Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hormonal control of T-cell development in health and disease

Key Points

  • The thymus is the primary lymphoid organ responsible for the generation of T cells

  • Thymus physiology and T-cell development can be controlled by hormones, via a variety of endocrine and paracrine pathways

  • Microenvironmental cells in the thymus constitutively produce hormones that are typically secreted by the pituitary gland, such as growth hormone, prolactin, oxytocin and vasopressin

  • Glucocorticoids induce thymocyte depletion through caspase-dependent apoptosis, whereas growth hormone enhances thymocyte proliferation and migration

  • Considering the variety of the interactions between the endocrine, the nervous and the immune systems, dysfunctions in one of these systems can affect the other

  • Acute infection by Trypanosoma cruzi (the causative agent of Chagas disease) induces thymic atrophy through glucocorticoid-mediated thymocyte depletion, which can be counteracted by exogenous prolactin

Abstract

The physiology of the thymus, the primary lymphoid organ in which T cells are generated, is controlled by hormones. Data from animal models indicate that several peptide and nonpeptide hormones act pleiotropically within the thymus to modulate the proliferation, differentiation, migration and death by apoptosis of developing thymocytes. For example, growth hormone and prolactin can enhance thymocyte proliferation and migration, whereas glucocorticoids lead to the apoptosis of these developing cells. The thymus undergoes progressive age-dependent atrophy with a loss of cells being generated and exported, therefore, hormone-based therapies are being developed as an alternative strategy to rejuvenate the organ, as well as to augment thymocyte proliferation and the export of mature T cells to peripheral lymphoid organs. Some hormones (such as growth hormone and progonadoliberin-1) are also being used as therapeutic agents to treat immunodeficiency disorders associated with thymic atrophy, such as HIV infection. In this Review, we discuss the accumulating data that shows the thymus gland is under complex and multifaceted hormonal control that affects the process of T-cell development in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intrathymic T-cell differentiation.
Figure 2: Immuno–neuro–endocrine interactions in the thymus.
Figure 3: GH signalling in TECs stimulates proliferation of T cells.
Figure 4: Trypanosoma cruzi infection and thymus homeostasis.

Similar content being viewed by others

References

  1. Savino, W. Intrathymic T cell migration is a multivectorial process under a complex neuroendocrine control. Neuroimmunomodulation 17, 142–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Besedovsky, H. O. & Sorkin, E. Thymus involvement in female sexual maturation. Nature 249, 356–358 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Besedovsky, H., del Rey, A., Sorkin, E. & Dinarello, C. A. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233, 652–654 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Blalock, J. E., Smith, E. M. & Meyer, W. J. 3rd. The pituitary-adrenocortical axis and the immune system. Clin. Endocrinol. Metab. 14, 1021–1038 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Savino, W. & Dardenne, M. Immune-neuroendocrine interactions. Immunol. Today 16, 318–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Selye, H. Implications of stress concept. N. Y. State J. Med. 75, 2139–2145 (1975).

    CAS  PubMed  Google Scholar 

  7. Ader, R., Felton, D. L., Cohen, H. (Eds) Psychoneuroimmunology 4th edn (Academic Press, 2006).

    Google Scholar 

  8. Savino, W. & Dardenne, M. Neuroendocrine control of thymus physiology. Endocr. Rev. 21, 412–443 (2000).

    CAS  PubMed  Google Scholar 

  9. Reggiani, P., Martines, E., Ferese, C., Goya, R. & Console, G. Morphological restoration of gonadotrope population by thymulin gene therapy in nude mice. Histol. Histopathol. 24, 729–735 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. de Mello-Coelho, V., Villa-Verde, D. M., Dardenne, M. & Savino, W. Pituitary hormones modulate cell-cell interactions between thymocytes and thymic epithelial cells. J. Neuroimmunol. 76, 39–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Savino, W., Smaniotto, S., Mendes-da-Cruz, D. A. & Dardenne, M. Growth hormone modulates migration of thymocytes and peripheral T cells. Ann. N. Y. Acad. Sci. 1261, 49–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Moll, U. M., Lane, B. L., Robert, F., Geenen, V. & Legros, J. J. The neuroendocrine thymus. Abundant occurrence of oxytocin-, vasopressin-, and neurophysin-like peptides in epithelial cells. Histochemistry 89, 385–390 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Lind, E. F., Prockop, S. E., Porritt, H. E. & Petrie, H. T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 194, 127–134 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Attaf, M., Huseby, E. & Sewell, A. K. αβ T cell receptors as predictors of health and disease. Cell. Mol. Immunol. 12, 391–399 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Miles, J. J., Douek, D. C. & Price, D. A. Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol. Cell Biol. 89, 375–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Godfrey, D. I. & Zlotnik, A. Control points in early T-cell development. Immunol. Today 14, 547–553 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Fu, G. et al. Fine-tuning T cell receptor signaling to control T cell development. Trends Immunol. 35, 311–318 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Egawa, T. Regulation of CD4 and CD8 coreceptor expression and CD4 versus CD8 lineage decisions. Adv. Immunol. 125, 1–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Spidale, N. A., Wang, B. & Tisch, R. Cutting edge: Antigen-specific thymocyte feedback regulates homeostatic thymic conventional dendritic cell maturation. J. Immunol. 193, 21–25 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat. Rev. Immunol. 14, 377–391 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Laan, M. & Peterson, P. The many faces of Aire in central tolerance. Front. Immunol. 4, 326 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Passos, G. A., Mendes-da-Cruz, D. A. & Oliveira, E. H. The thymic orchestration involving aire, miRNAs, and cell-cell interactions during the induction of central tolerance. Front. Immunol. 6, 352 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Ciofani, M. & Zuniga-Pflucker, J. C. The thymus as an inductive site for T lymphopoiesis. Annu. Rev. Cell Dev. Biol. 23, 463–493 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Petrie, H. T. & Zuniga-Pflucker, J. C. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 25, 649–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Savino, W., Mendes-da-Cruz, D. A., Silva, J. S., Dardenne, M. & Cotta-de-Almeida, V. Intrathymic T-cell migration: a combinatorial interplay of extracellular matrix and chemokines? Trends Immunol. 23, 305–313 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Cotta-de-Almeida, V. et al. Trypanosoma cruzi infection modulates intrathymic contents of extracellular matrix ligands and receptors and alters thymocyte migration. Eur. J. Immunol. 33, 2439–2448 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Savino, W., Mendes-Da-Cruz, D. A., Smaniotto, S., Silva-Monteiro, E. & Villa-Verde, D. M. Molecular mechanisms governing thymocyte migration: combined role of chemokines and extracellular matrix. J. Leukoc. Biol. 75, 951–961 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Michie, A. M. et al. Constitutive Notch signalling promotes CD4 CD8 thymocyte differentiation in the absence of the pre-TCR complex, by mimicking pre-TCR signals. Int. Immunol. 19, 1421–1430 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Sambandam, A. et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat. Immunol. 6, 663–670 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Varas, A. et al. Age-dependent changes in thymic macrophages and dendritic cells. Microsc. Res. Tech. 62, 501–507 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Aw, D., Silva, A. B., Maddick, M., von Zglinicki, T. & Palmer, D. B. Architectural changes in the thymus of aging mice. Aging Cell 7, 158–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Aw, D., Taylor-Brown, F., Cooper, K. & Palmer, D. B. Phenotypical and morphological changes in the thymic microenvironment from ageing mice. Biogerontology 10, 311–322 (2009).

    Article  PubMed  Google Scholar 

  34. Lepletier, A., Chidgey, A. P. & Savino, W. Perspectives for improvement of the thymic microenvironment through manipulation of thymic epithelial cells: a mini-review. Gerontology http://dx.doi.org/10.1159/000375160.

  35. Qi, Q. et al. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl Acad. Sci. USA 111, 13139–13144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gray, D. H. et al. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108, 3777–3785 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Griffith, A. V., Fallahi, M., Venables, T. & Petrie, H. T. Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell 11, 169–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Ventevogel, M. S. & Sempowski, G. D. Thymic rejuvenation and aging. Curr. Opin. Immunol. 25, 516–522 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Vacchio, M. S., Lee, J. Y. & Ashwell, J. D. Thymus-derived glucocorticoids set the thresholds for thymocyte selection by inhibiting TCR-mediated thymocyte activation. J. Immunol. 163, 1327–1333 (1999).

    CAS  PubMed  Google Scholar 

  40. Charlton, H. Hypothalamic control of anterior pituitary function: a history. J. Neuroendocrinol. 20, 641–646 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. de Mello-Coelho, V. et al. Growth hormone and its receptor are expressed in human thymic cells. Endocrinology 139, 3837–3842 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Ban, E. et al. Specific binding sites for growth hormone in cultured mouse thymic epithelial cells. Life Sci. 48, 2141–2148 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Hull, K. L., Thiagarajah, A. & Harvey, S. Cellular localization of growth hormone receptors/binding proteins in immune tissues. Cell Tissue Res. 286, 69–80 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Gagnerault, M. C., Postel-Vinay, M. C. & Dardenne, M. Expression of growth hormone receptors in murine lymphoid cells analyzed by flow cytofluorometry. Endocrinology 137, 1719–1726 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Taub, D. D., Murphy, W. J. & Longo, D. L. Rejuvenation of the aging thymus: growth hormone-mediated and ghrelin-mediated signaling pathways. Curr. Opin. Pharmacol. 10, 408–424 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Morrhaye, G. et al. Impact of growth hormone (GH) deficiency and GH replacement upon thymus function in adult patients. PLoS ONE 4, e5668 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Polgreen, L., Steiner, M., Dietz, C. A., Manivel, J. C. & Petryk, A. Thymic hyperplasia in a child treated with growth hormone. Growth Horm. IGF Res. 17, 41–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Kermani, H. et al. Expression of the growth hormone/insulin-like growth factor axis during Balb/c thymus ontogeny and effects of growth hormone upon ex vivo T cell differentiation. Neuroimmunomodulation 19, 137–147 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Timsit, J. et al. Growth hormone and insulin-like growth factor-I stimulate hormonal function and proliferation of thymic epithelial cells. J. Clin. Endocrinol. Metab. 75, 183–188 (1992).

    CAS  PubMed  Google Scholar 

  50. Bazzoni, N. et al. Acromegaly and thymic hyperplasia: a case report. J. Endocrinol. Invest. 13, 931–935 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Smaniotto, S. et al. Combined role of extracellular matrix and chemokines on peripheral lymphocyte migration in growth hormone transgenic mice. Brain Behav. Immun. 24, 451–461 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Smaniotto, S. et al. Growth hormone modulates thymocyte development in vivo through a combined action of laminin and CXC chemokine ligand 12. Endocrinology 146, 3005–3017 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. de Mello Coelho, V. et al. Functional insulin-like growth factor-1/insulin-like growth factor-1 receptor-mediated circuit in human and murine thymic epithelial cells. Neuroendocrinology 75, 139–150 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Dixit, V. D. et al. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J. Clin. Invest. 114, 57–66 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Howard, A. D. et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273, 974–977 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Dixit, V. D. et al. Ghrelin promotes thymopoiesis during aging. J. Clin. Invest. 117, 2778–2790 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bole-Feysot, C., Goffin, V., Edery, M., Binart, N. & Kelly, P. A. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19, 225–268 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. DaSilva, L. et al. Prolactin recruits STAT1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580. Mol. Cell Endocrinol. 117, 131–140 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Montgomery, D. W. et al. Human thymocytes express a prolactin-like messenger ribonucleic acid and synthesize bioactive prolactin-like proteins. Endocrinology 131, 3019–3026 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Lepletier, A. et al. Trypanosoma cruzi disrupts thymic homeostasis by altering intrathymic and systemic stress-related endocrine circuitries. PLoS Negl. Trop. Dis. 7, e2470 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Dardenne, M., Kelly, P. A., Bach, J. F. & Savino, W. Identification and functional activity of prolactin receptors in thymic epithelial cells. Proc. Natl Acad. Sci. USA 88, 9700–9704 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carreno, P. C., Jimenez, E., Sacedon, R., Vicente, A. & Zapata, A. G. Prolactin stimulates maturation and function of rat thymic dendritic cells. J. Neuroimmunol. 153, 83–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Carreno, P. C., Sacedon, R., Jimenez, E., Vicente, A. & Zapata, A. G. Prolactin affects both survival and differentiation of T-cell progenitors. J. Neuroimmunol. 160, 135–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Gagnerault, M. C., Touraine, P., Savino, W., Kelly, P. A. & Dardenne, M. Expression of prolactin receptors in murine lymphoid cells in normal and autoimmune situations. J. Immunol. 150, 5673–5681 (1993).

    CAS  PubMed  Google Scholar 

  65. Dardenne, M., de Moraes Mdo, C., Kelly, P. A. & Gagnerault, M. C. Prolactin receptor expression in human hematopoietic tissues analyzed by flow cytofluorometry. Endocrinology 134, 2108–2114 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Feng, J. C., Loh, T. T. & Sheng, H. P. Lactation increases prolactin receptor expression in spleen and thymus of rats. Life Sci. 63, 111–119 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Foster, M., Montecino-Rodriguez, E., Clark, R. & Dorshkind, K. Regulation of B and T cell development by anterior pituitary hormones. Cell. Mol. Life Sci. 54, 1076–1082 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Horseman, N. D. et al. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J. 16, 6926–6935 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Bouchard, B., Ormandy, C. J., Di Santo, J. P. & Kelly, P. A. Immune system development and function in prolactin receptor-deficient mice. J. Immunol. 163, 576–582 (1999).

    CAS  PubMed  Google Scholar 

  70. Krishnan, N., Thellin, O., Buckley, D. J., Horseman, N. D. & Buckley, A. R. Prolactin suppresses glucocorticoid-induced thymocyte apoptosis in vivo. Endocrinology 144, 2102–2110 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Melis, M. R., Mauri, A. & Argiolas, A. Opposite changes in the content of oxytocin- and vasopressin-like immunoreactive peptides in the rat thymus during aging. Regul. Pept. 59, 335–340 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Hansenne, I. et al. Ontogenesis and functional aspects of oxytocin and vasopressin gene expression in the thymus network. J. Neuroimmunol. 158, 67–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Elands, J., Resink, A. & De Kloet, E. R. Neurohypophyseal hormone receptors in the rat thymus, spleen, and lymphocytes. Endocrinology 126, 2703–2710 (1990).

    Article  CAS  PubMed  Google Scholar 

  74. Hansenne, I. et al. Neurohypophysial receptor gene expression by thymic T cell subsets and thymic T cell lymphoma cell lines. Clin. Dev. Immunol. 11, 45–51 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. da Silva, S. V. et al. Increased leptin response and inhibition of apoptosis in thymocytes of young rats offspring from protein deprived dams during lactation. PLoS ONE 8, e64220 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Dardenne, M., Savino, W., Gastinel, L. N., Nabarra, B. & Bach, J. F. Thymic dysfunction in the mutant diabetic (db/db) mouse. J. Immunol. 130, 1195–1199 (1983).

    CAS  PubMed  Google Scholar 

  77. Gruver, A. L., Ventevogel, M. S. & Sempowski, G. D. Leptin receptor is expressed in thymus medulla and leptin protects against thymic remodeling during endotoxemia-induced thymus involution. J. Endocrinol. 203, 75–85 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Hick, R. W., Gruver, A. L., Ventevogel, M. S., Haynes, B. F. & Sempowski, G. D. Leptin selectively augments thymopoiesis in leptin deficiency and lipopolysaccharide-induced thymic atrophy. J. Immunol. 177, 169–176 (2006).

    Article  PubMed  CAS  Google Scholar 

  79. Lee, J. H. et al. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways. FEBS Lett. 588, 4708–4719 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Chen, Y. K. et al. The frequency and spectrum of thymus 2-[fluorine-18] fluoro-2-deoxy-D-glucose uptake patterns in hyperthyroidism patients. Acad. Radiol. 18, 1292–1297 (2011).

    Article  PubMed  Google Scholar 

  81. Villa-Verde, D. M., de Mello-Coelho, V., Farias-de-Oliveira, D. A., Dardenne, M. & Savino, W. Pleiotropic influence of triiodothyronine on thymus physiology. Endocrinology 133, 867–875 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Ribeiro-Carvalho, M. M., Farias-de-Oliveira, D. A., Villa-Verde, D. M. & Savino, W. Triiodothyronine modulates extracellular matrix-mediated interactions between thymocytes and thymic microenvironmental cells. Neuroimmunomodulation 10, 142–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Ribeiro-Carvalho, M. M. et al. Triiodothyronine modulates thymocyte migration. Scand. J. Immunol. 66, 17–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Villa-Verde, D. M. et al. Identification of nuclear triiodothyronine receptors in the thymic epithelium. Endocrinology 131, 1313–1320 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Batanero, E. et al. The neural and neuro-endocrine component of the human thymus. II. Hormone immunoreactivity. Brain Behav. Immun. 6, 249–264 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. van der Weerd, K. et al. Thyrotropin acts as a T-cell developmental factor in mice and humans. Thyroid 24, 1051–1061 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Stefan, M. et al. Genetic-epigenetic dysregulation of thymic TSH receptor gene expression triggers thyroid autoimmunity. Proc. Natl Acad. Sci. USA 111, 12562–12567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Montagne, J. J., Ladram, A., Nicolas, P. & Bulant, M. Cloning of thyrotropin-releasing hormone precursor and receptor in rat thymus, adrenal gland, and testis. Endocrinology 140, 1054–1059 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Matre, V. et al. The human neuroendocrine thyrotropin-releasing hormone receptor promoter is activated by the haematopoietic transcription factor c-Myb. Biochem. J. 372, 851–859 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pawlikowski, M., Zerek-Melen, G. & Winczyk, K. Thyroliberin (TRH) increases thymus cell proliferation in rats. Neuropeptides 23, 199–202 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Kawashima, I. et al. Localization of estrogen receptors and estrogen receptor-mRNA in female mouse thymus. Thymus 20, 115–121 (1992).

    CAS  PubMed  Google Scholar 

  92. Nancy, P. & Berrih-Aknin, S. Differential estrogen receptor expression in autoimmune myasthenia gravis. Endocrinology 146, 2345–2353 (2005).

    Article  PubMed  CAS  Google Scholar 

  93. Viselli, S. M., Olsen, N. J., Shults, K., Steizer, G. & Kovacs, W. J. Immunochemical and flow cytometric analysis of androgen receptor expression in thymocytes. Mol. Cell Endocrinol. 109, 19–26 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Olsen, N. J., Watson, M. B., Henderson, G. S. & Kovacs, W. J. Androgen deprivation induces phenotypic and functional changes in the thymus of adult male mice. Endocrinology 129, 2471–2476 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Yellayi, S. et al. Normal development of thymus in male and female mice requires estrogen/estrogen receptor-α signaling pathway. Endocrine 12, 207–213 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Staples, J. E. et al. Estrogen receptor α is necessary in thymic development and estradiol-induced thymic alterations. J. Immunol. 163, 4168–4174 (1999).

    CAS  PubMed  Google Scholar 

  97. Ishibashi, H. et al. Estrogen inhibits cell proliferation through in situ production in human thymoma. Clin. Cancer Res. 11, 6495–6504 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Utsuyama, M. & Hirokawa, K. Hypertrophy of the thymus and restoration of immune functions in mice and rats by gonadectomy. Mech. Ageing Dev. 47, 175–185 (1989).

    Article  CAS  PubMed  Google Scholar 

  99. Azad, N., Emanuele, N. V., Halloran, M. M., Tentler, J. & Kelley, M. R. Presence of luteinizing hormone-releasing hormone (LHRH) mRNA in rat spleen lymphocytes. Endocrinology 128, 1679–1681 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Marchetti, B. et al. Luteinizing hormone-releasing hormone (LHRH) agonist restoration of age-associated decline of thymus weight, thymic LHRH receptors, and thymocyte proliferative capacity. Endocrinology 125, 1037–1045 (1989).

    Article  CAS  PubMed  Google Scholar 

  101. Cohen, J. J. Glucocorticoid-induced apoptosis in the thymus. Semin. Immunol. 4, 363–369 (1992).

    CAS  PubMed  Google Scholar 

  102. Berki, T., Palinkas, L., Boldizsar, F. & Nemeth, P. Glucocorticoid (GC) sensitivity and GC receptor expression differ in thymocyte subpopulations. Int. Immunol. 14, 463–469 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Mittelstadt, P. R., Monteiro, J. P. & Ashwell, J. D. Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness. J. Clin. Invest. 122, 2384–2394

  104. Pálinkás, L. et al. Developmental shift in TcR-mediated rescue of thymocytes from glucocorticoid-induced apoptosis. Immunobiology 213, 39–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Purton, J. F., Boyd, R. L., Cole, T. J. & Godfrey, D. I. Intrathymic T cell development and selection proceeds normally in the absence of glucocorticoid receptor signaling. Immunity 13, 179–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Tsawdaroglou, N. G., Govindan, M. V., Schmid, W. & Sekeris, C. E. Dexamethasone-binding proteins in cytosol and nucleus of rat thymocytes. Purification of three receptor proteins. Eur. J. Biochem. 114, 305–313 (1981).

    Article  CAS  PubMed  Google Scholar 

  107. McGimsey, W. C., Cidlowski, J. A., Stumpf, W. E. & Sar, M. Immunocytochemical localization of the glucocorticoid receptor in rat brain, pituitary, liver, and thymus with two new polyclonal antipeptide antibodies. Endocrinology 129, 3064–3072 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Ratman, D. et al. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol. Cell. Endocrinol. 380, 41–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Carlberg, C. & Seuter, S. Dynamics of nuclear receptor target gene regulation. Chromosoma 119, 479–484 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Stavreva, D. A. et al. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat. Cell Biol. 11, 1093–1102 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ranelletti, F. O. et al. Glucocorticoid receptors and corticosensitivity of human thymocytes at discrete stages of intrathymic differentiation. J. Immunol. 138, 440–445 (1987).

    CAS  PubMed  Google Scholar 

  112. Dardenne, M., Itoh, T. & Homo-Delarche, F. Presence of glucocorticoid receptors in cultured thymic epithelial cells. Cell. Immunol. 100, 112–118 (1986).

    Article  CAS  PubMed  Google Scholar 

  113. Kino, T., Su, Y. A. & Chrousos, G. P. Human glucocorticoid receptor isoform β: recent understanding of its potential implications in physiology and pathophysiology. Cell. Mol. Life Sci. 66, 3435–3448 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Oakley, R. H., Webster, J. C., Sar, M., Parker, C. R. Jr & Cidlowski, J. A. Expression and subcellular distribution of the β-isoform of the human glucocorticoid receptor. Endocrinology 138, 5028–5038 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Lechner, O. et al. Glucocorticoid production in the murine thymus. Eur. J. Immunol. 30, 337–346 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Vacchio, M. S., Papadopoulos, V. & Ashwell, J. D. Steroid production in the thymus: implications for thymocyte selection. J. Exp. Med. 179, 1835–1846 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Qiao, S., Chen, L., Okret, S. & Jondal, M. Age-related synthesis of glucocorticoids in thymocytes. Exp. Cell Res. 314, 3027–3035 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Lacaze-Masmonteil, T., de Keyzer, Y., Luton, J. P., Kahn, A. & Bertagna, X. Characterization of proopiomelanocortin transcripts in human nonpituitary tissues. Proc. Natl Acad. Sci. USA 84, 7261–7265 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jessop, D. S., Renshaw, D., Lightman, S. L. & Harbuz, M. S. Changes in ACTH and β-endorphin immunoreactivity in immune tissues during a chronic inflammatory stress are not correlated with changes in corticotropin-releasing hormone and arginine vasopressin. J. Neuroimmunol. 60, 29–35 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Talaber, G., Tuckermann, J. P. & Okret, S. ACTH controls thymocyte homeostasis independent of glucocorticoids. FASEB J. 29, 2526–2534 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Aird, F., Clevenger, C. V., Prystowsky, M. B. & Redei, E. Corticotropin-releasing factor mRNA in rat thymus and spleen. Proc. Natl Acad. Sci. USA 90, 7104–7108 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Savino, W. The thymus is a common target organ in infectious diseases. PLoS Pathog. 2, e62 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Mendes-da-Cruz, D. A., de Meis, J., Cotta-de-Almeida, V. & Savino, W. Experimental Trypanosoma cruzi infection alters the shaping of the central and peripheral T-cell repertoire. Microbes Infect. 5, 825–832 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Morrot, A. et al. Chagasic thymic atrophy does not affect negative selection but results in the export of activated CD4+CD8+ T cells in severe forms of human disease. PLoS Negl. Trop. Dis. 5, e1268 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Mendes-da-Cruz, D. A., Silva, J. S., Cotta-de-Almeida, V. & Savino, W. Altered thymocyte migration during experimental acute Trypanosoma cruzi infection: combined role of fibronectin and the chemokines CXCL12 and CCL4. Eur. J. Immunol. 36, 1486–1493 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Perez, A. R. et al. Thymus atrophy during Trypanosoma cruzi infection is caused by an immuno-endocrine imbalance. Brain Behav. Immun. 21, 890–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Roggero, E. et al. Endogenous glucocorticoids cause thymus atrophy but are protective during acute Trypanosoma cruzi infection. J. Endocrinol. 190, 495–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Correa-de-Santana, E. et al. Hypothalamus-pituitary-adrenal axis during Trypanosoma cruzi acute infection in mice. J. Neuroimmunol. 173, 12–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Salas, M. A., Evans, S. W., Levell, M. J. & Whicher, J. T. Interleukin-6 and ACTH act synergistically to stimulate the release of corticosterone from adrenal gland cells. Clin. Exp. Immunol. 79, 470–473 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Correa-de-Santana, E. et al. Modulation of growth hormone and prolactin secretion in Trypanosoma cruzi-infected mammosomatotrophic cells. Neuroimmunomodulation 16, 208–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Lechner, J., Welte, T. & Doppler, W. Mechanism of interaction between the glucocorticoid receptor and Stat5: role of DNA-binding. Immunobiology 198, 112–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Gruver, A. L., Hudson, L. L. & Sempowski, G. D. Immunosenescence of ageing. J. Pathol. 211, 144–156 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Kovaiou, R. D. et al. Age-related differences in phenotype and function of CD4+ T cells are due to a phenotypic shift from naive to memory effector CD4+ T cells. Int. Immunol. 17, 1359–1366 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Chiu, B. C., Martin, B. E., Stolberg, V. R. & Chensue, S. W. Cutting edge: Central memory CD8 T cells in aged mice are virtual memory cells. J. Immunol. 191, 5793–5796 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Grody, W. W., Fligiel, S. & Naeim, F. Thymus involution in the acquired immunodeficiency syndrome. Am. J. Clin. Pathol. 84, 85–95 (1985).

    Article  CAS  PubMed  Google Scholar 

  136. Nezelof, C. Thymic pathology in primary and secondary immunodeficiencies. Histopathology 21, 499–511 (1992).

    Article  CAS  PubMed  Google Scholar 

  137. Hermann, M. & Berger, P. Hormonal changes in aging men: a therapeutic indication? Exp. Gerontol. 36, 1075–1082 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Savino, W., Postel-Vinay, M. C., Smaniotto, S. & Dardenne, M. The thymus gland: a target organ for growth hormone. Scand. J. Immunol. 55, 442–452 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Kelley, K. W. et al. GH3 pituitary adenoma cells can reverse thymic aging in rats. Proc. Natl Acad. Sci. USA 83, 5663–5667 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Savino, W., Smaniotto, S., Binart, N., Postel-Vinay, M. C. & Dardenne, M. In vivo effects of growth hormone on thymic cells. Ann. N. Y. Acad. Sci. 992, 179–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Rosenfeld, R. G. et al. Growth hormone insensitivity resulting from post-GH receptor defects. Growth Horm. IGF Res. 14 (Suppl. A), S35–S38 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Pugliese-Pires, P. N. et al. A novel STAT5B mutation causing GH insensitivity syndrome associated with hyperprolactinemia and immune dysfunction in two male siblings. Eur. J. Endocrinol. 163, 349–355 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Dardenne, M., Smaniotto, S., de Mello-Coelho, V., Villa-Verde, D. M. & Savino, W. Growth hormone modulates migration of developing T cells. Ann. N. Y. Acad. Sci. 1153, 1–5 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. French, R. A. et al. Age-associated loss of bone marrow hematopoietic cells is reversed by GH and accompanies thymic reconstitution. Endocrinology 143, 690–699 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Smaniotto, S., Ribeiro-Carvalho, M. M., Dardenne, M., Savino, W. & de Mello-Coelho, V. Growth hormone stimulates the selective trafficking of thymic CD4+CD8- emigrants to peripheral lymphoid organs. Neuroimmunomodulation 11, 299–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Montecino-Rodriguez, E., Clark, R. & Dorshkind, K. Effects of insulin-like growth factor administration and bone marrow transplantation on thymopoiesis in aged mice. Endocrinology 139, 4120–4126 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Chu, Y. W. et al. Exogenous insulin-like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion. Blood 112, 2836–2846 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Youm, Y. H. et al. Deficient ghrelin receptor-mediated signaling compromises thymic stromal cell microenvironment by accelerating thymic adiposity. J. Biol. Chem. 284, 7068–7077 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Greenwood, P. L. & Bell, A. W. Consequences of intra-uterine growth retardation for postnatal growth, metabolism and pathophysiology. Reprod. Suppl. 61, 195–206 (2003).

    CAS  PubMed  Google Scholar 

  150. Barr, I. G. et al. Dihydrotestosterone and estradiol deplete corticosensitive thymocytes lacking in receptors for these hormones. J. Immunol. 128, 2825–2828 (1982).

    CAS  PubMed  Google Scholar 

  151. Kendall, M. D. et al. Reversal of ageing changes in the thymus of rats by chemical or surgical castration. Cell Tissue Res. 261, 555–564 (1990).

    Article  CAS  PubMed  Google Scholar 

  152. Heng, T. S. et al. Effects of castration on thymocyte development in two different models of thymic involution. J. Immunol. 175, 2982–2993 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Greenstein, B. D., Fitzpatrick, F. T., Kendall, M. D. & Wheeler, M. J. Regeneration of the thymus in old male rats treated with a stable analogue of LHRH. J. Endocrinol. 112, 345–350 (1987).

    Article  CAS  PubMed  Google Scholar 

  154. Velardi, E. et al. Sex steroid blockade enhances thymopoiesis by modulating notch signaling. J. Exp. Med. 211, 2341–2349 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Mattsson, C. & Olsson, T. Estrogens and glucocorticoid hormones in adipose tissue metabolism. Curr. Med. Chem. 14, 2918–2924 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Zhao, H., Tian, Z., Hao, J. & Chen, B. Extragonadal aromatization increases with time after ovariectomy in rats. Reprod. Biol. Endocrinol. 3, 6 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Limonta, P. et al. GnRH receptors in cancer: from cell biology to novel targeted therapeutic strategies. Endocr. Rev. 33, 784–811 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Savino, W. et al. Thymic epithelium in AIDS. An immunohistologic study. Am. J. Pathol. 122, 302–307 (1986).

    PubMed  PubMed Central  CAS  Google Scholar 

  159. Napolitano, L. A. et al. Increased thymic mass and circulating naive CD4 T cells in HIV-1-infected adults treated with growth hormone. AIDS 16, 1103–1111 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Tesselaar, K. & Miedema, F. Growth hormone resurrects adult human thymus during HIV-1 infection. J. Clin. Invest. 118, 844–847 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  161. Haynes, B. F. HIV infection and the dynamic interplay between the thymus and the peripheral T cell pool. Clin. Immunol. 92, 3–5 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Napolitano, L. A. et al. Growth hormone enhances thymic function in HIV-1-infected adults. J. Clin. Invest. 118, 1085–1098 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  163. Herasimtschuk, A. A. et al. Low-dose growth hormone for 40 weeks induces HIV-1-specific T cell responses in patients on effective combination anti-retroviral therapy. Clin. Exp. Immunol. 173, 444–453 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Melis, M. R., Stancampiano, R. & Argiolas, A. Oxytocin- and vasopressin-like immunoreactivity in the rat thymus: characterization and possible involvement in the immune response. Regul. Pept. 45, 269–272 (1993).

    Article  CAS  PubMed  Google Scholar 

  165. Johnson, E. W., Hughes, T. K. Jr & Smith, E. M. ACTH receptor distribution and modulation among murine mononuclear leukocyte populations. J. Biol. Regul. Homeost. Agents 15, 156–162 (2001).

    CAS  PubMed  Google Scholar 

  166. Kim, S. Y. et al. Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor. Biochem. Biophys. Res. Commun. 394, 562–568 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Brtko, J. & Knopp, J. Rat thymus: demonstration of specific thyroxine receptors in nuclear extract. Endocrinol. Exp. 17, 3–9 (1983).

    CAS  PubMed  Google Scholar 

  168. Howard, J. K. et al. Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J. Clin. Invest. 104, 1051–1059 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Hareramadas, B. & Rai, U. Mechanism of androgen-induced thymic atrophy in the wall lizard, Hemidactylus flaviviridis: an in vitro study. Gen. Comp. Endocrinol. 144, 10–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. De Mello-Coelho, V., Savino, W., Postel-Vinay, M. C. & Dardenne, M. Role of prolactin and growth hormone on thymus physiology. Dev. Immunol. 6, 317–323 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Olsen, N. J., Olson, G., Viselli, S. M., Gu, X. & Kovacs, W. J. Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology 142, 1278–1283 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Sacedon, R. et al. Partial blockade of T-cell differentiation during ontogeny and marked alterations of the thymic microenvironment in transgenic mice with impaired glucocorticoid receptor function. J. Neuroimmunol. 98, 157–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  173. Jondal, M., Pazirandeh, A. & Okret, S. Different roles for glucocorticoids in thymocyte homeostasis? Trends Immunol. 25, 595–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Lin, B., Kinoshita, Y., Hato, F. & Tsuji, Y. Enhancement of thymic lymphocyte proliferation by the culture supernatant of thymus epithelial cells stimulated by prolactin. Cell. Mol. Biol. (Noisy-le-grand) 43, 361–367 (1997).

    CAS  Google Scholar 

  175. Pazirandeh, A., Xue, Y., Prestegaard, T., Jondal, M. & Okret, S. Effects of altered glucocorticoid sensitivity in the T cell lineage on thymocyte and T cell homeostasis. FASEB J. 16, 727–729 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Mihara, S. et al. Effects of thyroid hormones on apoptotic cell death of human lymphocytes. J. Clin. Endocrinol. Metab. 84, 1378–1385 (1999).

    CAS  PubMed  Google Scholar 

  177. Olsen, N. J., Viselli, S. M., Fan, J. & Kovacs, W. J. Androgens accelerate thymocyte apoptosis. Endocrinology 139, 748–752 (1998).

    Article  CAS  PubMed  Google Scholar 

  178. Belloni, A. S. et al. Effect of ghrelin on the apoptotic deletion rate of different types of cells cultured in vitro. Int. J. Mol. Med. 14, 165–167 (2004).

    CAS  PubMed  Google Scholar 

  179. Alpdogan, O. et al. Insulin-like growth factor-I enhances lymphoid and myeloid reconstitution after allogeneic bone marrow transplantation. Transplantation 75, 1977–1983 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Montgomery, D. W., Krumenacker, J. S. & Buckley, A. R. Prolactin stimulates phosphorylation of the human T-cell antigen receptor complex and ZAP-70 tyrosine kinase: a potential mechanism for its immunomodulation. Endocrinology 139, 811–814 (1998).

    Article  CAS  PubMed  Google Scholar 

  181. Tsuji, Y., Kinoshita, Y., Hato, F., Tominaga, K. & Yoshida, K. The in vitro proliferation of thymus epithelial cells stimulated with growth hormone and insulin-like growth factor-I. Cell. Mol. Biol. (Noisy-le-grand) 40, 1135–1142 (1994).

    CAS  Google Scholar 

  182. Sakabe, K., Kawashima, I., Urano, R., Seiki, K. & Itoh, T. Effects of sex steroids on the proliferation of thymic epithelial cells in a culture model: a role of protein kinase C. Immunol. Cell Biol. 72, 193–199 (1994).

    Article  CAS  PubMed  Google Scholar 

  183. Talaber, G. et al. Wnt-4 protects thymic epithelial cells against dexamethasone-induced senescence. Rejuvenation Res. 14, 241–248 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Dardenne, M. et al. Thymic hormone-containing cells. VII. Adrenals and gonads control the in vivo secretion of thymulin and its plasmatic inhibitor. J. Immunol. 136, 1303–1308 (1986).

    CAS  PubMed  Google Scholar 

  185. Coura, J. R. & Vinas, P. A. Chagas disease: a new worldwide challenge. Nature 465, S6–S7 (2010).

    Article  PubMed  Google Scholar 

  186. Perez, A. R. et al. Immunoneuroendocrine alterations in patients with progressive forms of chronic Chagas disease. J. Neuroimmunol. 235, 84–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Savino, W., Leite-de-Moraes, M. C., Hontebeyrie-Joskowicz, M. & Dardenne, M. Studies on the thymus in Chagas' disease. I. Changes in the thymic microenvironment in mice acutely infected with Trypanosoma cruzi. Eur. J. Immunol. 19, 1727–1733 (1989).

    Article  CAS  PubMed  Google Scholar 

  188. Vilar-Pereira, G. et al. Trypanosoma cruzi-induced depressive-like behavior is independent of meningoencephalitis but responsive to parasiticide and TNF-targeted therapeutic interventions. Brain Behav. Immun. 26, 1136–1149 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Perez, A. R., Bottasso, O. & Savino, W. The impact of infectious diseases upon neuroendocrine circuits. Neuroimmunomodulation 16, 96–105 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories was supported with grants from CNPq, Capes, Faperj and Fiocruz (Brazil), FOCEM (Mercosur countries) and CNRS (France). The conjoint work was developed in the framework of the Fiocruz–CNRS International Associated Laboratory of Immunology and Immunopathology.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote, reviewed and edited the manuscript before submission. D.A.M.-d.-C., A.L. and W.S. made substantial contribution to discussion of the content.

Corresponding author

Correspondence to Wilson Savino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savino, W., Mendes-da-Cruz, D., Lepletier, A. et al. Hormonal control of T-cell development in health and disease. Nat Rev Endocrinol 12, 77–89 (2016). https://doi.org/10.1038/nrendo.2015.168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing