Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of children and adolescents with idiopathic short stature

Abstract

Idiopathic short stature (ISS) is defined as shortness in childhood without a specific cause. ISS may be familial or nonfamilial and may be associated with or without delay of pubertal development. Treatment can be considered in an attempt to reduce the psychological burden caused by short stature in childhood and adult life. If counselling alone is not sufficient, medical modifications of the growth process can be attempted. In cases with pubertal delay, sex steroids, such as testosterone and oxandrolone, can favourably influence height velocity and growth tempo, although adult height is not affected. Medications that prolong the process of growth—for example, gonadotropin-releasing hormone agonists or aromatase inhibitors—might increase adult height, but findings to date are still experimental. Growth hormone therapy is approved for the treatment of very short children with reduced adult height expectation, as evidence has accumulated that this therapy can increase height in childhood and in adult life. Sensitivity to growth hormone is impaired in patients with ISS; therefore, doses higher than a replacement dose have to be applied. This treatment still needs to be optimized in terms of efficacy, cost-effectiveness and long-term safety. A debate is ongoing concerning the psychological benefit of height increase, with clinicians warning against the medicalization of a deviation in height.

Key Points

  • Idiopathic short stature is defined as a condition of short stature after exclusion of specific causes

  • Children with idiopathic short stature often remain short in adult life

  • Shortness might cause a psychological burden, particularly in childhood

  • Children with shortness and/or developmental delay can be treated with sex steroids, medications that prolongate growth or growth factors

  • Therapy with recombinant human growth hormone is approved (in the USA) because of its potential to increase adult height

  • Although growth hormone therapy is safe in the short term (for example, <10 years), long-term safety needs to be explored further

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Algorithm for the diagnosis and treatment of ISS.

Similar content being viewed by others

References

  1. Wit, J. M. et al. Idiopathic short stature: definition, epidemiology, and diagnostic evaluation. Growth Horm. IGF Res. 18, 89–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Wit, J. M. et al. Idiopathic short stature: management and growth hormone treatment. Growth Horm. IGF Res. 18, 111–35 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Cohen, P. et al. Consensus statement on the diagnosis and treatment of children with idiopathic short stature: a summary of the Growth Hormone Research Society, the Lawson Wilkins Pediatric Endocrine Society, and the European Society for Paediatric Endocrinology Workshop. J. Clin. Endocrinol. Metab. 93, 4210–4217 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Wit, J. M. Developments in idiopathic short stature (ed. Dunkel, L.). Horm. Res. Pediatr. 76 (Suppl. 3), 1–60 (2011)

    Article  CAS  Google Scholar 

  5. Ranke, M. B. Towards a consensus on the definition of idiopathic short stature. Horm. Res. 45 (Suppl. 2), 64–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Hermanussen, M. & Cole, J. The calculation of target height reconsidered. Horm. Res. 59, 180–183 (2003).

    CAS  PubMed  Google Scholar 

  7. Delemarre-van de Waal, H. A. Secular trend of timing of puberty. Endocr. Dev. 8, 1–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Weedon, M. N. et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40, 575–583 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lettre, G. Genetic regulation of adult stature. Curr. Opin. Pediatr. 21, 515–522 (2009).

    Article  PubMed  Google Scholar 

  10. Lui, J. C. et al. Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height. Hum. Mol. Genet. 21, 5193–5201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan, Y. et al. Common variants show predicted polygenic effects on height in the tails of the distribution, except in extremely short individuals. PLoS Genet. 7, e1002439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ojeda, S. R. et al. The transcriptional control of female puberty. Brain Res. 1364, 164–174 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roa, J., García-Galiano, D., Castellano, J. M., Gaytan, F., Pinilla, L. & Tena-Sempere, M. Metabolic control of puberty onset: new players, new mechanisms. Mol. Cell Endocrinol. 324, 87–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Gajdos, Z. K., Henderson, K. D., Hirschhorn, J. N. & Palmert, M. R. Genetic determinants of pubertal timing in the general population. Mol. Cell Endocrinol. 324, 21–29 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elks, C. E. et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 42, 1077–1085 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elks, C. E. & Ong, K. K. Whole genome associated studies for age at menarche. Brief. Funct. Genomics 10, 91–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Cole, T. J. Secular trends in growth. Proc. Nutr. Soc. 59, 317–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Delemarre-van de Waal, H. A. Secular trend of timing of puberty. Endocr. Dev. 8, 1–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Bourguignon, J. P. & Juul, A. Normal female puberty in a developmental perspective. Endocr. Dev. 22, 11–23 (2012).

    Article  PubMed  Google Scholar 

  20. Tinggaard, J. et al. The physiology and timing of male puberty. Curr. Opin. Endocrinol. Diabetes Obes. 19, 197–203 (2012).

    Article  PubMed  Google Scholar 

  21. Ong, K. K., Ahmed, M. L. & Dunger, D. B. Lessons from large population studies on timing and tempo of puberty (secular trends and relation to body size): the European trend. Mol. Cell Endocrinol. 254–255, 8–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. World Health Organization. The WHO child growth standards. World Health Organization [online], (2008).

  23. Johnston Rohrbasser, L. B. Genetic testing in short children. Horm. Res. Pediatr. 76 (Suppl. 3), 13–16 (2011).

    Article  CAS  Google Scholar 

  24. Ranke, M. B. et al. Significance of basal IGF-1, IGFBP-3 and IGFBP-2 measurements in the diagnostics of short stature children. Horm. Res. 54, 60–68 (2000).

    CAS  PubMed  Google Scholar 

  25. Walenkamp, M. J. & Wit, J. M. Genetic disorders in the growth hormone insulin-like growth factor-I axis. Horm. Res. 66, 221–230 (2006).

    CAS  PubMed  Google Scholar 

  26. Clemmons, D. R. Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin. Chem. 57, 555–559 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Ranke, M. B. in Diagnostics of Endocrine Function in Children and Adolescents 4th edn (eds Ranke, M. B. & Mullis, P. E.), 102–137 (Karger, Basel, 2011).

    Book  Google Scholar 

  28. Binder, G. Growth hormone deficiency: new approaches to the diagnosis. Pediatr. Endocrinol. Rev. 9 (Suppl. 1), 535–537 (2011).

    PubMed  Google Scholar 

  29. David, A. et al. Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocr. Rev. 32, 472–497 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Forbes, B. E. Molecular mechanisms underlying insulin-like growth factor action: How mutations in the GH: IGF axis lead to short stature. Pediatr. Endocrinol. Rev. 8, 374–381 (2011).

    PubMed  Google Scholar 

  31. Rappold, G. et al. Genotypes and phenotypes in children with short stature: clinical indicators of SHOX haploinsufficiency. J. Med. Genet. 44, 306–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Caliebe, J. et al. IGF1R and SHOX mutation analysis in short children born small for gestational age and short children with normal birth size (idiopathic short stature). Horm. Res. Paediatr. 77, 250–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Pugliese-Pires, P. N. et al. Novel inactivating mutations in the GH secretagogue receptor gene in patients with constitutional delay of growth and puberty. Eur. J. Endocrinol. 165, 233–241 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Inoue, H. et al. Identification and functional analysis of novel human growth hormone secretagogue receptor (GHSR) gene mutations in Japanese subjects with short stature. J. Clin. Endocrinol. Metab. 96, E373–E378 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Olney, R. C. et al. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) are associated with short stature. J. Clin. Endocrinol. Metab. 91, 1229–1232 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Xiao, Y. et al. Measurement of amino-terminal propeptide of C-type natriuretic peptide in patients with idiopathic short stature or isolated growth hormone deficiency. J. Pediatr. Endocrinol. Metab. 24, 989–994 (2011).

    CAS  PubMed  Google Scholar 

  37. Price, D. A. Spontaneous adult height in patients with idiopathic short stature. Horm. Res. 45 (Suppl. 2), 59–63 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Ranke, M. B., Grauer, M. L., Kistner, K., Blum, W. F. & Wollmann, H. A. Spontaneous adult height in idiopathic short stature. Horm. Res. 44, 152–157 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Rekers-Mombarg, L. T. et al. Spontaneous growth in idiopathic short stature. European Study Group. Arch. Dis. Child. 75, 175–180 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin, D. D. et al. The use of bone age in clinical practice—part 1. Horm. Res. Paediatr. 76, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Topor, L. S., Feldman, H. A., Bauchner, H. & Cohen L. E. Variation in methods of predicting adult height for children with idiopathic short stature. Pediatrics 126, 938–944 (2010).

    Article  PubMed  Google Scholar 

  42. Thodberg, H. H., Jenni, O. G., Caflisch, J., Ranke, M. B. & Martin, D. D. Prediction of adult height based on automated determination of bone age. J. Clin. Endocrinol. Metab. 94, 4868–4874 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Noeker, M. & Haverkamp, F. Adjustment in conditions with short stature: a conceptual framework. J. Pediatr. Endocrinol. Metab. 13, 1585–1594 (2009).

    Google Scholar 

  44. Bullinger, M. Psychological criteria for treating children with idiopathic short stature. Horm. Res. Paediatr. 76 (Suppl. 3), 20–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Mobbs, E. J. The psychological outcome of constitutional delay of growth and puberty. Horm. Res. 62 (Suppl. 1), 1–66 (2005).

    Google Scholar 

  46. Kranzler, J. H., Rosenbloom, A. L., Proctor, B., Diamond, F. B. Jr & Watson, M. Is short stature a handicap? A comparison of the psychosocial functioning of referred and nonreferred children with normal short stature and children with normal stature. J. Pediatr. 136, 96–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Voss, L. D. Short normal stature and psychosocial disadvantage: a critical review of the evidence. J. Pediatr. Endocrinol. Metab. 14, 701–711 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Visser-van Balen, H., Sinnema, G. & Geenen, R. Growing up with idiopathic short stature: psychosocial development and hormone treatment; a critical review. Arch. Dis. Child. 91, 433–439 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Sandberg, D. E. & Colsman, M. Growth hormone treatment of short stature: Status of quality of life rationale. Horm. Res. 63, 275–283 (2005).

    CAS  PubMed  Google Scholar 

  50. Christensen, T. L., Djurhuus, C. B., Clayton, P. & Christiansen, J. S. An evaluation of the relationship between adult height and health-related quality of life in the general UK population. Clin. Endocrinol. (Oxf.) 67, 407–412 (2007).

    Article  CAS  Google Scholar 

  51. Allen, D. B. Clinical review: Lessons learned from the hGH era. J. Clin. Endocrinol. Metab. 96, 3042–3047 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. LeRoith, D. Clinical relevance of systemic and local IGF-I: lessons from animal models. Pediatr. Endocrinol. Rev. 5 (Suppl. 2), 739–743 (2008).

    PubMed  Google Scholar 

  53. Wit, J. M. & Camacho-Hübner, C. Endocrine regulation of longitudinal bone growth. Endocr. Dev. 21, 30–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Lui, J. C., Nilsson, O. & Baron, J. Growth plate senescence and catch-up growth. Endocr. Dev. 21, 23–29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lui, J. C. & Baron, J. Mechanisms limiting body growth in mammals. Endocr. Rev. 32, 422–440 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Emons, J., Chagin, A. S., Sävendahl, L., Karperien, M. & Wit, J. M. Mechanisms of growth plate maturation and epiphyseal fusion. Horm. Res. Paediatr. 75, 383–391 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Ren, S. G. et al. Direct administration of testosterone increases rat tibial epiphyseal growth plate width. Acta Endocrinol. (Copenh.) 121, 401–405 (1989).

    Article  CAS  Google Scholar 

  58. Giustina, A. & Veldhuis, J. D. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr. Rev. 19, 717–797 (1998).

    CAS  PubMed  Google Scholar 

  59. De Luca, F. et al. Management of puberty in constitutional delay of growth and puberty. J. Pediatr. Endocrinol. Metab. 14 (Suppl. 2), 953–957 (2001).

    PubMed  Google Scholar 

  60. Ambler, G. R. Androgen therapy for delayed male puberty. Curr. Opin. Endocrinol. Diabetes Obes. 16, 232–239 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Kiess, W. et al. Induction of puberty in the hypogonadal girl-practices and attitudes of pediatric endocrinologists in Europe. Horm. Res. 57, 66–71 (2002).

    CAS  PubMed  Google Scholar 

  62. Drobac, S., Rubin, K., Rogol, A. D. & Rosenfield, R. L. A workshop on pubertal hormone replacement options in the United States. J. Pediatr. Endocrinol. Metab. 19, 55–64 (2006).

    Article  PubMed  Google Scholar 

  63. Kelly, B. P., Paterson W. F. & Donaldson, M. D. Final height outcome and value of height prediction in boys with constitutional delay in growth and adolescence treated with intramuscular testosterone 125 mg per month for 3 months. Clin. Endocrinol. (Oxf.) 58, 267–272 (2003).

    Article  CAS  Google Scholar 

  64. Martin, M. M., Martin, A. L. & Mossman, K. L. Testosterone treatment of constitutional delay in growth and development: effect of dose on predicted versus definitive height. Acta Endocrinol. Suppl. (Copenh.) 279, 147–152 (1986).

    Article  CAS  Google Scholar 

  65. Zachmann, M., Studer, S. & Prader, A. Short-term testosterone treatment at bone age of 12 to 13 years does not reduce adult height in boys with constitutional delay of growth and adolescence. Helv. Paediatr. Acta. 42, 21–28 (1987).

    CAS  PubMed  Google Scholar 

  66. Arrigo, T. et al. Final height outcome in both untreated and testosterone-treated boys with constitutional delay of growth and puberty. J. Pediatr. Endocrinol. Metab. 9, 511–517 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Wehkalampi, K., Päkkilä, K., Laine, T. & Dunkel, L. Adult height girls with delayed pubertal growth. Horm. Res. Paediatr. 76, 130–135 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Stanhope, R., Buchanan, C. R., Fenn., G. C. & Preece, M. A. Double blind placebo controlled trial of low dose oxandrolone in the treatment of boys with constitutional delay of growth and puberty. Arch. Dis. Child. 63, 501–505 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wilson, D. M., McCauley, E., Brown, D. R. & Dudley, R. Oxandrolone therapy in constitutionally delayed growth and puberty. Bio-Technology General Corporation Cooperative Study Group. Pediatrics 96, 1095–1100 (1995).

    CAS  PubMed  Google Scholar 

  70. Tse, W. Y. et al. Long-term outcome of oxandrolone treatment in boys with constitutional delay of growth and puberty. J. Pediatr. 117, 588–591 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Menke, L. A. et al. Efficacy and safety of oxandrolone in growth hormone-treated girls with turner syndrome. J. Clin. Endocrinol. Metab. 95, 1151–1160 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Carel, J. C. et al. Consensus statement on the use of gonadotropin-releasing hormone analogs in children. Pediatrics 123, e752–e762 (2009).

    Article  PubMed  Google Scholar 

  73. Yanovski, J. A. et al. Treatment with a luteinizing hormone-releasing hormone agonist in adolescents with short stature. N. Engl. J. Med. 348, 908–917 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Wit, J. M., Balen, H. V., Kamp, G. A. & Oostdijk, W. Benefit of postponing normal puberty for improving final height. Eur. J. Endocrinol. 151 (Suppl. 1), 41–45 (2004).

    Article  Google Scholar 

  75. Reiter, E. O. A brief review of the addition of gonadotropin-releasing hormone agonists (GnRH-Ag) to growth hormone (GH) treatment of children with idiopathic growth hormone deficiency: Previously published studies from America. Mol. Cell Endocrinol. 254–255, 221–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Mauras, N. Strategies for maximizing growth in puberty in children with short stature. Pediatr. Clin. North Am. 58, 1167–1179 (2011).

    Article  PubMed  Google Scholar 

  77. Tanaka, T. et al. GH and GnRH analog treatment in children who enter puberty at short stature. J. Pediatr. Endocrinol. Metab. 10, 623–628 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. van Gool, S. A. et al. Final outcome after three years of growth hormone and gonadotropin-releasing hormone agonist treatment in short adolescents with relatively early puberty. J. Clin. Endocrinol. Metab. 92, 1402–1408 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Smith, E. P. et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056–1061 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Morishima, A. Grumbach, M. M., Simpson, E. R. Fisher, C. & Qin, K. Aromatase deficiency in male and female sibling caused by a novel mutation and the physiological role of estrogens. J. Clin. Endocrinol. Metab. 80, 3689–3698 (1995).

    CAS  PubMed  Google Scholar 

  81. Rochira, V. et al. Tall stature without growth hormone: four male patients with aromatase deficiency. J. Clin. Endocrinol. Metab. 95, 1626–1633 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Wickman, S., Sipilä, I., Ankarberg-Lindgren, C., Norjavaara, E. & Dunkel, L. A specific aromatase inhibitor and potential increase in adult height in boys with delayed puberty: a randomised controlled trial. Lancet 357, 1743–1748 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Salehpour, S. et al. A double-blind, placebo-controlled comparison of letrozole to oxandrolone effects upon growth and puberty of children with constitutional delay of puberty and idiopathic short stature. Horm. Res. Paediatr. 74, 428–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Hero, M., Wickman, S. & Dunkel, L. Treatment with the aromatase inhibitor letrozole during adolescence increases near-final height in boys with constitutional delay of puberty. Clin. Endocrinol. (Oxf.) 64, 510–513 (2006).

    Article  CAS  Google Scholar 

  85. Dunkel, L. Treatment of idiopathic short stature: effects of gonadotropin-releasing hormone analogs, aromatase inhibitors and anabolic steroids. Horm. Res. Paediatr. 76 (Suppl. 3), 27–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Hopwood, N. J. et al. Growth response of children with non-growth-hormone deficiency and marked short stature during three years of growth hormone therapy. J. Pediatr. 123, 215–222 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Loche, S. et al. Final height after growth hormone therapy in non-growth-hormone-deficient children with short stature. J. Pediatr. 125, 196–200 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Barton, J. S. et al. The growth and cardiovascular effects of high dose growth hormone therapy in idiopathic short stature. Clin. Endocrinol. (Oxf.) 42, 619–626 (1995).

    Article  CAS  Google Scholar 

  89. Lanes, R. Effects of two years of growth hormone treatment in short, slowly growing non-growth hormone deficient children. J. Pediatr. Endocrinol. Metab. 8, 167–171 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Wit, J. M., Kamp, G. A. & Rikken, B. Spontaneous growth and response to growth hormone treatment in children with growth hormone deficiency and idiopathic short stature. Pediatr. Res. 39, 295–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Hindmarsh, P. C. & Brook, C. G. Final height of short normal children treated with growth hormone. Lancet 348, 13–16 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Bernasconi, S., Street, M. E., Volta, C. & Mazzardo, G. Final height in non-growth hormone deficient children treated with growth hormone. The Italian Multicentre Study Group. Clin. Endocrinol. (Oxf.) 47, 261–266 (1997).

    Article  CAS  Google Scholar 

  93. Kawai, M. et al. Unfavorable effects of growth hormone therapy on the final height of boys with short stature not caused by growth hormone deficiency. J. Pediatr. 130, 205–209 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Zadik, Z. & Zung, A. Final height after growth hormone therapy in short children: correlation with siblings' height. Horm. Res. 48, 274–277 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Buchlis, J. G. et al. Comparison of final heights of growth hormone-treated vs. untreated children with idiopathic growth failure. J. Clin. Endocrinol. Metab. 83, 1075–1079 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. McCaughey, E. S., Mulligan, J., Voss, L. D. & Betts, P. R. Randomised trial of growth hormone in short normal girls. Lancet 351, 940–944 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Hintz, R. L., Attie, K. M., Baptista, J. & Roche, A. Effect of growth hormone treatment on adult height of children with idiopathic short stature. Genentech Collaborative Group. N. Engl. J. Med. 340, 502–507 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. López-Siguero, J. P., Garciá-Garcia, E., Carralero, I. & Martínez-Aedo, M. J. Adult height in children with idiopathic short stature treated with growth hormone. J. Pediatr. Endocrinol. Metab. 13, 1595–1602 (2000).

    Article  PubMed  Google Scholar 

  99. Coutant, R. et al. Growth and adult height in GH-treated children with nonacquired GH deficiency and idiopathic short stature: the influence of pituitary magnetic resonance imaging findings. J. Clin. Endocrinol. Metab. 86, 4649–4654 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Wit, J. M. & Rekers-Mombarg, L. T. Final height gain by GH therapy in children with idiopathic short stature is dose dependent. J. Clin. Endocrinol. Metab. 87, 604–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Leschek, E. W. et al. Effect of growth hormone treatment on adult height in peripubertal children with idiopathic short stature: a randomized, double-blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 89, 3140–3148 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Kemp, S. F. et al. Efficacy and safety results of long-term growth hormone treatment of idiopathic short stature. J. Clin. Endocrinol. Metab. 90, 5247–5253 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Wit, J. M. et al. Growth hormone (GH) treatment to final height in children with idiopathic short stature: evidence for a dose effect. J. Pediatr. 146, 45–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Albertsson-Wikland, K. et al. Dose-dependent effect of growth hormone on final height in children with short stature without growth hormone deficiency. J. Clin. Endocrinol. Metab. 93, 4342–4350 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Lee, P. A. et al. Comparison of response to 2-years' growth hormone treatment in children with isolated growth hormone deficiency, born small for gestational age, idiopathic short stature, or multiple pituitary hormone deficiency: combined results from two large observational studies. Int. J. Pediatr. Endocrinol. 2012, 22 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hughes, I. P. et al. Growth hormone regimens in Australia: analysis of the first 3 years of treatment for idiopathic growth hormone deficiency and idiopathic short stature. Clin. Endocrinol. (Oxf.). 77, 62–71 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Finkelstein, B. S. et al. Effect of growth hormone therapy on height in children with idiopathic short stature: a meta-analysis. Arch. Pediatr. Adolesc. Med. 156, 230–240 (2002).

    Article  PubMed  Google Scholar 

  108. Bryant, J., Baxter, L., Cave, C. B. & Milne, R. Recombinant growth hormone for idiopathic short stature in children and adolescents. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD004440. http://dx.doi.org/10.1002/14651858.CD004440.pub2

  109. Hardin, D. S., Woo, J., Butsch, R. & Huett, B. Current prescribing practices and opinions about growth hormone therapy: results of a nationwide survey of paediatric endocrinologists. Clin. Endocrinol. (Oxf.). 66, 85–94 (2007).

    PubMed  Google Scholar 

  110. Bang, P. et al. A comparison of different definitions of growth response in short prepubertal children treated with growth hormone. Horm. Res. Paediatr. 75, 335–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Bakker, B., Frane, J., Anhalt, H., Lippe, B. & Rosenfeld, R. G. Height velocity targets from the national cooperative growth study for first-year growth hormone responses in short children. J. Clin. Endocrinol. Metab. 93, 352–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Ranke, M. B., Lindberg, A. & KIGS International Board. Observed and predicted growth responses in prepubertal children with growth disorders: guidance of growth hormone treatment by empirical variables. J. Clin. Endocrinol. Metab. 95, 1229–1237 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Ranke, M. B. & Lindberg, A. Growth hormone treatment of idiopathic short stature: analysis of the database from KIGS, the Kabi Pharmacia International Growth Study. Acta Paediatr. Suppl. 406, 18–23 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Ranke, M. B. & Lindberg, A. Predicting growth in response to growth hormone treatment. Growth Horm. IGF Res. 19, 1–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Kamp, G. A. et al. Biochemical markers of growth hormone (GH) sensitivity in children with idiopathic short stature: individual capacity of IGF-I generation after high-dose GH treatment determines the growth response to GH. Clin. Endocrinol. (Oxf.). 57, 315–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Ranke, M. B. et al. Age at growth hormone therapy start and first-year responsiveness to growth hormone are major determinants of height outcome in idiopathic short stature. Horm. Res. 68, 53–62 (2007).

    CAS  PubMed  Google Scholar 

  117. Ranke, M. B. & Lindberg, A. Observed and predicted total pubertal growth during treatment with growth hormone in adolescents with idiopathic growth hormone deficiency, Turner syndrome, short stature, born small for gestational age and idiopathic short stature: KIGS analysis and review. Horm. Res. Paediatr. 75, 423–432 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. van Gool, S. A. et al. High-dose GH treatment limited to the prepubertal period in young children with idiopathic short stature does not increase adult height. Eur. J. Endocrinol. 162, 653–660 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Dahlgren, J. Metabolic benefits of growth hormone therapy in idiopathic short stature. Horm. Res. Paediatr. 76 (Suppl. 3), 56–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Stabler, B. et al. Behavior change after growth hormone treatment of children with short stature. J. Pediatr. 133, 366–373 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Chaplin, J. E. et al. Improvements in behaviour and self-esteem following growth hormone treatment in short prepubertal children. Horm. Res. Paediatr. 75, 291–303 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Theunissen, N. C. et al. Quality of life and self-esteem in children treated for idiopathic short stature. J. Pediatr. 140, 507–515 (2002).

    Article  PubMed  Google Scholar 

  123. Ross, J. L. et al. Psychological adaptation in children with idiopathic short stature treated with growth hormone or placebo. J. Clin. Endocrinol. Metab. 89, 4873–4878 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Allen, D. B. Safety of growth hormone treatment of children with idiopathic short stature: the US experience. Horm. Res. Paediatr. 76 (Suppl. 3), 45–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Cook, D. M. & Rose, S. R. A review of guidelines for use of growth hormone in pediatric and transition patients. Pituitary 15, 301–310 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Ross, J. et al. Growth hormone: health considerations beyond height gain. Pediatrics 125, e906–e918 (2010).

    Article  PubMed  Google Scholar 

  127. Bell, J. et al. Long-term safety of recombinant human growth hormone in children. J. Clin. Endocrinol. Metab. 95, 167–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Quigley, C. A. et al. Safety of growth hormone treatment in pediatric patients with idiopathic short stature. J. Clin. Endocrinol. Metab. 90, 5188–5196 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Wilton, P., Mattsson, A. F. & Darendeliler, F. Growth hormone treatment in children is not associated with an increase in the incidence of cancer: experience from KIGS (Pfizer International Growth Database). J. Pediatr. 157, 265–270 (2010).

    Article  PubMed  Google Scholar 

  130. Child, C. J. et al. Prevalence and incidence of diabetes mellitus in GH-treated children and adolescents: analysis from the GeNeSIS observational research program. J. Clin. Endocrinol. Metab. 96, E1025–E1034 (2011).

    Article  PubMed  Google Scholar 

  131. Cutfield, W. S. et al. Incidence of diabetes mellitus and impaired glucose tolerance in children and adolescents receiving growth-hormone treatment. Lancet 355, 610–613 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Hokken-Koelega, A. C., De Waal, W. J., Sas, T. C., Van Pareren, Y. & Arends, N. J. Small for gestational age (SGA): endocrine and metabolic consequences and effects of growth hormone treatment. J. Pediatr. Endocrinol. Metab. 17 (Suppl. 3), 463–469 (2004).

    CAS  PubMed  Google Scholar 

  133. Carel, J. C. et al. Long-term mortality after recombinant growth hormone treatment for isolated growth hormone deficiency or childhood short stature: preliminary report of the French SAGhE study. J. Clin. Endocrinol. Metab. 97, 416–425 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Sävendahl, L. et al. Long-term mortality and causes of death in isolated, GHD, ISS, and SGA patients treated with recombinant growth hormone during childhood in Belgium, The Netherlands, and Sweden: preliminary report of 3 countries participating in the EU SAGhE study. J. Clin. Endocrinol. Metab. 97, E213–E217 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Rosenfeld, R. G. et al. Long-term surveillance of growth hormone therapy. J. Clin. Endocrinol. Metab. 97, 68–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Rosenfeld, R. G. The IGF system: new developments relevant to pediatric practice. Endocr. Dev. 9, 1–10 (2005).

    CAS  PubMed  Google Scholar 

  137. Ranke, M. B. et al. Long-term treatment of growth hormone insensitivity syndrome with IGF-I. Results of the European Multicentre Study. The Working Group on Growth Hormone Insensitivity Syndromes. Horm. Res. 51, 128–134 (1999).

    CAS  PubMed  Google Scholar 

  138. Chernausek, S. D. et al. Long-term treatment with recombinant insulin-like growth factor (IGF)-I in children with severe IGF-I deficiency due to growth hormone insensitivity. J. Clin. Endocrinol. Metab. 92, 902–910 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Savage, M. O. et al. Idiopathic short stature: will genetics influence the choice between GH and IGF-I therapy? Eur. J. Endocrinol. 157 (Suppl. 1), 33–37 (2007).

    Article  CAS  Google Scholar 

  140. Midyett, L. K. et al. Recombinant insulin-like growth factor (IGF)-I treatment in short children with low IGF-I levels: first-year results from a randomized clinical trial. J. Clin. Endocrinol. Metab. 95, 611–619 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Rosenbloom, A. L. Is there a role for recombinant insulin-like growth factor-I in the treatment of idiopathic short stature? Lancet 368, 612–616 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares associations with the following companies: Ipsen (honoraria), Novo Nordisk (honoraria), Pfizer (consultancy, honoraria).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranke, M. Treatment of children and adolescents with idiopathic short stature. Nat Rev Endocrinol 9, 325–334 (2013). https://doi.org/10.1038/nrendo.2013.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing