Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Testicular function and bone metabolism—beyond testosterone

Abstract

Findings in the past few years have advanced understanding of the crosstalk between testis and bone and could contribute to defining an improved clinical approach to the biochemical diagnosis and therapeutic management of hypogonadism and male osteoporosis. This Review focuses on the Leydig cells of the testis. Other than being responsible for steroidogenesis and production of testosterone, the function of these cells is fundamental to bone health in at least two other ways: Leydig cells produce insulin-like 3 (INSL3), which has a role in osteoblast function, and they contribute to 25-hydroxylation of vitamin D. Impairment of testicular function leads to low levels of testosterone, INSL3 and 25-hydroxyvitamin D and consequently to an increased risk of osteopenia and osteoporosis.

Key Points

  • Hypogonadism is a common secondary cause of male osteoporosis; however, men with mild testicular dysfunction are also at increased risk of osteopenia and osteoporosis

  • Knowledge of the bidirectional crosstalk between testis and bone obtained in the past few years could inform the clinical approach to the diagnosis and therapeutic management of hypogonadism and male osteoporosis

  • The testis might also contribute to bone health in a testosterone-independent manner by production of insulin-like 3 (INSL3) and by contributing to the 25-hydroxylation of vitamin D

  • INSL3 and 25-hydroxyvitamin D are sensitive markers of Leydig cell function in subclinical hypogonadism, when their levels are reduced and might contribute to low bone mass despite normal testosterone levels

  • Testosterone replacement therapy alone in men with hypogonadism does not completely restore bone mass, which suggests that alternative therapeutic approaches should be considered in future studies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the crosstalk between testis and bone.

Similar content being viewed by others

References

  1. Karsenty, G. The mutual dependence between bone and gonads. J. Endocrinol. 213, 107–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Ebeling, P. R. Clinical practice. Osteoporosis in men. N. Engl. J. Med. 358, 1474–1482 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Bhasin, S. et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95, 2536–2559 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Watts, N. B. et al. Osteoporosis in men: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 97, 1802–1822 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Ferlin, A. et al. Mutations in the insulin-like factor 3 receptor are associated with osteoporosis. J. Bone Miner. Res. 23, 683–693 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferlin, A., Perilli, L., Gianesello, L., Taglialavoro, G. & Foresta, C. Profiling insulin like factor 3 (INSL3) signaling in human osteoblasts. PLoS ONE 6, e29733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Foresta. C. et al. A novel circulating hormone of testis origin in humans. J. Clin. Endocrinol. Metab. 89, 5952–5958 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Bay, K. et al. Insulin-like factor 3 serum levels in 135 normal men and 85 men with testicular disorders: relationship to the luteinizing hormone-testosterone axis. J. Clin. Endocrinol. Metab. 90, 3410–3418 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Sadeghian, H., Anand-Ivell, R., Balvers, M., Relan, V. & Ivell, R. Constitutive regulation of the Insl3 gene in rat Leydig cells. Mol. Cell. Endocrinol. 241, 10–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Anand-Ivell, R. et al. Peripheral INSL3 concentrations decline with age in a large population of Australian men. Int. J. Androl. 29, 618–626 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Bay, K., Matthiesson, K. L., McLachlan, R. I. & Andersson, A. M. The effects of gonadotropins suppression and selective replacement on insulin-like factor 3 secretion in normal adult men. J. Clin. Endocrinol. Metab. 91, 1108–1111 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Ferlin, A. et al. Changes in serum insulin-like factor 3 during normal male puberty. J. Clin. Endocrinol. Metab. 91, 3426–3431 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Foresta, C. et al. Insulin-like factor 3 as a marker of testicular function in obese men. Clin. Endocrinol. (Oxf) 71, 722–726 (2009).

    Article  CAS  Google Scholar 

  14. Ivell, R. & Anand-Ivell, R. Biological role and clinical significance of insulin-like peptide 3. Curr. Opin. Endocrinol. Diabetes Obes. 18, 210–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Foresta, C. et al. Bone mineral density and testicular failure: evidence for a role of vitamin D25 hydroxylase in human testis. J. Clin. Endocrinol. Metab. 96, E646–E652 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Blomberg Jensen, M. et al. Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum. Reprod. 25, 1303–1311 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, D. M. et al. Association of hypogonadism with vitamin D status: the European Male Ageing Study. Eur. J. Endocrinol. 166, 77–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Wehr, E., Pilz, S., Boehm, B. O., März, W. & Obermayer-Pietsch, B. Association of vitamin D status with serum androgen levels in men. Clin. Endocrinol. (Oxf.) 73, 243–248 (2010).

    Article  CAS  Google Scholar 

  19. Nimptsch, K., Platz, E. A., Willett, W. C. & Giovannucci, E. Association between plasma 25-OH vitamin D and testosterone levels in men. Clin. Endocrinol. (Oxf.) 77, 106–112 (2012).

    Article  CAS  Google Scholar 

  20. Oury, F. et al. Endocrine regulation of male fertility by the skeleton. Cell. 144, 796–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pi, M. & Quarles, L. D. Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks. Endocrinology 153, 2062–2069 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pi, M. et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS ONE 3, e3858 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hannemann, A. et al. Osteocalcin is associated with testosterone in the general population and selected patients with bone disorders. Andrology 1, 469–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Pi, M., Parrill, A. L. & Quarles, L. D. GPRC6A mediates the non-genomic effects of steroids. J. Biol. Chem. 285, 39953–39964 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakamura, T. et al. Estrogen prevents bone loss via estrogen receptor α and induction of Fas ligand in osteoclasts. Cell 130, 811–823 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Venken, K., Callewaert, F., Boonen, S. & Vanderschueren, D. Sex hormones, their receptors and bone health. Osteoporos. Int. 19, 1517–1525 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Callewaert, F., Sinnesael, M., Gielen, E., Boonen, S. & Vanderschueren, D. Skeletal sexual dimorphism: relative contribution of sex steroids. J. Endocrinol. 207, 127–134 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Vanderschueren, D. et al. Androgens and bone. Endocr. Rev. 25, 389–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Callewaert, F., Boonen, S. & Vanderschueren, D. Sex steroids and the male skeleton: a tale of two hormones. Trends Endocrinol. Metab. 21, 89–99 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Marcus, R. et al. The contribution of testosterone to skeletal development and maintenance: lessons from the androgen insensitivity syndrome. J. Clin. Endocrinol. Metab. 85, 1032–1037 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Khosla, S., Melton L. J. 3rd, Atkinson, E. J. & O'Fallon, W. M. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J. Clin. Endocrinol. Metab. 86, 3555–3561 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Rochira, V. et al. Skeletal effects of long-term estrogen and testosterone replacement treatment in a man with congenital aromatase deficiency: evidences of a priming effect of estrogen for sex steroids action on bone. Bone 40, 1662–1668 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Callewaert, F. et al. Differential regulation of bone and body composition in male mice with combined inactivation of androgen and estrogen receptor-α. FASEB J. 23, 232–240 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Mellström, D. et al. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J. Bone Miner. Res. 23, 1552–1560 (2008).

    Article  PubMed  Google Scholar 

  35. Amin, S. et al. Estradiol, testosterone, and the risk for hip fractures in elderly men from the Framingham Study. Am. J. Med. 119, 426–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Goderie-Plomp, H. W. et al. Endogenous sex hormones, sex hormone-binding globulin, and the risk of incident vertebral fractures in elderly men and women: the Rotterdam Study. J. Clin. Endocrinol. Metab. 89, 3261–3269 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Falahati-Nini, A. et al. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J. Clin. Invest. 106, 1553–1560 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Francis, R. M. The effects of testosterone on osteoporosis in men. Clin. Endocrinol. (Oxf). 50, 411–414 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Clarke, B. L. & Khosla, S. Androgens and bone. Steroids 74, 296–305 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Giannetta, E., Gianfrilli, D., Barbagallo, F., Isidori, A. M. & Lenzi, A. Subclinical male hypogonadism. Best Pract. Res. Clin. Endocrinol. Metab. 26, 539–550 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Foresta, C., Zuccarello, D., Garolla, A. & Ferlin, A. Role of hormones, genes, and environment in human cryptorchidism. Endocr. Rev. 29, 560–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Ferlin, A. et al. Genetic alterations associated with cryptorchidism. JAMA 300, 2271–2276 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Bogatcheva, N. V. et al. T222P mutation of the insulin-like 3 hormone receptor LGR8 is associated with testicular maldescent and hinders receptor expression on the cell surface membrane. Am. J. Physiol. Endocrinol. Metab. 292, E138–E144 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Overbeek, P. A. et al. A transgenic insertion causing cryptorchidism in mice. Genesis 30, 26–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Battault, S. et al. Vitamin D metabolism, functions and needs: from science to health claims. Eur. J. Nutr. 52, 429–441 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, J. & DeLuca, H. F. Vitamin D 25-hydroxylase—Four decades of searching, are we there yet? Arch. Biochem. Biophys. 523, 30–36 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Cheng, J. B., Motola, D. L., Mangelsdorf, D. J. & Russell, D. W. De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxylase. J. Biol. Chem. 278, 38084–38093 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Cheng, J. B., Levine, M. A., Bell, N. H., Mangelsdorf, D. J. & Russell, D. W. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc. Natl Acad. Sci. USA 101, 7711–7715 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Demay, M. B. Mechanism of vitamin D receptor action. Ann. NY Acad. Sci. 1068, 204–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, T. J. et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376, 180–188 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bièche, I. et al. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet. Genomics 17, 731–742 (2007).

    Article  PubMed  Google Scholar 

  52. Choudhary, D., Jansson, I., Stoilov, I., Sarfarazi, M. & Schenkman, J. B. Expression patterns of mouse and human CYP orthologs (families 1–4) during development and in different adult tissues. Arch. Biochem. Biophys. 436, 50–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Foresta, C., Selice, R., Di Mambro, A. & Strapazzon, G. Testiculopathy and vitamin D insufficiency. Lancet 376, 1301 (2010).

    Article  PubMed  Google Scholar 

  54. Foresta, C. et al. Altered bone status in unilateral testicular cancer survivors: role of CYP2R1 and its luteinizing hormone-dependency. J. Endocrinol. Invest. 36, 379–384 (2013).

    CAS  PubMed  Google Scholar 

  55. Blomberg Jensen, M. et al. Expression of the vitamin D receptor, 25-hydroxylases, 1α-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer. J. Steroid Biochem. Mol. Biol. 121, 376–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Blomberg Jensen, M. et al. Expression of the vitamin D metabolizing enzyme CYP24A1 at the annulus of human spermatozoa may serve as a novel marker of semen quality. Int. J. Androl. 35, 499–510 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Deb, S. & Bandiera, S. M. Regulation of cytochrome P450 1B1 expression by luteinizing hormone in mouse MA-10 and rat R2C Leydig cells: role of protein kinase A. Biol. Reprod. 85, 89–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Pilz, S. et al. Effect of vitamin D supplementation on testosterone levels in men. Horm. Metab. Res. 43, 223–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, C. et al. Investigation, treatment, and monitoring of late-onset hypogonadism in males: ISA, ISSAM, EAU, EAA, and ASA recommendations. Eur. Urol. 55, 121–130 (2009).

    Article  PubMed  Google Scholar 

  60. Wu, F. C. et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N. Engl. J. Med. 363, 123–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Ivell, R. & Anand-Ivell, R. Biology of insulin-like factor 3 in human reproduction. Hum. Reprod. Update 15, 463–476 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Adham, I. M., Burkhardt, E., Benahmed, M. & Engel, W. Cloning of a cDNA for a novel insulin-like peptide of the testicular Leydig cells. J. Biol. Chem. 268, 26668–26672 (1993).

    CAS  PubMed  Google Scholar 

  63. Kong, R. C., Shilling, P. J., Lobb, D. K., Goolet, P. R. & Bathgate, R. A. Membrane receptors: structure and function of the relaxin family peptide receptors. Mol. Cell. Endocrinol. 320, 1–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Nef, S. & Parada, L. F. Cryptorchidism in mice mutant for Insl3. Nat. Genet. 22, 295–299 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Zimmermann, S. et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol. Endocrinol. 13, 681–691 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Gorlov, I. P. et al. Mutations of the GREAT gene cause cryptorchidism. Hum. Mol. Genet. 11, 2309–2318 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Bay, K. et al. Insulin-like factor 3 levels in cord blood and serum from children: effects of age, postnatal hypothalamic–pituitary–gonadal axis activation, and cryptorchidism. J. Clin. Endocrinol. Metab. 92, 4020–4027 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Ferlin, R. Selice and U. Carraro researched data for the article, provided a substantial contribution to a discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission. C. Foresta provided a substantial contribution to a discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Alberto Ferlin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferlin, A., Selice, R., Carraro, U. et al. Testicular function and bone metabolism—beyond testosterone. Nat Rev Endocrinol 9, 548–554 (2013). https://doi.org/10.1038/nrendo.2013.135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing