Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A heart–adipose tissue connection in the regulation of energy metabolism

Key Points

  • The heart is included in the network of endocrine organs that regulate energy usage and metabolism

  • The cardiac natriuretic peptide system and the sympathetic nervous system should be considered dual regulators of energy metabolism

  • Improved understanding of energy expenditure regulation by neurohormonal signals in adipose tissue might aid in finding ways to manipulate these processes

  • Improved understanding of receptors for the natriuretic peptides at the molecular level is needed, because these receptors are dynamically regulated and dictate responses to these peptides

  • Environmental factors (ambient temperature, diet and physical activity) coordinate metabolic fuel management in adipose tissue and muscle through both sympathetic nervous system tone and cardiac sensing of blood pressure

Abstract

Almost 20 years ago, the protein encoded by the ob locus in mice was identified as an adipocyte-secreted hormone, now termed leptin, which functions as a peripheral signal to communicate the organism's energy reserve—and thereby protects against starvation due to insufficient caloric resources. Additional peripheral factors have since been identified that coordinate interorgan crosstalk to manage energy resources. The heart is included in this network through its regulated release of natriuretic peptides A and B—cardiac hormones originally identified as important in blood pressure control. Emerging evidence that natriuretic peptide receptors are expressed in adipose tissue, and that circulating levels of these peptides are decreased in animals and humans with obesity, could imply that natriuretic peptides are also involved in the regulation of energy metabolism. The natriuretic peptides stimulate triglyceride lipolysis in adipocytes, a process also regulated by the sympathetic nervous system. In addition, these two pathways promote uncoupling of mitochondrial respiration and thermogenesis in brown adipocytes. This Review focuses on the roles of the natriuretic peptides and the sympathetic nervous system in regulating adipocyte metabolism. The potential for manipulating the natriuretic peptide pathway to increase energy expenditure in obesity and manage the complications of cardiometabolic disease is also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiac natriuretic peptide signalling in adipocytes.

Similar content being viewed by others

References

  1. Caterson, I. D. et al. Maintained intentional weight loss reduces cardiovascular outcomes: results from the Sibutramine Cardiovascular OUTcomes (SCOUT) trial. Diabetes Obes. Metab. 14, 523–530 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Lepor, N. E., Fouchia, D. D. & McCullough, P. A. New vistas for the treatment of obesity: turning the tide against the leading cause of morbidity and cardiovascular mortality in the developed world. Rev. Cardiovasc. Med. 14, 20–39; quiz 40 (2013).

    PubMed  Google Scholar 

  3. Moro, C. & Lafontan, M. Natriuretic peptides and cGMP signaling control of energy homeostasis. Am. J. Physiol. Heart Circ. Physiol. 304, H358–H368 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Sarzani, R., Dessi-Fulgheri, P., Paci, V. M., Espinosa, E. & Rappelli, A. Expression of natriuretic peptide receptors in human adipose and other tissues. J. Endocrinol. Invest. 19, 581–585 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Dessi-Fulgheri, P. et al. Plasma atrial natriuretic peptide and natriuretic peptide receptor gene expression in adipose tissue of normotensive and hypertensive obese patients. J. Hypertens. 15, 1695–1699 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, T. J. et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 109, 594–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Dessi-Fulgheri, P., Sarzani, R. & Rappelli, A. The natriuretic peptide system in obesity-related hypertension: new pathophysiological aspects. J. Nephrol. 11, 296–299 (1998).

    CAS  PubMed  Google Scholar 

  8. Morton, N. M. et al. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes. PLoS ONE 6, e23944 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sengenès, C., Berlan, M., De Glisezinski, I., Lafontan, M. & Galitzky, J. Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J. 14, 1345–1351 (2000).

    Article  PubMed  Google Scholar 

  10. Birkenfeld, A. L. et al. Lipid mobilization with physiological atrial natriuretic peptide concentrations in humans. J. Clin. Endocrinol. Metab. 90, 3622–3628 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Birkenfeld, A. L. et al. β-adrenergic and atrial natriuretic peptide interactions on human cardiovascular and metabolic regulation. J. Clin. Endocrinol. Metab. 91, 5069–5075 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Birkenfeld, A. L. et al. Atrial natriuretic peptide induces postprandial lipid oxidation in humans. Diabetes 57, 3199–3204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bordicchia, M. et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Invest. 122, 1022–1036 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Engeli, S. et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J. Clin. Invest. 122, 4675–4679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yehuda-Shnaidman, E., Buehrer, B., Pi, J., Kumar, N. & Collins, S. Acute stimulation of white adipocyte respiration by PKA-induced lipolysis. Diabetes 59, 2474–2483 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zurlo, F., Larson, K., Bogardus, C. & Ravussin, E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J. Clin. Invest. 86, 1423–1427 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bal, N. C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18, 1575–1579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sheldon, E. F. The so-called hibernating gland in mammals: A form of adipose tissue. Anat. Rec. 28, 331–347 (1924).

    Article  Google Scholar 

  19. Aherne, W. & Hull, D. The site of heat production in the newborn infant. Proc. R. Soc. Med. 57, 1172–1173 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rothwell, N. J. & Stock, M. J. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 31–35 (1979).

    Article  CAS  PubMed  Google Scholar 

  21. Heaton, J. M. The distribution of brown adipose tissue in the human. J. Anat. 112, 35–39 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, P., Swarbrick, M. M. & Ho, K. K. Brown adipose tissue in adult humans: a metabolic renaissance. Endocr. Rev. 34, 413–438 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Zingaretti, M. C. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23, 3113–3120 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ouellet, V. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122, 545–552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Orava, J. et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring) http://dx.doi.org/10.1002/oby.20456.

  31. Matthias, A. et al. Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty acid-induced thermogenesis. J. Biol. Chem. 275, 25073–25081 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, T., Zang, Y., Ling, W., Corkey, B. E. & Guo, W. Metabolic partitioning of endogenous fatty acid in adipocytes. Obes. Res. 11, 880–887 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Maassen, J. A., Romijn, J. A. & Heine, R. J. Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: do adipocytes consume sufficient amounts of oxygen to oxidise fatty acids? Diabetologia 51, 907–908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stenson, B. M. et al. Activation of liver X receptor (LXR) regulates substrate oxidation in white adipocytes. Endocrinology 150, 4103–4113 (2009).

    Article  CAS  Google Scholar 

  36. Wilson-Fritch, L. et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J. Clin. Invest. 114, 1281–1289 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kusminski, C. M. & Scherer, P. E. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol. Metab. 23, 435–443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Böttcher, H. & Fürst, P. Decreased white fat cell thermogenesis in obese individuals. Int. J. Obes. Relat. Metab. Disord. 21, 439–444 (1997).

    Article  PubMed  Google Scholar 

  39. Landsberg, L. & Young, J. B. The role of the sympathoadrenal system in modulating energy expenditure. J. Clin. Endocrinol. Metab. 13, 475–499 (1984).

    Article  CAS  Google Scholar 

  40. Cousin, B. et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 103, 931–942 (1992).

    CAS  PubMed  Google Scholar 

  41. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cypess, A. M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635–639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jespersen, N. Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17, 798–805 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Cao, W. et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24, 3057–3067 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fregly, M. J., Kikta, D. C., Threatte, R. M., Torres, J. L. & Barney, C. C. Development of hypertension in rats during chronic exposure to cold. J. Appl. Physiol. 66, 741–749 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Yuan, K. et al. Modification of atrial natriuretic peptide system in cold-induced hypertensive rats. Regul. Pept. 154, 112–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Sun, Z., Cade, J. R., Fregly, M. J. & Rowland, N. E. Effect of chronic treatment with propranolol on the cardiovascular responses to chronic cold exposure. Physiol. Behav. 62, 379–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Granneman, J. G., Lahners, K. N. & Chaudhry, A. Molecular cloning and expression of the rat β3-adrenergic receptor. Mol. Pharmacol. 40, 895–899 (1991).

    CAS  PubMed  Google Scholar 

  49. Nahmias, C. et al. Molecular characterization of the mouse β3-adrenergic receptor: relationship with the atypical receptor of adipocytes. EMBO J. 10, 3721–3727 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakatsuji, H. et al. Reciprocal regulation of natriuretic peptide receptors by insulin in adipose cells. Biochem. Biophys. Res. Commun. 392, 100–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Pivovarova, O. et al. Insulin up-regulates natriuretic peptide clearance receptor expression in the subcutaneous fat depot in obese subjects: a missing link between CVD risk and obesity? J. Clin. Endocrinol. Metab. 97, E731–E739 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Potter, L. R. & Hunter, T. Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation. J. Biol. Chem. 276, 6057–6060 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Kuhn, M. Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ. Res. 93, 700–709 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Sengenes, C. et al. Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R257–R265 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Shibasaki, I. et al. Greater expression of inflammatory cytokines, adrenomedullin, and natriuretic peptide receptor-C in epicardial adipose tissue in coronary artery disease. Regul. Pept. 165, 210–217 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Fitzgibbons, T. P. et al. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am. J. Physiol. Heart Circ. Physiol. 301, H1425–H1437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kiefer, F. W., Cohen, P. & Plutzky, J. Fifty shades of brown: perivascular fat, thermogenesis, and atherosclerosis. Circulation 126, 1012–1015 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Payne, G. A., Kohr, M. C. & Tune, J. D. Epicardial perivascular adipose tissue as a therapeutic target in obesity-related coronary artery disease. Br. J. Pharmacol. 165, 659–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chang, L. et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 126, 1067–1078 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anker, S. D. et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet 361, 1077–1083 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Anker, S. D. & Sharma, R. The syndrome of cardiac cachexia. Int. J. Cardiol. 85, 51–66 (2002).

    Article  PubMed  Google Scholar 

  62. Pureza, V. & Florea, V. G. Mechanisms for cachexia in heart failure. Curr. Heart Fail. Rep. http://dx.doi.org/10.1007/s11897-013-0153-9.

  63. Melenovsky, V. et al. Relationships between right ventricular function, body composition and prognosis in advanced heart failure. J. Am. Coll. Cardiol. 62, 1660–1670 (2013).

    Article  PubMed  Google Scholar 

  64. Christensen, H. M. et al. Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status. Endocrine 43, 626–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Szabó, T. et al. Increased catabolic activity in adipose tissue of patients with chronic heart failure. Eur. J. Heart Fail. 15, 1131–1137 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Polak, J. et al. Lipolytic effects of B-type natriuretic peptide 1–32 in adipose tissue of heart failure patients compared with healthy controls. J. Am. Coll. Cardiol. 58, 1119–1125 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Welsh, P. & McMurray, J. J. B-type natriuretic peptide and glycaemia: an emerging cardiometabolic pathway? Diabetologia 55, 1240–1243 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Vijgen, G. H. et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J. Clin. Endocrinol. Metab. 97, E1229–E1233 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Batal, O. et al. Effect of obesity on B-type natriuretic peptide levels in patients with pulmonary arterial hypertension. Am. J. Cardiol. 110, 909–914 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Lippi, G., Schena, F. & Guidi, G. C. Baseline and post-exercise N-terminal pro-B-type natriuretic peptide values are associated with body mass index. Am. J. Cardiol. 109, 303–304 (2012).

    Article  PubMed  Google Scholar 

  71. Magnusson, M. et al. Low plasma level of atrial natriuretic peptide predicts development of diabetes: the prospective Malmo Diet and Cancer study. J. Clin. Endocrinol. Metab. 97, 638–645 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Translational Research Institute for Metabolism and Diabetes Research Studies: BNP [online] (2013).

  73. Luft, F. C. et al. Atriopeptin III kinetics and pharmacodynamics in normal and anephric rats. J. Pharmacol. Exp. Ther. 236, 416–418 (1986).

    CAS  PubMed  Google Scholar 

  74. Nakao, K. et al. The pharmacokinetics of α-human atrial natriuretic polypeptide in healthy subjects. Eur. J. Clin. Pharmacol. 31, 101–103 (1986).

    Article  CAS  PubMed  Google Scholar 

  75. Yandle, T. G. et al. Metabolic clearance rate and plasma half life of α-human atrial natriuretic peptide in man. Life Sci. 38, 1827–1833 (1986).

    Article  CAS  PubMed  Google Scholar 

  76. Richards, A. M. et al. Brain natriuretic peptide: natriuretic and endocrine effects in essential hypertension. J. Hypertens. 11, 163–170 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Zakeri, R. & Burnett, J. C. Designer natriuretic peptides: a vision for the future of heart failure therapeutics. Can. J. Physiol. Pharmacol. 89, 593–601 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. de Bold, M. K. et al. Characterization of a long-acting recombinant human serum albumin-atrial natriuretic factor (ANF) expressed in Pichia pastoris. Regul. Pept. 175, 7–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, T. J. The natriuretic peptides and fat metabolism. N. Engl. J. Med. 367, 377–378 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Cypess, A. M. et al. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc. Natl Acad. Sci. USA 109, 10001–10005 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vosselman, M. J. et al. Systemic β-adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans. Diabetes 61, 3106–3113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila Collins.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, S. A heart–adipose tissue connection in the regulation of energy metabolism. Nat Rev Endocrinol 10, 157–163 (2014). https://doi.org/10.1038/nrendo.2013.234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing