scanning electron microscopy of bone cells in culture. Cell Tissue Res. 166, 65–70 (1976).

    Article  CAS  PubMed  Google Scholar 

  56. Jones, S. J. & Boyde, A. Morphological changes of osteoblasts in vitro. Cell Tissue Res. 166, 101–107 (1976).

    Article  CAS  PubMed  Google Scholar 

  57. Gkotzamanidou, M. et al. Sclerostin: a possible target for the management of cancer-induced bone disease. Expert Opin. Ther. Targets. 16, 761–769 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Mendoza-Villanueva, D., Zeef, L. & Shore, P. Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBFβ-dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Res. 13, R106 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Tian, E. et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med. 349, 2483–2494 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Sezer, O., Heider, U., Zavrski, I., Kuhne, C. A. & Hofbauer, L. C. RANK ligand and osteoprotegerin in myeloma bone disease. Blood 101, 2094–2098 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Coluzzi, F., Di Bussolo, E., Mandatori, I. & Mattia, C. Bone metastatic disease: taking aim at new therapeutic targets. Curr. Med. Chem. 18, 3093–3115 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Terpos, E. et al. Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodeling in symptomatic myeloma: reduction post-bortezomib monotherapy. Int. J. Cancer 131, 1466–1471 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. McClung, M. R. & Grauer, A. Romosozumab in postmenopausal women with osteopenia. N. Engl. J. Med. 370, 1664–1665 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. McClung, M. R. et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370, 412–420 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Barbehenn, E. K., Lurie, P. & Wolfe, S. M. Osteosarcoma risk in rats using PTH 1–34. Trends Endocrinol. Metab. 12, 383 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Okazaki, R. Osteosarcoma in rats receiving long-term PTH injection [Japanese]. Clin. Calcium 13, 42–44 (2003).

    CAS  PubMed  Google Scholar 

  67. Martinez, L. M. et al. Changes in the peripheral blood and bone marrow from untreated advanced breast cancer patients that are associated with the establishment of bone metastases. Clin. Exp. Metastasis 31, 213–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Stine, K. C. et al. Cisplatin inhibits bone healing during distraction osteogenesis. J. Orthop. Res. 32, 464–470 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Pritchard, C. C., Cheng, H. H. & Tewari, M. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 13, 358–369 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cortez, M. A. et al. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 8, 467–477 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Aleckovic, M. & Kang, Y. Regulation of cancer metastasis by cell-free miRNAs. Biochim. Biophys. Acta 1855, 24–42 (2015).

    CAS  PubMed  Google Scholar 

  72. Gururajan, M. et al. miR-154* and miR-379 in the DLK1–DIO3 microRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer. Clin. Cancer Res. 20, 6559–6569 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lin, X., Wang, Z., Zhang, R. & Feng, W. High serum microRNA-335 level predicts aggressive tumor progression and unfavorable prognosis in pediatric acute myeloid leukemia. Clin. Transl Oncol. 17, 358–364 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Zhao, F. L. et al. Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J. Int. Med. Res. 40, 859–866 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Schwarzenbach, H., Nishida, N., Calin, G. A. & Pantel, K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 11, 145–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Ell, B. et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24, 542–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Valencia, K. et al. miR-326 associates with biochemical markers of bone turnover in lung cancer bone metastasis. Bone 52, 532–539 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Van Poznak, C. H. et al. American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modifying agents in metastatic breast cancer. J. Clin. Oncol. 29, 1221–1227 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Burstein, H. J. et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update. J. Clin. Oncol. 32, 2255–2269 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bines, J., Oleske, D. M. & Cobleigh, M. A. Ovarian function in premenopausal women treated with adjuvant chemotherapy for breast cancer. J. Clin. Oncol. 14, 1718–1729 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Bokemeyer, C., Berger, C. C., Kuczyk, M. A. & Schmoll, H. J. Evaluation of long-term toxicity after chemotherapy for testicular cancer. J. Clin. Oncol. 14, 2923–2932 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Hu, M. I., Gagel, R. F. & Jimenez, C. Bone loss in patients with breast or prostate cancer. Curr. Osteoporos. Rep. 5, 170–178 (2007).

    Article  PubMed  Google Scholar 

  83. Shahinian, V. B., Kuo, Y. F., Freeman, J. L. & Goodwin, J. S. Risk of fracture after androgen deprivation for prostate cancer. N. Engl. J. Med. 352, 154–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Ottewell, P. D. et al. Castration-induced bone loss triggers growth of disseminated prostate cancer cells in bone. Endocr. Relat. Cancer 21, 769–781 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Lipton, A., Smith, M. R., Ellis, G. K. & Goessl, C. Treatment-induced bone loss and fractures in cancer patients undergoing hormone ablation therapy: efficacy and safety of denosumab. Clin. Med. Insights Oncol. 6, 287–303 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Love, R. R. et al. Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N. Engl. J. Med. 326, 852–856 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Vehmanen, L., Elomaa, I., Blomqvist, C. & Saarto, T. Tamoxifen treatment after adjuvant chemotherapy has opposite effects on bone mineral density in premenopausal patients depending on menstrual status. J. Clin. Oncol. 24, 675–680 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Hadji, P. Aromatase inhibitor-associated bone loss in breast cancer patients is distinct from postmenopausal osteoporosis. Crit. Rev. Oncol. Hematol. 69, 73–82 (2009).

    Article  PubMed  Google Scholar 

  89. Suva, L. J. & Makhoul, I. Bone: Will breast cancer chemoprevention stand on 'solid bone'? Nat. Rev. Endocrinol. 11, 138–139 (2015).

    Article  PubMed  Google Scholar 

  90. Rizzoli, R. et al. Cancer-associated bone disease. Osteoporos. Int. 24, 2929–2953 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Ottewell, P. D. et al. Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clin. Cancer Res. 20, 2922–2932 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Hadji, P., Coleman, R. & Gnant, M. Bone effects of mammalian target of rapamycin (mTOR) inhibition with everolimus. Crit. Rev. Oncol. Hematol. 87, 101–111 (2013).

    Article  PubMed  Google Scholar 

  93. Sieber, P. R., Keiller, D. L., Kahnoski, R. J., Gallo, J. & McFadden, S. Bicalutamide 150 mg maintains bone mineral density during monotherapy for localized or locally advanced prostate cancer. J. Urol. 171, 2272–2276 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Eswaraka, J. et al. Axitinib and crizotinib combination therapy inhibits bone loss in a mouse model of castration resistant prostate cancer. BMC Cancer 14, 742 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Aleman, J. O., Farooki, A. & Girotra, M. Effects of tyrosine kinase inhibition on bone metabolism: untargeted consequences of targeted therapies. Endocr. Relat. Cancer 21, R247–R259 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Oh, D. & Huh, S. J. Insufficiency fracture after radiation therapy. Radiat. Oncol. J. 32, 213–220 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lipton, A. et al. Advances in treating metastatic bone cancer: summary statement for the first Cambridge conference. Clin. Cancer Res. 12, 6209s–6212s (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Guise, T. A. et al. Molecular mechanisms of breast cancer metastases to bone. Clin. Breast Cancer 5 (Suppl. 2), S46–S53 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Yong, M. et al. Survival in breast cancer patients with bone metastases and skeletal-related events: a population-based cohort study in Denmark (1999–2007). Breast Cancer Res. Treat. 129, 495–503 (2011).

    Article  PubMed  Google Scholar 

  100. Hortobagyi, G. N. et al. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J. Clin. Oncol. 16, 2038–2044 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Theriault, R. L. et al. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J. Clin. Oncol. 17, 846–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Rosen, L. S. et al. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer 98, 1735–1744 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Tombal, B. Assessing the benefit of bone-targeted therapies in prostate cancer, is the devil in the end point's definition? Ann. Oncol. 26, 257–258 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Smith, M. R. et al. Denosumab for the prevention of skeletal complications in metastatic castration-resistant prostate cancer: comparison of skeletal-related events and symptomatic skeletal events. Ann. Oncol. 26, 368–374 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Jung, K. & Lein, M. Bone turnover markers in serum and urine as diagnostic, prognostic and monitoring biomarkers of bone metastasis. Biochim. Biophys. Acta 1846, 425–438 (2014).

    CAS  PubMed  Google Scholar 

  107. Barnadas, A. et al. Bone turnover markers as predictive indicators of outcome in patients with breast cancer and bone metastases treated with bisphosphonates: results from a 2-year multicentre observational study (ZOMAR study). Bone 68, 32–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Lara, P. N. Jr et al. Serum biomarkers of bone metabolism in castration-resistant prostate cancer patients with skeletal metastases: results from SWOG 0421. J. Natl Cancer Inst. 106, dju013 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Baron, R., Ferrari, S. & Russell, R. G. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 48, 677–692 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Valachis, A. et al. Adjuvant therapy with zoledronic acid in patients with breast cancer: a systematic review and meta-analysis. Oncologist 18, 353–361 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Ottewell, P. D. et al. Combination therapy inhibits development and progression of mammary tumours in immunocompetent mice. Breast Cancer Res. Treat. 133, 523–536 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Insalaco, L. et al. Analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells. J. Cell. Mol. Med. 16, 2186–2195 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Green, J. & Lipton, A. Anticancer properties of zoledronic acid. Cancer Invest. 28, 944–957 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Welton, J. L. et al. γδ T cells predict outcome in zoledronate-treated breast cancer patients. Oncologist 18, e22–e23 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Foroni, C. et al. Pure anti-tumor effect of zoledronic acid in naive bone-only metastatic and locally advanced breast cancer: proof from the “biological window therapy”. Breast Cancer Res. Treat. 144, 113–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Welton, J. L. et al. Monocytes and γδ T cells control the acute-phase response to intravenous zoledronate: insights from a phase IV safety trial. J. Bone Miner. Res. 28, 464–471 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Coleman, R. et al. Zoledronic acid (zoledronate) for postmenopausal women with early breast cancer receiving adjuvant letrozole (ZO-FAST study): final 60-month results. Ann. Oncol. 24, 398–405 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Gnant, M. et al. Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 386, 433–443 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Lester, J. E. et al. Prevention of anastrozole-induced bone loss with monthly oral ibandronate during adjuvant aromatase inhibitor therapy for breast cancer. Clin. Cancer Res. 14, 6336–6342 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Van Poznak, C. et al. Prevention of aromatase inhibitor-induced bone loss using risedronate: the SABRE trial. J. Clin. Oncol. 28, 967–975 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Smith, M. R. et al. Pamidronate to prevent bone loss during androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 345, 948–955 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Smith, M. R. et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 361, 745–755 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Gnant, M. et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N. Engl. J. Med. 360, 679–691 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Coleman, R. E. et al. Breast-cancer adjuvant therapy with zoledronic acid. N. Engl. J. Med. 365, 1396–1405 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Powles, T. et al. Reduction in bone relapse and improved survival with oral clodronate for adjuvant treatment of operable breast cancer [ISRCTN83688026]. Breast Cancer Res. 8, R13 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Paterson, A. H. et al. Oral clodronate for adjuvant treatment of operable breast cancer (National Surgical Adjuvant Breast and Bowel Project protocol B–34): a multicentre, placebo-controlled, randomised trial. Lancet Oncol. 13, 734–742 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Denham, J. W. et al. Impact of androgen suppression and zoledronic acid on bone mineral density and fractures in the Trans-Tasman Radiation Oncology Group (TROG) 03.04 Randomised Androgen Deprivation and Radiotherapy (RADAR) randomized controlled trial for locally advanced prostate cancer. BJU Int. 114, 344–353 (2014).

    CAS  PubMed  Google Scholar 

  129. Tombal, B. Zometa European Study (ZEUS): another failed crusade for the holy grail of prostate cancer bone metastases prevention? Eur. Urol. 67, 492–494 (2015).

    Article  PubMed  Google Scholar 

  130. Wirth, M. et al. Prevention of bone metastases in patients with high-risk nonmetastatic prostate cancer treated with zoledronic acid: efficacy and safety results of the Zometa European Study (ZEUS). Eur. Urol. 67, 482–491 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Smith, M. R. et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379, 39–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Wong, M. H., Stockler, M. R. & Pavlakis, N. Bisphosphonates and other bone agents for breast cancer. Cochrane Database of Systematic Reviews, Issue 2, Art. No.: CD003474 http://dx.doi.org/10.1002/14651858.CD003474.pub3.

  133. Coleman, R. et al. Adjuvant zoledronic acid in patients with early breast cancer: final efficacy analysis of the AZURE (BIG 01/04) randomised open-label phase 3 trial. Lancet Oncol. 15, 997–1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Todenhofer, T., Stenzl, A., Hofbauer, L. C. & Rachner, T. D. Targeting bone metabolism in patients with advanced prostate cancer: current options and controversies. Int. J. Endocrinol. 2015, 838202 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Saad, F., Karakiewicz, P. & Perrotte, P. The role of bisphosphonates in hormone-refractory prostate cancer. World J. Urol. 23, 14–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Berenson, J. R. et al. Zoledronic acid reduces skeletal-related events in patients with osteolytic metastases. Cancer 91, 1191–1200 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Saad, F. et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J. Natl Cancer Inst. 94, 1458–1468 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Saad, F. et al. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J. Natl Cancer Inst. 96, 879–882 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Fizazi, K. et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J. Clin. Oncol. 27, 1564–1571 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Henry, D. H. et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J. Clin. Oncol. 29, 1125–1132 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Snedecor, S. J., Carter, J. A., Kaura, S. & Botteman, M. F. Cost-effectiveness of denosumab versus zoledronic acid in the management of skeletal metastases secondary to breast cancer. Clin. Ther. 34, 1334–1349 (2012).

    Article  PubMed  Google Scholar 

  142. Gralow, J. R. et al. NCCN Task Force report: bone health in cancer care. J. Natl Compr. Canc. Netw. 11 (Suppl. 3), S1–S50 (2013).

    Article  PubMed  Google Scholar 

  143. Suva, L. J., Brander, B. E. & Makhoul, I. Update on bone-modifying agents in metastatic breast cancer. Nat. Rev. Endocrinol. 7, 380–381 (2011).

    Article  PubMed  Google Scholar 

  144. Serafini, A. N. et al. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J. Clin. Oncol. 16, 1574–1581 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Sartor, O., Reid, R. H., Bushnell, D. L., Quick, D. P. & Ell, P. J. Safety and efficacy of repeat administration of samarium Sm-153 lexidronam to patients with metastatic bone pain. Cancer 109, 637–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Longo, J., Lutz, S. & Johnstone, C. Samarium-153-ethylene diamine tetramethylene phosphonate, a β-emitting bone-targeted radiopharmaceutical, useful for patients with osteoblastic bone metastases. Cancer Manag. Res. 5, 235–242 (2013).

    PubMed  PubMed Central  Google Scholar 

  147. Silberstein, E. B., Eugene, L. & Saenger, S. R. Painful osteoblastic metastases: the role of nuclear medicine. Oncology (Williston Park) 15, 157–163 (2001).

    CAS  Google Scholar 

  148. Baczyk, M. Radioisotope therapy of bone metastases. Nucl. Med. Rev. Cent. East Eur. 14, 96–104 (2011).

    Article  PubMed  Google Scholar 

  149. Nilsson, S. et al. Two-year survival follow-up of the randomized, double-blind, placebo-controlled phase II study of radium-223 chloride in patients with castration-resistant prostate cancer and bone metastases. Clin. Genitourin. Cancer 11, 20–26 (2013).

    Article  PubMed  Google Scholar 

  150. Shirley, M. & McCormack, P. L. Radium-223 dichloride: a review of its use in patients with castration-resistant prostate cancer with symptomatic bone metastases. Drugs 74, 579–586 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Coleman, R. E. et al. Bone scan flare predicts successful systemic therapy for bone metastases. J. Nucl. Med. 29, 1354–1359 (1988).

    CAS  PubMed  Google Scholar 

  152. Carducci, M. A. & Jimeno, A. Targeting bone metastasis in prostate cancer with endothelin receptor antagonists. Clin. Cancer Res. 12, 6296s–6300s (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Clines, G. A. et al. Regulation of postnatal trabecular bone formation by the osteoblast endothelin A receptor. J. Bone Miner. Res. 26, 2523–2536 (2011).

    Article  PubMed  CAS  Google Scholar 

  154. Nelson, J. B. et al. Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone-refractory prostate cancer. Cancer 113, 2478–2487 (2008).

    Article  PubMed  CAS  Google Scholar 

  155. Nelson, J. B. et al. Phase 3, randomized, placebo-controlled study of zibotentan (ZD4054) in patients with castration-resistant prostate cancer metastatic to bone. Cancer 118, 5709–5718 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Quinn, D. I. et al. Docetaxel and atrasentan versus docetaxel and placebo for men with advanced castration-resistant prostate cancer (SWOG S0421): a randomised phase 3 trial. Lancet Oncol. 14, 893–900 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Miller, K. et al. Phase III, randomized, placebo-controlled study of once-daily oral zibotentan (ZD4054) in patients with non-metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 16, 187–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Duong, L. T., Wesolowski, G. A., Leung, P., Oballa, R. & Pickarski, M. Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol. Cancer Ther. 13, 2898–2909 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Bonnick, S. et al. Effects of odanacatib on BMD and safety in the treatment of osteoporosis in postmenopausal women previously treated with alendronate: a randomized placebo-controlled trial. J. Clin. Endocrinol. Metab. 98, 4727–4735 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Jensen, A. B. et al. The cathepsin K inhibitor odanacatib suppresses bone resorption in women with breast cancer and established bone metastases: results of a 4-week, double-blind, randomized, controlled trial. Clin. Breast Cancer 10, 452–458 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Aftab, D. T. & McDonald, D. M. MET and VEGF: synergistic targets in castration-resistant prostate cancer. Clin. Transl. Oncol. 13, 703–709 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Zhang, S. et al. Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells. Mol. Cancer 9, 9 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Kabbarah, O. et al. Integrative genome comparison of primary and metastatic melanomas. PLoS ONE 5, e10770 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Vergani, E. et al. Identification of MET and SRC activation in melanoma cell lines showing primary resistance to PLX4032. Neoplasia 13, 1132–1142 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Chu, G. C. et al. RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr. Relat. Cancer 21, 311–326 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Smith, M. R. et al. Cabozantinib in chemotherapy-pretreated metastatic castration-resistant prostate cancer: results of a phase II nonrandomized expansion study. J. Clin. Oncol. 32, 3391–3399 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 8, 627–644 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Yue, W., Fan, P., Wang, J., Li, Y. & Santen, R. J. Mechanisms of acquired resistance to endocrine therapy in hormone-dependent breast cancer cells. J. Steroid Biochem. Mol. Biol. 106, 102–110 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Ma, J., Li, M., Hock, J. & Yu, X. Hyperactivation of mTOR critically regulates abnormal osteoclastogenesis in neurofibromatosis type 1. J. Orthop. Res. 30, 144–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Indo, Y. et al. Metabolic regulation of osteoclast differentiation and function. J. Bone Miner. Res. 28, 2392–2399 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Ory, B., Moriceau, G., Redini, F. & Heymann, D. mTOR inhibitors (rapamycin and its derivatives) and nitrogen containing bisphosphonates: bi-functional compounds for the treatment of bone tumours. Curr. Med. Chem. 14, 1381–1387 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Glantschnig, H., Fisher, J. E., Wesolowski, G., Rodan, G. A. & Reszka, A. A. M-CSF, TNFα and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 10, 1165–1177 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Kneissel, M. et al. Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone 35, 1144–1156 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Gnant, M. et al. Effect of everolimus on bone marker levels and progressive disease in bone in BOLERO-2. J. Natl Cancer Inst. 105, 654–663 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Clevers, H., Loh, K. M. & Nusse, R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346, 1248012 (2014).

    Article  PubMed  CAS  Google Scholar 

  176. Lehmann, B. D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Khramtsov, A. I. et al. Wnt/β-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol. 176, 2911–2920 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Cui, Y. et al. Lrp5 functions in bone to regulate bone mass. Nat. Med. 17, 684–691 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Holmen, S. L. et al. Essential role of β-catenin in postnatal bone acquisition. J. Biol. Chem. 280, 21162–21168 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Goldring, S. R. & Goldring, M. B. Eating bone or adding it: the Wnt pathway decides. Nat. Med. 13, 133–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Bu, G. et al. Breast cancer-derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: implication for breast cancer osteolytic bone metastases. Int. J. Cancer 123, 1034–1042 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Sukhdeo, K. et al. Targeting the β-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc. Natl Acad. Sci. USA 104, 7516–7521 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Fulciniti, M. et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114, 371–379 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Zhou, X. L., Qin, X. R., Zhang, X. D. & Ye, L. H. Downregulation of Dickkopf-1 is responsible for high proliferation of breast cancer cells via losing control of Wnt/β-catenin signaling. Acta Pharmacol. Sin. 31, 202–210 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Krause, U., Ryan, D. M., Clough, B. H. & Gregory, C. A. An unexpected role for a Wnt-inhibitor: Dickkopf-1 triggers a novel cancer survival mechanism through modulation of aldehyde-dehydrogenase-1 activity. Cell Death Dis. 5, e1093 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Kim, H. et al. Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. Int. J. Oncol. 43, 1319–1325 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Zhang, H. et al. Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of β-catenin activation of the DKK1 promoter in prostate cancer. Oncogene 33, 2464–2477 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Thudi, N. K. et al. Dickkopf-1 (DKK-1) stimulated prostate cancer growth and metastasis and inhibited bone formation in osteoblastic bone metastases. Prostate 71, 615–625 (2011).

    Article  CAS  PubMed  Google Scholar 

  189. Rougraff, B. T., Kneisl, J. S. & Simon, M. A. Skeletal metastases of unknown origin. A prospective study of a diagnostic strategy. J. Bone Joint Surg. Am. 75, 1276–1281 (1993).

    Article  CAS  PubMed  Google Scholar 

  190. Issack, P. S., Kotwal, S. Y. & Lane, J. M. Management of metastatic bone disease of the acetabulum. J. Am. Acad. Orthop. Surg. 21, 685–695 (2013).

    Article  PubMed  Google Scholar 

  191. Gainor, B. J. & Buchert, P. Fracture healing in metastatic bone disease. Clin. Orthop. Relat. Res. 178, 297–302 (1983).

    Google Scholar 

  192. Mirels, H. Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures. Clin. Orthop. Relat. Res. 249, 256–264 (1989).

    Google Scholar 

  193. Bickels, J., Dadia, S. & Lidar, Z. Surgical management of metastatic bone disease. J. Bone Joint Surg. Am. 91, 1503–1516 (2009).

    Article  PubMed  Google Scholar 

  194. Scolaro, J. A. & Lackman, R. D. Surgical management of metastatic long bone fractures: principles and techniques. J. Am. Acad. Orthop. Surg. 22, 90–100 (2014).

    PubMed  Google Scholar 

  195. Ward, W. G., Holsenbeck, S., Dorey, F. J., Spang, J. & Howe, D. Metastatic disease of the femur: surgical treatment. Clin. Orthop. Relat. Res. 415 (Suppl.), S230–S244 (2003).

    Article  Google Scholar 

  196. Damron, T. A. et al. Critical evaluation of Mirels' rating system for impending pathologic fractures. Clin. Orthop. Relat. Res. 415 (Suppl.), S201–S207 (2003).

    Article  Google Scholar 

  197. Sampson, E., Brierley, J. D., Le, L. W., Rotstein, L. & Tsang, R. W. Clinical management and outcome of papillary and follicular (differentiated) thyroid cancer presenting with distant metastasis at diagnosis. Cancer 110, 1451–1456 (2007).

    Article  PubMed  Google Scholar 

  198. Baloch, K. G., Grimer, R. J., Carter, S. R. & Tillman, R. M. Radical surgery for the solitary bony metastasis from renal-cell carcinoma. J. Bone Joint Surg. Br. 82, 62–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  199. Lutz, S. T., Jones, J. & Chow, E. Role of radiation therapy in palliative care of the patient with cancer. J. Clin. Oncol. 32, 2913–2919 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Townsend, P. W., Rosenthal, H. G., Smalley, S. R., Cozad, S. C. & Hassanein, R. E. Impact of postoperative radiation therapy and other perioperative factors on outcome after orthopedic stabilization of impending or pathologic fractures due to metastatic disease. J. Clin. Oncol. 12, 2345–2350 (1994).

    Article  CAS  PubMed  Google Scholar 

  201. Tomita, K. et al. Surgical strategy for spinal metastases. Spine (Phila. Pa 1976) 26, 298–306 (2001).

    Article  CAS  Google Scholar 

  202. Fourney, D. R. et al. Spinal instability neoplastic score: an analysis of reliability and validity from the spine oncology study group. J. Clin. Oncol. 29, 3072–3077 (2011).

    Article  PubMed  Google Scholar 

  203. Tokuhashi, Y., Matsuzaki, H., Oda, H., Oshima, M. & Ryu, J. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine (Phila. Pa 1976) 30, 2186–2191 (2005).

    Article  Google Scholar 

  204. Berenson, J. et al. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol. 12, 225–235 (2011).

    Article  PubMed  Google Scholar 

  205. Kaloostian, P. E., Yurter, A., Zadnik, P. L., Sciubba, D. M. & Gokaslan, Z. L. Current paradigms for metastatic spinal disease: an evidence-based review. Ann. Surg. Oncol. 21, 248–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Patchell, R. A. et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 366, 643–648 (2005).

    Article  PubMed  Google Scholar 

  207. Paice, J. A. & Ferrell, B. The management of cancer pain. CA Cancer J. Clin. 61, 157–182 (2011).

    Article  PubMed  Google Scholar 

  208. Howell, D. D. et al. Single-fraction radiotherapy versus multifraction radiotherapy for palliation of painful vertebral bone metastases-equivalent efficacy, less toxicity, more convenient: a subset analysis of Radiation Therapy Oncology Group trial 97–14. Cancer 119, 888–896 (2013).

    Article  PubMed  Google Scholar 

  209. Ejima, Y., Matsuo, Y. & Sasaki, R. The current status and future of radiotherapy for spinal bone metastases. J. Orthop. Sci. 20, 585–592 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Lutz, S. et al. Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int. J. Radiat. Oncol. Biol. Phys. 79, 965–976 (2011).

    Article  PubMed  Google Scholar 

  211. Barlogie, B. et al. Treatment of multiple myeloma. Blood 103, 20–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  212. Zangari, M. et al. A prospective evaluation of the biochemical, metabolic, hormonal and structural bone changes associated with bortezomib response in multiple myeloma patients. Haematologica 96, 333–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Roodman, G. D. Bone-breaking cancer treatment. Nat. Med. 13, 25–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  214. Manso, L. et al. Use of bevacizumab as a first-line treatment for metastatic breast cancer. Curr. Oncol. 22, e51–e60 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Moreno-Aspitia, A. et al. Phase II trial of sorafenib in patients with metastatic breast cancer previously exposed to anthracyclines or taxanes: North Central Cancer Treatment Group and Mayo Clinic Trial N0336. J. Clin. Oncol. 27, 11–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  216. Curigliano, G. et al. Randomized phase II study of sunitinib versus standard of care for patients with previously treated advanced triple-negative breast cancer. Breast 22, 650–656 (2013).

    Article  PubMed  Google Scholar 

  217. Coleman, R. E. Risks and benefits of bisphosphonates. Br. J. Cancer 98, 1736–1740 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Lipton, A. et al. Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J. Clin. Oncol. 25, 4431–4437 (2007).

    Article  CAS  PubMed  Google Scholar 

  219. Coombes, R. C. et al. An open-label study of lapatinib in women with HER-2-negative early breast cancer: the lapatinib pre-surgical study (LPS study). Ann. Oncol. 24, 924–930 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Small, E. J. et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol. 24, 3089–3094 (2006).

    Article  CAS  PubMed  Google Scholar 

  221. Madan, R. A. et al. Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 13, 501–508 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. van den Eertwegh, A. J. et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 13, 509–517 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. Telli, M. L. et al. Phase II Study of gemcitabine, carboplatin, and iniparib as neoadjuvant therapy for triple-negative and BRCA1/2 mutation-associated breast cancer with assessment of a tumor-based measure of genomic instability: PrECOG 0105. J. Clin. Oncol. 33, 1895–1901 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Dittrich, C. et al. A phase II multicenter study of two different dosages of pemetrexed given in combination with cyclophosphamide as first-line treatment in patients with locally advanced or metastatic breast cancer. Cancer Invest. 30, 309–316 (2012).

    Article  CAS  PubMed  Google Scholar 

  225. Smith, J. W. 2nd et al. Results of a phase II open-label, nonrandomized trial of oral satraplatin in patients with metastatic breast cancer. Breast Cancer Res. Treat. 118, 361–367 (2009).

    Article  CAS  PubMed  Google Scholar 

  226. Dagher, R. et al. Approval summary: docetaxel in combination with prednisone for the treatment of androgen-independent hormone-refractory prostate cancer. Clin. Cancer Res. 10, 8147–8151 (2004).

    Article  CAS  PubMed  Google Scholar 

  227. Villanueva, C. et al. A multicentre dose-escalating study of cabazitaxel (XRP6258) in combination with capecitabine in patients with metastatic breast cancer progressing after anthracycline and taxane treatment: a phase I/II study. Eur. J. Cancer 47, 1037–1045 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work on the mechanisms driving tumour progression and the development of bone metastases is supported by the NIH (grant R01 CA166060 to L.J.S.) and the Carl L. Nelson Endowed Chair in Orthopaedic Creativity (L.J.S.).

Author information

Authors and Affiliations

Authors

Contributions

I.M., C.O.M., D.G. and L.J.S. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Larry J. Suva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhoul, I., Montgomery, C., Gaddy, D. et al. The best of both worlds — managing the cancer, saving the bone. Nat Rev Endocrinol 12, 29–42 (2016). https://doi.org/10.1038/nrendo.2015.185

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing