Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The current state of pancreas transplantation

Abstract

For many patients with type 1 diabetes mellitus and selected patients with type 2 diabetes mellitus, a successful pancreas transplant is the only definitive long-term treatment that both restores euglycaemia without the risk of severe hypoglycaemia and prevents, halts or reverses secondary complications. These benefits come at the cost of major surgery and lifelong immunosuppression. Nevertheless, pancreas transplants are safe and effective, with patient survival rates currently >95% at 1 year and >88% at 5 years; graft survival rates are almost 85% at 1 year and >60% at 5 years. The estimated half-life of a pancreas graft is now 7–14 years. The improvements in graft survival are attributable to considerable reductions in technical failures and in immunologic graft losses. Pancreas recipients have reduced mortality compared with waiting candidates or patients with diabetes mellitus who undergo a kidney transplant alone. Pancreas transplants should be more frequently offered to nonuraemic patients with brittle diabetes mellitus to prevent the development of secondary diabetic complications and to avoid the need for a kidney transplant. Although the results of islet transplantation have also improved, islet recipients rarely maintain long-term insulin independence despite the use of multiple organ donor pancreases. Pancreas transplants and islet transplants should be considered complementary, not mutually exclusive, procedures that are chosen on the basis of the individual patient's surgical risk.

Key Points

  • Pancreas transplants in appropriately selected patients with diabetes mellitus have evolved into a safe and very effective treatment to restore euglycaemia without the risk of severe hypoglycaemia

  • Pancreas transplants are an option for many patients with type 1 diabetes mellitus, selected patients with type 2 diabetes mellitus and selected patients with surgery-induced diabetes mellitus

  • A successful pancreas transplant can prevent, halt or reverse the development or progression of secondary complications of diabetes mellitus

  • Outcomes at 1-year after transplant have considerably improved, with rates of patient survival now at >95% and graft survival rates (insulin independence) at almost 85%

  • A future shift to offering pancreas transplants to patients with diabetes mellitus without uraemia (rather than transplants for those with uraemia or posturaemia) seems to be desirable

  • Transplants of the pancreas or islets are complementary procedures chosen on the basis of surgical risk; until islet transplants achieve long-term insulin independence, pancreas transplant remains the treatment of choice

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patient survival after pancreas transplantation over time.
Figure 2: Pancreas graft survival over time.

Similar content being viewed by others

References

  1. American Diabetes Association. Diabetes statistics [online], (2013).

  2. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  3. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N. Engl. J. Med. 342, 381–389 (2000).

  4. Patterson, C. C. et al. Early mortality in EURODIAB population-based cohorts of type 1 diabetes diagnosed in childhood since 1989. Diabetologia 50, 2439–2442 (2007).

    Article  CAS  Google Scholar 

  5. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group. Long-term effect of diabetes and its treatment on cognitive function. N. Engl. J. Med. 356, 1842–1852 (2007).

  6. Skrivarhaug, T. et al. Long-term mortality in a nationwide cohort of childhood-onset type 1 diabetic patients in Norway. Diabetologia 49, 298–305 (2006).

    Article  CAS  Google Scholar 

  7. Sutherland, D. E. R. & Gruessner, R. W. G. Transplantation of the Pancreas 39–68 (Springer-Verlag, 2004).

    Book  Google Scholar 

  8. Sutherland, D. E. R. et al. Twin-to-twin pancreas transplantation: reversal and reenactment of the pathogenesis of type 1 diabetes. Trans. Assoc. Am. Physicians 97, 80–87 (1984).

    CAS  PubMed  Google Scholar 

  9. Kelly, W. D., Lillehei, R. C., Merkel, F. K., Idezuki, Y. & Goetz, F. C. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery 61, 827–835 (1967).

    CAS  PubMed  Google Scholar 

  10. Gruessner, A. C. & Gruessner, R. W. G. Pancreas transplant outcomes for United States and non United States cases as reported to the United Network for Organ Sharing and the International Pancreas Transplant Registry as of December 2011. Clin. Transpl. 23–40 (2012).

  11. Gruessner, A. C. et al. Pancreas after kidney transplants in posturemic patients with type 1 diabetes mellitus. J. Am. Soc. Nephrol. 12, 2490–2499 (2001).

    CAS  PubMed  Google Scholar 

  12. Gruessner, R. W. G., Sutherland, D. E. R., Kandaswamy, R. & Gruessner, A. C. Over 500 solitary pancreas transplants in nonuremic patients with brittle diabetes mellitus. Transplantation 85, 42–47 (2008).

    Article  Google Scholar 

  13. Gruessner, R. W. G., Sutherland, D. E. R., Drangstveit, M. B., Kandaswamy, R. & Gruessner, A. C. Pancreas allotransplants in patients with a previous total pancreatectomy for chronic pancreatitis. J. Am. Coll. Surg. 206, 458–465 (2008).

    Article  Google Scholar 

  14. Gruessner, R. W. G. in Transplantation of the Pancreas Ch. 8.2.2 (eds Gruessner, R. W. G. & Sutherland, D. E. R) 150–178 (Springer-Verlag, 2004).

    Book  Google Scholar 

  15. Gruessner, R. W. G. & Sutherland, D. E. R. in Solid Organ Transplant Rejection: Mechanisms, Pathology and Diagnosis Ch. 19 (eds Solez, K., Racusen, L. C. & Billingham, M. E) 455–499 (Marcel Dekker, Inc., 1996).

    Google Scholar 

  16. Gruessner, A. C. & Sutherland, D. E. R. Pancreas transplant outcomes for United States (US) and non-US cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) as of May 2003. Clin. Transpl. 21–51 (2003).

  17. Philosophe, B. et al. Superiority of portal venous drainage over systemic venous drainage in pancreas transplantation: a retrospective study. Ann. Surg. 234, 689–696 (2001).

    Article  CAS  Google Scholar 

  18. Gruessner, A. C., Sutherland, D. E. R., & Gruessner, R. W. G. Long-term outcome after pancreas transplantation. Curr. Opin. Organ. Transplant. 17, 100–105 (2012).

    Article  Google Scholar 

  19. Muthusamy, A. S., Mumford, L., Hudson, A, Fuggle, S. V. & Friend, P. J. Pancreas transplantation from donors after circulatory death from the United Kingdom. Am. J. Transplant. 12, 2150–2156 (2012).

    Article  CAS  Google Scholar 

  20. Sutherland, D. E. R., Najarian, J. S. & Gruessner, R. W. G. in Living Donor Organ Transplantation (eds Gruessner, R. W. G. & Benedetti, E.) Section II. 18, 369–437 (McGraw-Hill Companies, 2008).

    Google Scholar 

  21. Smets, Y. F. C. et al. Effect of simultaneous pancreas-kidney transplantation on mortality of patients with type 1 diabetes mellitus and end-stage renal failure. Lancet 253, 1915–1919 (1999).

    Article  Google Scholar 

  22. Becker, B. N. et al. Simultaneous pancreas-kidney transplantation reduces excess mortality in type-1 diabetic patients with end-stage renal disease. Kidney Int. 57, 2129–2135 (2000).

    Article  CAS  Google Scholar 

  23. Ojo, A. O. et al. The impact of simultaneous pancreas-kidney transplantation on long-term patient survival. Transplantation 71, 82–90 (2001).

    Article  CAS  Google Scholar 

  24. Reddy, K. S. et al. Long-term survival following simultaneous kidney-pancreas transplantation versus kidney transplantation alone in patients with type 1 diabetes mellitus and renal failure. Am. J. Kidney Dis. 41, 464–470 (2003).

    Article  Google Scholar 

  25. Kleinclauss, F. et al. Pancreas after living donor kidney transplants in diabetic patients: impact on long-term kidney graft function. Clin. Transplant. 23, 437–446 (2009).

    Article  Google Scholar 

  26. Gruessner, R. W. G., Sutherland, D. E. R. & Gruessner, A. C. Mortality assessment for pancreas transplants. Am. J. Transplant. 4, 2018–2026 (2004).

    Article  Google Scholar 

  27. Venstrom, J. M. et al. Survival after pancreas transplant in patients with diabetes and preserved kidney function. JAMA 290, 2817–2823 (2003).

    Article  CAS  Google Scholar 

  28. Fioretto, P., Steffes, M. W., Sutherland, D. E. R., Goetz, F. C. & Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N. Engl. J. Med. 339, 69–75 (1998).

    Article  CAS  Google Scholar 

  29. Fiorina, P. et al. Altered kidney graft high-energy phosphate metabolism in kidney-transplanted end-stage renal disease type 1 diabetic patients: a cross-sectional analysis of the effect of kidney along and kidney-pancreas transplantation. Diabetes Care 30, 597–603 (2007).

    Article  CAS  Google Scholar 

  30. Fioretto, P., Sutherland, D. E. R., Najafian, B. & Mauer, M. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int. 69, 907–912 (2006).

    Article  CAS  Google Scholar 

  31. Kennedy, W. R., Navarro, X., Goetz, F. C., Sutherland, D. E. R. & Najarian, J. S. Effects of pancreatic transplantation on diabetic neuropathy. N. Engl. J. Med. 322, 1031–1037 (1990).

    Article  CAS  Google Scholar 

  32. Navarro, X., Sutherland, D. E. R. & Kennedy, W. R. Long-term effects of pancreatic transplantation on diabetic neuropathy. Ann. Neurol. 42, 727–736 (1997).

    Article  CAS  Google Scholar 

  33. Martinenghi, S. et al. Amelioration of nerve conduction velocity following simultaneous kidney/pancreas transplantation is due to the glycemic control provided by the pancreas. Diabetologia 40, 1110–1112 (1997).

    Article  CAS  Google Scholar 

  34. Gaber, A. O. et al. Changes in gastric emptying in recipients of successful combined pancreas-kidney transplants. Dig. Dis. 9, 437–443 (1991).

    Article  CAS  Google Scholar 

  35. Giannarelli, R. et al. Effects of pancreas-kidney transplantation on diabetic retinopathy. Transpl. Int. 18, 619–622 (2005).

    Article  Google Scholar 

  36. Koznarova, R. et al. Beneficial effect of pancreas and kidney transplantation on advanced diabetic retinopathy. Cell Transplant. 9, 903–908 (2000).

    Article  CAS  Google Scholar 

  37. Morrissey, P. E., Shaffer, D., Monaco, A. P., Conway, P. & Madras, P. N. Peripheral vascular disease after kidney-pancreas transplantation in diabetic patients with end-stage renal disease. Arch. Surg. 132, 358–361 (1997).

    Article  CAS  Google Scholar 

  38. Beisenbach, G., Konigsrainer, A., Gross, C. & Margreiter, R. Progression of macrovascular diseases is reduced in type 1 diabetic patients after more than 5 years successful combined pancreas-kidney transplantation in comparison to kidney transplantation alone. Transpl. Int. 18, 1054–1060 (2005).

    Article  Google Scholar 

  39. Senior, P. A. et al. Coronary artery disease is common in nonuremic, asymptomatic type 1 diabetic islet transplant candidates. Diabetes Care 28, 866–872 (2005).

    Article  Google Scholar 

  40. La Rocca, E. et al. Cardiovascular outcomes after kidney-pancreas and kidney-alone transplantation. Kidney Int. 60, 1964–1971 (2001).

    Article  CAS  Google Scholar 

  41. Gaber, A. O. et al. Early improvement in cardiac function occurs for pancreas-kidney but not diabetic kidney-alone transplant recipients. Transplantation 59, 1105–1112 (1995).

    Article  CAS  Google Scholar 

  42. Larsen, J. L. et al. Pancreas transplantation improves vascular disease in patients with type 1 diabetes. Diabetes Care 27, 1706–1711 (2004).

    Article  Google Scholar 

  43. Larsen, J. L. et al. Carotid intima-media thickness decreases after pancreas transplantation. Transplantation 73, 936–940 (2002).

    Article  Google Scholar 

  44. La Rocca, E. et al. Evolution of carotid vascular lesions in kidney-pancreas and kidney-alone transplanted insulin-dependent diabetic patients. Transplant. Proc. 27, 3072 (1995).

    CAS  PubMed  Google Scholar 

  45. Fiorina, P. et al. Reversal of left ventricular diastolic dysfunction after kidney-pancreas transplantation in type 1 diabetic uremic patients. Diabetes Care 23, 1804–1810 (2000).

    Article  CAS  Google Scholar 

  46. Fioretto, P. & Mauer, M. Reversal of diabetic nephropathy: lessons from pancreas transplantation. J. Nephrol. 25, 13–18 (2012).

    Article  Google Scholar 

  47. Giannarelli, R. et al. Pancreas transplant alone has beneficial effects on retinopathy in type 1 diabetic patients. Diabetologia 49, 2977–2982 (2006).

    Article  CAS  Google Scholar 

  48. Coppelli, A. et al. Pancreas transplant alone determines early improvement of cardiovascular risk factors and cardiac function in type 1 diabetic patients. Transplantation 76, 974–976 (2003).

    Article  Google Scholar 

  49. Jukema, J. W. et al. Impact of simultaneous pancreas and kidney transplantation on progression of coronary atherosclerosis in patients with end-stage renal failure due to type 1 diabetes. Diabetes Care 25, 906–911 (2002).

    Article  Google Scholar 

  50. Folli, F. et al. Proteomics reveals novel oxidative and glycolytic mechanisms in type 1 diabetic patients' skin which are normalized by kidney-pancreas transplantation. PLoS ONE 5, e9923 (2010).

    Article  Google Scholar 

  51. Salonia, A. et al. Kidney-pancreas transplantation is associated with near-normal sexual function in uremic type 1 diabetic patients. Transplantation 92, 802–808 (2011).

    Article  Google Scholar 

  52. Fiorina, P. et al. Near normalization of metabolic and functional features of the central nervous system in type 1 diabetic patients with end-stage renal disease after kidney-pancreas transplantation. Diabetes Care 35, 367–374 (2012).

    Article  CAS  Google Scholar 

  53. Ramsay, R. C. et al. Progression of diabetic retinopathy after pancreas transplantation for insulin-dependent diabetes mellitus. N. Engl. J. Med. 318, 208–214 (1988).

    Article  CAS  Google Scholar 

  54. Robertson, R. P. Pancreas and islet transplants for patients with diabetes: taking positions and making decisions. Endocr. Pract. 5, 24–28 (1999).

    Article  CAS  Google Scholar 

  55. Dieterle, C. D., Arbogast, H, Illner, W. D., Schmauss, S. & Landgraf, R. Metabolic follow-up after long-term pancreas graft survival. Eur. J. Endocrinol. 156, 603–610 (2007).

    Article  CAS  Google Scholar 

  56. Rickels, M. R. Recovery of endocrine function after islet and pancreas transplantation. Curr. Diab. Rep. 12, 587–596 (2012).

    Article  Google Scholar 

  57. Lauria, M. W. et al. The impact of functioning pancreas-kidney transplantation and pancreas alone transplantation on the lipid metabolism of statin-naive diabetic patients. Clin. Transplant. 23, 199–205 (2009).

    Article  Google Scholar 

  58. Larsen, J. et al. Lipid status after combined pancreas-kidney transplantation and kidney transplantation alone in type 1 diabetes mellitus. Transplantation 54, 992–996 (1992).

    Article  CAS  Google Scholar 

  59. Nakache, R., Tyden, G. & Groth, C. G. Quality of life in diabetic patients after combined pancreas-kidney or kidney transplantation. Diabetes 38 (Suppl. 1), S40–S42 (1989).

    Article  Google Scholar 

  60. Zehrer, C. & Gross, C. Quality of life in pancreas transplant recipients. Diabetologia 34 (Suppl. 1), S145–S149 (1991).

    Article  Google Scholar 

  61. Gross, C. R. & Zehrer, C. L. Health-related quality of life of outcomes of pancreas transplant recipients. Clin. Transplant. 6, 165–171 (1992).

    CAS  PubMed  Google Scholar 

  62. Zehrer, C. L. & Gross, C. R. Prevalence of “low blood glucose” symptoms and quality of life in pancreas transplant recipients. Clin. Transplant 7, 312–319 (1993).

    Google Scholar 

  63. Milde, F. K., Hart, L. K. & Zehr, P. S. Pancreatic transplantation: impact on the quality of life in diabetic renal transplant recipients. Diabetes Care 18, 93–95 (1995).

    Article  CAS  Google Scholar 

  64. Matas, A. J. Long-term quality of life after kidney and simultaneous pancreas-kidney transplantation. Clin. Transplant. 12, 233–242 (1998).

    CAS  PubMed  Google Scholar 

  65. Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Eng. J. Med. 343, 230–238 (2000).

    Article  CAS  Google Scholar 

  66. Shapiro, A. M. et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355, 1318–3130 (2006).

    Article  CAS  Google Scholar 

  67. Hering, B. J. Achieving and maintaining insulin independence in human islet transplant recipients. Transplantation 79, 1296–1297 (2005).

    Article  Google Scholar 

  68. Shapiro, A. M., Ricordi, C. & Hering, B. J. Edmonton's islet success has indeed been replicated elsewhere. Lancet 362, 1242 (2003).

    Article  Google Scholar 

  69. Fiorina, P., Shapiro, A. M., Ricordi, C. & Secchi, A. The clinical impact of islet transplantation. Am. J. Transplant. 8, 1990–1997 (2008).

    Article  CAS  Google Scholar 

  70. Barton, F. B. et al. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care. 35, 1436–1445 (2012).

    Article  CAS  Google Scholar 

  71. Bellin, M. D. et al. Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am. J. Transplant. 12, 1576–1583 (2012).

    Article  CAS  Google Scholar 

  72. Rickels, M. R. et al. Islet cell hormonal responses to hypoglycemia after human islet transplantation for type 1 diabetes. Diabetes 54, 3205–3211 (2005).

    Article  CAS  Google Scholar 

  73. Maffi, P. et al. Risks and benefits of transplantation in the cure of type 1 diabetes: whole pancreas versus islet transplantation. A single center study. Rev. Diabet. Stud. 8, 44–50 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Knatterud and J. Roberts from the Department of Surgery at the University of Arizona, USA, for their help with preparing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article preparation.

Corresponding author

Correspondence to Rainer W. G. Gruessner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruessner, R., Gruessner, A. The current state of pancreas transplantation. Nat Rev Endocrinol 9, 555–562 (2013). https://doi.org/10.1038/nrendo.2013.138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing