Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of Klotho in energy metabolism

Abstract

A disproportionate expansion of white adipose tissue and abnormal recruitment of adipogenic precursor cells can not only lead to obesity but also impair glucose metabolism, which are both common causes of insulin resistance and diabetes mellitus. The development of novel and effective therapeutic strategies to slow the progression of obesity, diabetes mellitus and their associated complications will require improved understanding of adipogenesis and glucose metabolism. Klotho might have a role in adipocyte maturation and systemic glucose metabolism. Klotho increases adipocyte differentiation in vitro, and mice that lack Klotho activity are lean owing to reduced white adipose tissue accumulation; moreover, mice that lack the Kl gene (which encodes Klotho) are resistant to obesity induced by a high-fat diet. Knockout of Kl in leptin-deficient Lepob/ob mice reduces obesity and increases insulin sensitivity, which lowers blood glucose levels. Energy metabolism might also be influenced by Klotho. However, further studies are needed to explore the possibility that Klotho could be a novel therapeutic target to reduce obesity and related complications, and to determine whether and how Klotho might influence the regulation and function of a related protein, β-Klotho, which is also involved in energy metabolism.

Key Points

  • Klotho exists in membrane-bound and secreted forms; the secreted form is generated both by alternative splicing and by shedding of the extracellular domain of the transmembrane form

  • Klotho increases organ-specific FGF-23 function in the systemic regulation of phosphate metabolism in the kidney

  • Klotho might also have a role in energy metabolism

  • Reducing or eliminating Klotho activity in mice results in reduced white adipose tissue accumulation

  • Kl-mutant mice (both Klkl/kl and Kl−/−) are hypoglycaemic (owing to increased insulin sensitivity) and resistant to obesity induced by a high-fat diet

  • Reducing or eliminating Klotho activity from Kl−/−Lepob/ob mice results in mice with decreased obesity and increased insulin sensitivity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the Klotho protein structure.
Figure 2: Potential influence of Klotho on adipocyte development.
Figure 3: Physiological effects of Klotho inactivation.
Figure 4: Effects of Klotho on liver structure.

Similar content being viewed by others

References

  1. Pan, J. J. et al. Prevalence of metabolic syndrome and risks of abnormal serum alanine aminotransferase in Hispanics: a population-based study. PLoS ONE 6, e21515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lin, W. Y. et al. Body mass index and all-cause mortality in a large Chinese cohort. CMAJ 183, E329–E336 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee, C. G. et al. Mortality risk in older men associated with changes in weight, lean mass, and fat mass. J. Am. Geriatr. Soc. 59, 233–240 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yoon, Y. S., Park, H. S., Yun, K. E. & Kim, S. B. Obesity and metabolic syndrome-related chronic kidney disease in nondiabetic, nonhypertensive adults. Metabolism 58, 1737–1742 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Kissebah, A. H., Freedman, D. S. & Peiris, A. N. Health risks of obesity. Med. Clin. North Am. 73, 111–138 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Sarafidis, P. A. Obesity, insulin resistance and kidney disease risk: insights into the relationship. Curr. Opin. Nephrol. Hypertens. 17, 450–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Hall, J. E. et al. Obesity-associated hypertension and kidney disease. Curr. Opin. Nephrol. Hypertens. 12, 195–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Garg, A. Acquired and inherited lipodystrophies. N. Engl. J. Med. 350, 1220–1234 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Mokdad, A. H., Marks, J. D., Stroup, D. F. & Gerberding, J. L. Actual causes of death in the United States. JAMA 29, 1238–1245 (2004).

    Article  Google Scholar 

  10. Berger, J. & Moller, D. E. The mechanism of action of PPARs. Annu. Rev. Med. 53, 409–435 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, Y. X. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell. Res. 20, 124–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Kawai, M. & Rosen, C. J. PPARγ: a circadian transcription factor in adipogenesis and osteogenesis. Nat. Rev. Endocrinol. 6, 629–636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, H. et al. Klotho is a target gene of PPAR-γ. Kidney Int. 74, 732–739 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Kuro-o, M. Endocrine FGFs and Klothos: emerging concepts. Trends Endocrinol. Metab. 19, 239–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Razzaque, M. S. Phosphate toxicity: new insights into an old problem. Clin. Sci. (Lond.) 120, 91–97 (2011).

    Article  CAS  Google Scholar 

  16. Zhang, R. & Zheng, F. PPAR-γ and aging: one link through Klotho? Kidney Int. 74, 702–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Razzaque, M. S. FGF23-mediated regulation of systemic phosphate homeostasis: is Klotho an essential player? Am. J. Physiol. Renal Physiol. 296, F470–F476 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Unger, R. H. Klotho-induced insulin resistance: a blessing in disguise? Nat. Med. 12, 56–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Razzaque, M. S. The FGF23–Klotho axis: endocrine regulation of phosphate homeostasis. Nat. Rev. Endocrinol. 5, 611–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arking, D. E. et al. Association of human aging with a functional variant of Klotho. Proc. Natl Acad. Sci. USA 99, 856–861 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arking, D. E., Atzmon, G., Arking, A., Barzilai, N. & Dietz, H. C. Association between a functional variant of the Klotho gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ. Res. 96, 412–418 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Nzietchueng, R. et al. Klotho KL-VS genotype is involved in blood pressure regulation. Clin. Chim. Acta 412, 1773–1777 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Shimoyama, Y., Nishio, K., Hamajima, N. & Niwa, T. Klotho gene polymorphisms G-395A and C1818T are associated with lipid and glucose metabolism, bone mineral density and systolic blood pressure in Japanese healthy subjects. Clin. Chim. Acta 406, 134–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Oguro, R. et al. Association of carotid atherosclerosis with genetic polymorphisms of the Klotho gene in patients with hypertension. Geriatr. Gerontol. Int. 10, 311–318 (2010).

    Article  PubMed  Google Scholar 

  25. Wang, H. L. et al. A potential regulatory single nucleotide polymorphism in the promoter of the Klotho gene may be associated with essential hypertension in the Chinese Han population. Clin. Chim. Acta 411, 386–390 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Riancho, J. A. et al. Association of the F352V variant of the Klotho gene with bone mineral density. Biogerontology 8, 121–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Yamada, Y., Ando, F., Niino, N. & Shimokata, H. Association of polymorphisms of the androgen receptor and Klotho genes with bone mineral density in Japanese women. J. Mol. Med. 83, 50–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Zarrabeitia, M. T. et al. Klotho gene polymorphism and male bone mass. Calcif. Tissue Int. 80, 10–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Ogata, N. et al. Association of Klotho gene polymorphism with bone density and spondylosis of the lumbar spine in postmenopausal women. Bone 31, 37–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Kawano, K. et al. Klotho gene polymorphisms associated with bone density of aged postmenopausal women. J. Bone Miner. Res. 17, 1744–1751 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Rhee, E. J. et al. Relationship between polymorphisms G395A in promoter and C1818T in exon 4 of the Klotho gene with glucose metabolism and cardiovascular risk factors in Korean women. J. Endocrinol. Invest. 29, 613–618 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Shimoyama, Y. et al. Klotho gene polymorphisms G-395A and C1818T are associated with low-density lipoprotein cholesterol and uric acid in Japanese hemodialysis patients. Am. J. Nephrol 30, 383–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Wolf, I. et al. Functional variant of Klotho: a breast cancer risk modifier among BRCA1 mutation carriers of Ashkenazi origin. Oncogene 29, 26–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Arking, D. E. et al. Klotho allele status and the risk of early-onset occult coronary artery disease. Am. J. Hum. Genet. 72, 1154–1161 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rhee, E. J. et al. The differential effects of age on the association of Klotho gene polymorphisms with coronary artery disease. Metabolism 55, 1344–1351 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Jo, S. H. et al. Klotho gene polymorphism is associated with coronary artery stenosis but not with coronary calcification in a Korean population. Int. Heart J. 50, 23–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, Y. et al. Klotho is a genetic risk factor for ischemic stroke caused by cardioembolism in Korean females. Neurosci. Lett. 407, 189–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Majumdar, V., Nagaraja, D. & Christopher, R. Association of the functional KL-VS variant of Klotho gene with early-onset ischemic stroke. Biochem. Biophys. Res. Commun. 403, 412–416 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Telci, D. et al. Klotho gene polymorphism of G395A is associated with kidney stones. Am. J. Nephrol. 33, 337–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Friedman, D. J. et al. Klotho variants and chronic hemodialysis mortality. J. Bone Miner. Res. 24, 1847–1855 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, Y. et al. Polymorphism in the promoter region of the Kotho gene (G.-395A) is associated with early dysfunction in vascular access in hemodialysis patients. Korean J. Intern. Med. 23, 201–207 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, F. et al. Association between Klotho gene and hand osteoarthritis in a female Caucasian population. Osteoarthritis Cartilage 15, 624–629 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Brownstein, C. A. et al. A translocation causing increased α-Klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc. Natl Acad. Sci. USA 105, 3455–3460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nolan, V. G. et al. Association of single nucleotide polymorphisms in Klotho with priapism in sickle cell anaemia. Br. J. Haematol. 128, 266–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Ichikawa, S. et al. A homozygous missense mutation in human Klotho causes severe tumoral calcinosis. J. Clin. Invest. 117, 2684–2691 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tangri, N., Alam, A., Wooten, E. C. & Huggins, G. S. Lack of association of Klotho gene variants with valvular and vascular calcification in Caucasians: a candidate gene study of the Framingham Offspring Cohort. Nephrol. Dial. Transplant. 26, 3998–4002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, F. et al. Lack of association between leukocyte telomere length and genetic variants in two ageing-related candidate genes. Mech. Ageing Dev. 128, 415–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Freathy, R. M. et al. The functional “KL-VS” variant of Klotho is not associated with type 2 diabetes in 5028 UK Caucasians. BMC Med. Genet. 7, 51 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kharitonenkov, A. FGFs and metabolism. Curr. Opin. Pharmacol. 9, 805–810 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Kurosu, H. & Kuro-o, M. The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol. Cell Endocrinol. 299, 72–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Long, Y. C. & Kharitonenkov, A. Hormone-like fibroblast growth factors and metabolic regulation. Biochim. Biophys. Acta 1812, 791–795 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Itoh, N. Hormone-like (endocrine) FGFs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res. 342, 1–11 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sinha, J. et al. β-Klotho and FGF-15/19 inhibit the apical sodium-dependent bile acid transporter in enterocytes and cholangiocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G996–G1003 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, X. & Li, Y. Role of FGF19 induced FGFR4 activation in the regulation of glucose homeostasis. Aging (Albany NY) 1, 1023–1027 (2009).

    Article  CAS  Google Scholar 

  55. Nabeshima, Y. The discovery of α-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis. Cell. Mol. Life Sci. 65, 3218–3230 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Nabeshima, Y. & Imura, H. α-Klotho: a regulator that integrates calcium homeostasis. Am. J. Nephrol. 28, 455–464 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Tohyama, O. et al. Klotho is a novel β-glucuronidase capable of hydrolyzing steroid β-glucuronides. J. Biol. Chem. 279, 9777–9784 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Nabeshima, Y. Discovery of α-Klotho unveiled new insights into calcium and phosphate homeostasis. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 85, 125–141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matsumura, Y. et al. Identification of the human Klotho gene and its two transcripts encoding membrane and secreted Klotho protein. Biochem. Biophys. Res. Commun. 242, 626–630 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Lorenzi, O. et al. Evidence against a direct role of Klotho in insulin resistance. Pflugers Arch. 459, 465–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Chihara, Y. et al. Klotho protein promotes adipocyte differentiation. Endocrinology 147, 3835–3842 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Ohnishi, M., Kato, S., Akiyoshi, J., Atfi, A. & Razzaque, M. S. Dietary and genetic evidence for enhancing glucose metabolism and reducing obesity by inhibiting Klotho functions. FASEB J. 25, 2031–2039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shimada, T. et al. Angiogenesis and vasculogenesis are impaired in the precocious-aging Klotho mouse. Circulation 110, 1148–1155 (2004).

    Article  PubMed  Google Scholar 

  64. Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamamoto, M. et al. Regulation of oxidative stress by the anti-aging hormone Klotho. J. Biol. Chem. 280, 38029–38034 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Imura, A. et al. α-Klotho as a regulator of calcium homeostasis. Science 316, 1615–1618 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Razzaque, M. S. Klotho and Na+, K+-ATPase activity: solving the calcium metabolism dilemma? Nephrol. Dial. Transplant. 23, 459–461 (2008).

    Article  PubMed  Google Scholar 

  68. Chang, Q. et al. The β-glucuronidase Klotho hydrolyzes and activates the TRPV5 channel. Science 310, 490–493 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Razzaque, M. S. Osteo-renal regulation of systemic phosphate metabolism. IUBMB Life 63, 240–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kurosu, H. et al. Regulation of fibroblast growth factor-23 signaling by Klotho. J. Biol. Chem. 281, 6120–6123 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Utsugi, T. et al. Decreased insulin production and increased insulin sensitivity in the Klotho mutant mouse, a novel animal model for human aging. Metabolism 49, 1118–1123 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Mori, K. et al. Disruption of Klotho gene causes an abnormal energy homeostasis in mice. Biochem. Biophys. Res. Commun. 278, 665–670 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Nakatani, T., Ohnishi, M. & Razzaque, M. S. Inactivation of Klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model. FASEB J. 23, 3702–3711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nakatani, T. et al. In vivo genetic evidence for Klotho-dependent, fibroblast growth factor 23 (Fgf23)-mediated regulation of systemic phosphate homeostasis. FASEB J. 23, 433–441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cha, S. K. et al. Regulation of renal outer medullary potassium channel and renal K+ excretion by Klotho. Mol. Pharmacol. 76, 38–46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000).

  78. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jonsson, K. B. et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N. Engl. J. Med. 348, 1656–1663 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Gattineni, J. & Baum, M. Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism. Pediatr. Nephrol. 25, 591–601 (2010).

    Article  PubMed  Google Scholar 

  81. Huang, C. L. Regulation of ion channels by secreted Klotho: mechanisms and implications. Kidney Int. 77, 855–860 (2010).

    Article  PubMed  Google Scholar 

  82. Tsujikawa, H., Kurotaki, Y., Fujimori, T., Fukuda, K. & Nabeshima, Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol. Endocrinol. 17, 2393–2403 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Forster, R. E. et al. Vitamin D receptor controls expression of the anti-aging Klotho gene in mouse and human renal cells. Biochem. Biophys. Res. Commun. 414, 557–562 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ito, S. et al. Molecular cloning and expression analyses of mouse β-Klotho, which encodes a novel Klotho family protein. Mech. Dev. 98, 115–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Ito, S., Fujimori, T., Furuya, A., Satoh, J. & Nabeshima, Y. Impaired negative feedback suppression of bile acid synthesis in mice lacking β-Klotho. J. Clin. Invest. 115, 2202–2208 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yu, C. et al. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J. Biol. Chem. 275, 15482–15489 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell. Metab. 2, 217–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Kurosu, H. et al. Tissue-specific expression of β-Klotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282, 26687–26695 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Ogawa, Y. et al. β-Klotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl Acad. Sci. USA 104, 7432–7437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kharitonenkov, A. & Shanafelt, A. B. Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs 22, 37–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Suzuki, M. et al. β-Klotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol. Endocrinol. 22, 1006–1014 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hotta, Y. et al. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150, 4625–4633 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Tomiyama, K. et al. Relevant use of Klotho in FGF19 subfamily signaling system in vivo. Proc. Natl Acad. Sci. USA 107, 1666–1671 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kharitonenkov, A. et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627–1635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Badman, M. K. et al. Hepatic fibroblast growth factor 21 is regulated by PPAR-α and is a key mediator of hepatic lipid metabolism in ketotic states. Cell. Metab. 5, 426–347 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Hegele, R. A., Cao, H., Frankowski, C., Mathews, S. T. & Leff, T. PPARγ F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 51, 3586–3590 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Francis, G. A. et al. Peroxisomal proliferator activated receptor-γ deficiency in a Canadian kindred with familial partial lipodystrophy type 3 (FPLD3). BMC Med. Genet. 7, 3 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yamagishi, T. et al. Troglitazone improves endothelial function and augments renal Klotho mRNA expression in Otsuka Long-Evans Tokushima Fatty (OLETF) rats with multiple atherogenic risk factors. Hypertens. Res. 24, 705–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, Y. & Sun, Z. Current understanding of Klotho. Ageing Res. Rev. 8, 43–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Min, D. et al. Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109, 2529–2537 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yamaza, T. et al. Mesenchymal stem cell-mediated ectopic hematopoiesis alleviates aging-related phenotype in immunocompromised mice. Blood 113, 2595–2604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Izbeki, F. et al. Loss of Kitlow progenitors, reduced stem cell factor and high oxidative stress underlie gastric dysfunction in progeric mice. J. Physiol. 588, 3101–3117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kuro-o, M. et al. Mutation of the mouse Klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Ohnishi, M. & Razzaque, M. S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J. 24, 3562–3571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ohnishi, M., Nakatani, T., Lanske, B. & Razzaque, M. S. Reversal of mineral ion homeostasis and soft-tissue calcification of Klotho knockout mice by deletion of vitamin D 1α-hydroxylase. Kidney Int. 75, 1166–1172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ohnishi, M., Nakatani, T., Lanske, B. & Razzaque, M. S. In vivo genetic evidence for suppressing vascular and soft-tissue calcification through the reduction of serum phosphate levels, even in the presence of high serum calcium and 1,25-dihydroxyvitamin D levels. Circ. Cardiovasc. Genet. 2, 583–590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Anstee, Q. M. & Goldin, R. D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 87, 1–16 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wree, A., Kahraman, A., Gerken, G. & Canbay, A. Obesity affects the liver—the link between adipocytes and hepatocytes. Digestion 83, 124–133 (2011).

    Article  PubMed  Google Scholar 

  109. Smith, B. W. & Adams, L. A. Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment. Nat. Rev. Endocrinol. 7, 456–465 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Haluzik, M. et al. Genetic background (C57BL/6J versus FVB/N) strongly influences the severity of diabetes and insulin resistance in ob/ob mice. Endocrinology 145, 3258–3264 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. US Department of Health and Human Services CDC Diabetes Data and Trends [online] (2008).

  112. Semba, R. D. et al. Plasma Klotho and mortality risk in older community-dwelling adults. J. Gerontol. A Biol. Sci. Med. Sci. 66, 794–800 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Paroni, G. et al. Klotho locus, metabolic traits, and serum hemoglobin in hospitalized older patients: a genetic association analysis. Age (Dordr.) http://dx.doi.org/10.1007/s11357-011-9273-x.

  114. Razzaque, M. S. Therapeutic potential of Klotho-FGF23 fusion polypeptides: WO2009095372. Expert Opin. Ther. Pat. 20, 981–985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cheng, C. Y., Kuro-o, M. & Razzaque, M. S. Molecular regulation of phosphate metabolism by fibroblast growth factor-23–Klotho system. Adv. Chronic Kidney Dis. 18, 91–97 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Razzaque, M. S. & Lanske, B. Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice. Trends Mol. Med. 12, 298–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Berndt, T. & Kumar, R. Novel mechanisms in the regulation of phosphorus homeostasis. Physiology (Bethesda) 24, 17–25 (2009).

    CAS  Google Scholar 

  118. Hu, M. C., Kuro-o, M. & Moe, O. W. Klotho and kidney disease. J. Nephrol. 23 (Suppl. 16), S136–S144 (2010).

    PubMed  PubMed Central  Google Scholar 

  119. Razzaque, M. S. Does FGF23 toxicity influence the outcome of chronic kidney disease? Nephrol. Dial. Transplant. 24, 4–7 (2009).

    Article  PubMed  Google Scholar 

  120. Quarles, L. D. Endocrine functions of bone in mineral metabolism regulation. J. Clin. Invest. 118, 3820–3828 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Goetz, R. et al. Molecular insights into the Klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol. Cell Biol. 27, 3417–3428 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Goetz, R. et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR–Klotho complex formation. Proc. Natl Acad. Sci. USA 107, 407–412 (2010).

    Article  PubMed  Google Scholar 

  123. Medici, D. et al. FGF-23–Klotho signaling stimulates proliferation and prevents vitamin D-induced apoptosis. J. Cell Biol. 182, 459–465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Osuka, S. & Razzaque, M. S. Can features of phosphate toxicity appear in normophosphatemia? J. Bone Miner. Metab. 30, 10–18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ohnishi, M., Kato, S. & Razzaque, M. S. Genetic induction of phosphate toxicity significantly reduces the survival of hypercholesterolemic obese mice. Biochem. Biophys. Res. Commun. 415, 434–438 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu, S. et al. Pathogenic role of Fgf23 in Hyp mice. Am. J. Physiol. Endocrinol. Metab. 291, E38–E49 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Sitara, D. et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 23, 421–432 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Marsenic, O. Glucose control by the kidney: an emerging target in diabetes. Am. J. Kidney Dis. 53, 875–883 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Mather, A. & Pollock, C. Glucose handling by the kidney. Kidney Int. (Suppl.), S1–S6 (2011).

  130. Mitrakou, A. Kidney: its impact on glucose homeostasis and hormonal regulation. Diabetes Res. Clin. Pract. 93 (Suppl. 1), S66–S72 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Ravenscroft, A. J., Valentine, J. M. & Knappett, P. A. Severe hypophosphataemia and insulin resistance in diabetic ketoacidosis. Anaesthesia 54, 198 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Paula, F. J., Plens, A. E. & Foss, M. C. Effects of hypophosphatemia on glucose tolerance and insulin secretion. Horm. Metab. Res. 30, 281–284 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Bohannon, N. J. Large phosphate shifts with treatment for hyperglycemia. Arch. Intern. Med. 149, 1423–1425 (1989).

    Article  CAS  PubMed  Google Scholar 

  134. Kim, H., Kalkhoff, R. K., Costrini, N. V., Cerletty, J. M. & Jacobson, M. Plasma insulin disturbances in primary hyperparathyroidism. J. Clin. Invest. 50, 2596–2605 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fadda, G. Z. & Massry, S. G. Impaired glucose-induced calcium signal in pancreatic islets in chronic renal failure. Am. J. Nephrol 11, 475–478 (1991).

    Article  CAS  PubMed  Google Scholar 

  136. Simonson, D. & DeFronzo, R. A. Hypophosphatemia and glucose intolerance. Adv. Exp. Med. Biol. 151, 217–228 (1982).

    Article  CAS  PubMed  Google Scholar 

  137. Zhou, X. J., Fadda, G. Z., Perna, A. F. & Massry, S. G. Phosphate depletion impairs insulin secretion by pancreatic islets. Kidney Int. 39, 120–128 (1991).

    Article  CAS  PubMed  Google Scholar 

  138. Celik, N. & Andiran, N. The relationship between serum phosphate levels with childhood obesity and insulin resistance. J. Pediatr. Endocrinol. Metab. 24, 81–83 (2011).

    CAS  PubMed  Google Scholar 

  139. DeFronzo, R. A. & Lang, R. Hypophosphatemia and glucose intolerance: evidence for tissue insensitivity to insulin. N. Engl. J. Med. 303, 1259–1263 (1980).

    Article  CAS  PubMed  Google Scholar 

  140. Haap, M. et al. Association of serum phosphate levels with glucose tolerance, insulin sensitivity and insulin secretion in non-diabetic subjects. Eur. J. Clin. Nutr. 60, 734–739 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. S. Razzaque thanks several members of his research group at the Harvard School of Dental Medicine for technical assistance: Mutsuko Ohnishi, Junko Akiyoshi, Satoko Osuka, Yongguen Hong, Khadijah Turkistani, Ismail Eddafali and Basel Karzoun. Thanks also to Syed Rafi for critically reading the manuscript. M. S. Razzaque acknowledges grant R01-DK077276 from the National Institute of Diabetes and Digestive and Kidney Diseases and institutional support from the Harvard School of Dental Medicine.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razzaque, M. The role of Klotho in energy metabolism. Nat Rev Endocrinol 8, 579–587 (2012). https://doi.org/10.1038/nrendo.2012.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.75

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing