Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autoimmune Addison disease: pathophysiology and genetic complexity

Abstract

Autoimmune Addison disease is a rare autoimmune disorder with symptoms that typically develop over months or years. Following the development of serum autoantibodies to the key steroidogenic enzyme, 21-hydroxylase, patients have a period of compensated or preclinical disease, characterized by elevations in adrenocortocotropic hormone and renin, before overt, symptomatic adrenal failure develops. We propose that local failure of steroidogenesis, causing breakdown of tolerance to adrenal antigens, might be a key factor in disease progression. The etiology of autoimmune Addison disease has a strong genetic component in man, and several dog breeds are also susceptible. Allelic variants of genes encoding molecules of both the adaptive and innate immune systems have now been implicated, with a focus on the immunological synapse and downstream participants in T lymphocyte antigen-receptor signaling. With the exception of MHC alleles, which contribute to susceptibility in both human and canine Addison disease, no major or highly penetrant disease alleles have been found to date. Future research into autoimmune Addison disease, making use of genome-wide association studies and next-generation sequencing technology, will address the gaps in our understanding of the etiology of this disease.

Key Points

  • Autoimmune Addison disease (AAD) is among the rarest of the autoimmune endocrinopathies

  • An aberrant immune response directed, at least in part, at the steroidogenic enzymes of the adrenal cortex (in particular 21-hydroxylase) underlies most cases of AAD

  • The progression of AAD can be slow, with an insidious decline into adrenal failure over months and years

  • Circumstantial evidence suggests that the glucocorticoid-rich adrenal milieu might give natural protection to adrenal antigens from the immune system

  • AAD has a strong genetic component, but owing to its rarity the recurrence rate in family members is of the order of 2%

  • Several disease-susceptibility alleles have been identified, including three loci associated with organ-specific autoimmunity (MHC, CTLA4 and PTPN22), and others that encode proteins involved in innate immune responses

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A hypothetical model of the pathogenesis of AAD based on the breakdown of glucocorticoid-induced immune privilege.
Figure 2: An example of a pedigree of Portuguese Water Dogs with heritable Addison disease.
Figure 3: Schematic representation of candidate-gene loci that confer susceptibility to autoimmune Addison disease.
Figure 4: Molecular interactions between antigen-presenting cells and CD4+ lymphocytes that are involved in autoimmunity.

Similar content being viewed by others

References

  1. Kong, M. F. & Jeffcoate, W. Eighty-six cases of Addison's disease. Clin. Endocrinol. (Oxf.) 41, 757–761 (1994).

    Article  CAS  Google Scholar 

  2. Laureti, S., Vecchi, L., Santeusanio, F. & Falorni, A. Is the prevalence of Addison's disease underestimated? J. Clin. Endocrinol. Metab. 84, 1762 (1999).

    CAS  PubMed  Google Scholar 

  3. Løvås, K. & Husebye, E. S. High prevalence and increasing incidence of Addison's disease in western Norway. Clin. Endocrinol. (Oxf.) 56, 787–791 (2002).

    Article  Google Scholar 

  4. Addison, T. On The Constitutional And Local Effects Of Disease Of The Supra-Renal Capsules (1855).

    Google Scholar 

  5. Ten, S., New, M. & Maclaren, N. Clinical review 130: Addison's disease 2001. J. Clin. Endocrinol. Metab. 86, 2909–2922 (2001).

    CAS  PubMed  Google Scholar 

  6. Nerup, J. Addison's disease—a review of some clinical, pathological and immunological features. Dan Med. Bull. 21, 201–217 (1974).

    CAS  PubMed  Google Scholar 

  7. Söderbergh, A. et al. Adrenal autoantibodies and organ-specific autoimmunity in patients with Addison's disease. Clin. Endocrinol. (Oxf.) 45, 453–460 (1996).

    Article  Google Scholar 

  8. Zelissen, P. M., Bast, E. J. & Croughs, R. J. Associated autoimmunity in Addison's disease. J. Autoimmun. 8, 121–130 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Lander, E. S. & Schork, N. J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Winqvist, O., Karlsson, F. A. & Kampe, O. 21-Hydroxylase, a major autoantigen in idiopathic Addison's disease. Lancet 339, 1559–1562 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Nikoshkov, A. et al. A conformation-dependent epitope in Addison's disease and other endocrinological autoimmune diseases maps to a carboxyl-terminal functional domain of human steroid 21-hydroxylase. J. Immunol. 162, 2422–2426 (1999).

    CAS  PubMed  Google Scholar 

  12. Nikfarjam, L. et al. Mechanism of inhibition of cytochrome P450 C21 enzyme activity by autoantibodies from patients with Addison's disease. Eur. J. Endocrinol. 152, 95–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Furmaniak, J. et al. Autoimmune Addison's disease—evidence for a role of steroid 21-hydroxylase autoantibodies in adrenal insufficiency. J. Clin. Endocrinol. Metab. 79, 1517–1521 (1994).

    CAS  PubMed  Google Scholar 

  14. Boscaro, M. et al. Hormonal responses during various phases of autoimmune adrenal failure: no evidence for 21-hydroxylase enzyme activity inhibition in vivo. J. Clin. Endocrinol. Metab. 81, 2801–2804 (1996).

    CAS  PubMed  Google Scholar 

  15. Krohn, K., Uibo, R., Aavik, E., Peterson, P. & Savilahti, K. Identification by molecular cloning of an autoantigen associated with Addison's disease as steroid 17 alpha-hydroxylase. Lancet 339, 770–773 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Winqvist, O., Gustafsson, J., Rorsman, F., Karlsson, F. A. & Kampe, O. Two different cytochrome P450 enzymes are the adrenal antigens in autoimmune polyendocrine syndrome type I and Addison's disease. J. Clin. Invest. 92, 2377–2385 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Betterle, C. et al. The natural history of adrenal function in autoimmune patients with adrenal autoantibodies. J. Endocrinol. 117, 467–475 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Coco, G. et al. Estimated risk for developing autoimmune Addison's disease in patients with adrenal cortex autoantibodies. J. Clin. Endocrinol. Metab. 91, 1637–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Torrejón, S., Webb, S. M., Rodriguez-Espinosa, J., Martinez de Osaba, M. J. & Corcoy, R. Long-lasting subclinical Addison's disease. Exp. Clin. Endocrinol. Diabetes 115, 530–532 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Smans, L. C. & Zelissen, P. M. Partial recovery of adrenal function in a patient with autoimmune Addison's disease. J. Endocrinol. Invest. 31, 672–674 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. De Bellis, A. et al. Remission of subclinical adrenocortical failure in subjects with adrenal autoantibodies. J. Clin. Endocrinol. Metab. 76, 1002–1007 (1993).

    CAS  PubMed  Google Scholar 

  22. De Bellis, A. A. et al. Time course of 21-hydroxylase antibodies and long-term remission of subclinical autoimmune adrenalitis after corticosteroid therapy: case report. J. Clin. Endocrinol. Metab. 86, 675–678 (2001).

    Article  CAS  Google Scholar 

  23. Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17, 399–403 (1997).

  24. Nagamine, K. et al. Positional cloning of the APECED gene. Nat. Genet. 17, 393–398 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Pearce, S. H. et al. A common and recurrent 13-bp deletion in the autoimmune regulator gene in British kindreds with autoimmune polyendocrinopathy type 1. Am. J. Hum. Genet. 63, 1675–1684 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pearce, S. H. & Cheetham, T. D. Autoimmune polyendocrinopathy syndrome type 1: treat with kid gloves. Clin. Endocrinol. (Oxf.) 54, 433–435 (2001).

    Article  CAS  Google Scholar 

  27. Zlotogora, J. & Shapiro, M. S. Polyglandular autoimmune syndrome type I among Iranian Jews. J. Med. Genet. 29, 824–826 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosatelli, M. C. et al. A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients. Hum. Genet. 103, 428–434 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Perheentupa, J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J. Clin. Endocrinol. Metab. 91, 2843–2850 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Wolff, A. S. et al. Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene. J. Clin. Endocrinol. Metab. 92, 595–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Neufeld, M., Maclaren, N. K. & Blizzard, R. M. Two types of autoimmune Addison's disease associated with different polyglandular autoimmune (PGA) syndromes. Medicine (Baltimore) 60, 355–362 (1981).

    Article  CAS  Google Scholar 

  32. Ahonen, P., Myllarniemi, S., Sipila, I. & Perheentupa, J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N. Engl. J. Med. 322, 1829–1836 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Betterle, C., Greggio, N. A. & Volpato, M. Clinical review 93: Autoimmune polyglandular syndrome type 1. J. Clin. Endocrinol. Metab. 83, 1049–1055 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Akirav, E. M., Ruddle, N. H. & Herold, K. C. The role of AIRE in human autoimmune disease. Nat. Rev. Endocrinol. 7, 25–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Betterle, C., Volpato, M., Greggio, A. N. & Presotto, F. Type 2 polyglandular autoimmune disease (Schmidt's syndrome). J. Pediatr. Endocrinol. Metab. 9 (Suppl. 1), 113–123 (1996).

    PubMed  Google Scholar 

  36. Dittmar, M. & Kahaly, G. J. Polyglandular autoimmune syndromes: immunogenetics and long-term follow-up. J. Clin. Endocrinol. Metab. 88, 2983–2992 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Myhre, A. G. et al. Autoimmune adrenocortical failure in Norway autoantibodies and human leukocyte antigen class II associations related to clinical features. J. Clin. Endocrinol. Metab. 87, 618–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Drexhage, H. A. Autoimmune endocrinopathies (ed. Volpe, R.) 309–336 (Humana Press, 1999).

  39. Greco, D. S. Hypoadrenocorticism in small animals. Clin. Tech. Small Anim. Pract. 22, 32–35 (2007).

    Article  PubMed  Google Scholar 

  40. Peterson, M. E., Kintzer, P. P. & Kass, P. H. Pretreatment clinical and laboratory findings in dogs with hypoadrenocorticism: 225 cases (1979–1993). J. Am. Vet. Med. Assoc. 208, 85–91 (1996).

    CAS  PubMed  Google Scholar 

  41. Famula, T. R., Belanger, J. M. & Oberbauer, A. M. Heritability and complex segregation analysis of hypoadrenocorticism in the standard poodle. J. Small Anim. Pract 44, 8–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Oberbauer, A. M. et al. Inheritance of hypoadrenocorticism in bearded collies. Am. J. Vet. Res. 63, 643–647 (2002).

    Article  PubMed  Google Scholar 

  43. Pedersen, N. C. A review of immunologic diseases of the dog. Vet. Immunol. Immunopathol. 69, 251–342 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smallwood, L. J. & Barsanti, J. A. Hypoadrenocorticism in a family of leonbergers. J. Am. Anim. Hosp. Assoc. 31, 301–305 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Chase, K., Sargan, D., Miller, K., Ostrander, E. A. & Lark, K. G. Understanding the genetics of autoimmune disease: two loci that regulate late onset Addison's disease in Portuguese Water Dogs. Int. J. Immunogenet. 33, 179–184 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hughes, A. M., Jokinen, P., Bannasch, D. L., Lohi, H. & Oberbauer, A. M. Association of a dog leukocyte antigen class II haplotype with hypoadrenocorticism in Nova Scotia Duck Tolling Retrievers. Tissue Antigens 75, 684–690 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Bowen, D., Schaer, M. & Riley, W. Autoimmune polyglandular syndrome in a dog: a case report. J. Am. Anim. Hosp. Assoc. 22, 649–654 (1985).

    Google Scholar 

  48. Heggarty, H. Addison's disease in identical twins. Br. Med. J. 1, 559 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Simmonds, J. P. & Lister, J. Auto-immune Addison's disease in identical twins. Postgrad. Med. J. 54, 552–554 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith, M. E., Gough, J. & Galpin, O. P. Addison's disease in identical twins. Br. Med. J. 2, 1316 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Russell, G. A., Coulter, J. B., Isherwood, D. M., Diver, M. J. & Smith, D. S. Autoimmune Addison's disease and thyrotoxic thyroiditis presenting as encephalopathy in twins. Arch. Dis. Child. 66, 350–352 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fairchild, R. S., Schimke, R. N. & Abdou, N. I. Immunoregulation abnormalities in familial Addison's disease. J. Clin. Endocrinol. Metab. 51, 1074–1077 (1980).

    Article  CAS  PubMed  Google Scholar 

  53. Hewitt, P. H. Addison's disease occurring in sisters. Br. Med. J. 2, 1530–1531 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vyse, T. J. & Todd, J. A. Genetic analysis of autoimmune disease. Cell 85, 311–318 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Risch, N. Assessing the role of HLA-linked and unlinked determinants of disease. Am. J. Hum. Genet. 40, 1–14 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Vaidya, B., Kendall-Taylor, P. & Pearce, S. H. The genetics of autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 87, 5385–5397 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Hemminki, K., Li, X., Sundquist, J. & Sundquist, K. Familial association between type 1 diabetes and other autoimmune and related diseases. Diabetologia 52, 1820–1828 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Maclaren, N. K. & Riley, W. J. Inherited susceptibility to autoimmune Addison's disease is linked to human leukocyte antigens-DR3 and/or DR4, except when associated with type I autoimmune polyglandular syndrome. J. Clin. Endocrinol. Metab. 62, 455–459 (1986).

    Article  CAS  PubMed  Google Scholar 

  59. Boehm, B. O. et al. The HLA-DQ beta non-Asp-57 allele: a predictor of future insulin-dependent diabetes mellitus in patients with autoimmune Addison's disease. Tissue Antigens 37, 130–132 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Huang, W. et al. Although DR3-DQB1*0201 may be associated with multiple component diseases of the autoimmune polyglandular syndromes, the human leukocyte antigen DR4-DQB1*0302 haplotype is implicated only in beta-cell autoimmunity. J. Clin. Endocrinol. Metab. 81, 2559–2563 (1996).

    CAS  PubMed  Google Scholar 

  61. Partanen, J., Peterson, P., Westman, P., Aranko, S. & Krohn, K. Major histocompatibility complex class II and III in Addison's disease MHC alleles do not predict autoantibody specificity and 21-hydroxylase gene polymorphism has no independent role in disease susceptibility. Hum. Immunol. 41, 135–140 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Park, Y. S. et al. Additional association of intra-MHC genes, MICA and D6S273, with Addison's disease. Tissue Antigens 60, 155–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Yu, L. et al. DRB1*04 and DQ alleles: expression of 21-hydroxylase autoantibodies and risk of progression to Addison's disease. J. Clin. Endocrinol. Metab. 84, 328–335 (1999).

    CAS  PubMed  Google Scholar 

  64. Peterson, P. et al. Steroid 21-hydroxylase gene polymorphism in Addison's disease patients. Tissue Antigens 46, 63–67 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Gambelunghe, G. et al. Microsatellite polymorphism of the MHC class I chain-related (MIC-A and MIC-B) genes marks the risk for autoimmune Addison's disease. J. Clin. Endocrinol. Metab. 84, 3701–3707 (1999).

    CAS  PubMed  Google Scholar 

  66. Triolo, T. M. et al. Homozygosity of the polymorphism MICA5.1 identifies extreme risk of progression to overt adrenal insufficiency among 21-hydroxylase antibody-positive patients with type 1 diabetes. J. Clin. Endocrinol. Metab. 94, 4517–4523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dziembowska, M. et al. Three novel mutations of the CIITA gene in MHC class II-deficient patients with a severe immunodeficiency. Immunogenetics 53, 821–829 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Koizumi, K. et al. Single nucleotide polymorphisms in the gene encoding the major histocompatibility complex class II transactivator (CIITA) in systemic lupus erythematosus. Ann. Rheum. Dis. 64, 947–950 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eyre, S. et al. Investigation of the MHC2TA gene, associated with rheumatoid arthritis in a Swedish population, in a UK rheumatoid arthritis cohort. Arthritis Rheum. 54, 3417–3422 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Ghaderi, M. et al. MHC2TA single nucleotide polymorphism and genetic risk for autoimmune adrenal insufficiency. J. Clin. Endocrinol. Metab. 91, 4107–4111 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Skinningsrud, B. et al. Polymorphisms in CLEC16A and CIITA at 16p13 are associated with primary adrenal insufficiency. J. Clin. Endocrinol. Metab. 93, 3310–3317 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Brunet, J. F. et al. A new member of the immunoglobulin superfamily--CTLA-4. Nature 328, 267–270 (1987).

    Article  CAS  PubMed  Google Scholar 

  73. Akamizu, T. et al. Association of autoimmune thyroid disease with microsatellite markers for the thyrotropin receptor gene and CTLA-4 in Japanese patients. Thyroid 10, 851–858 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Kotsa, K., Watson, P. F. & Weetman, A. P. A CTLA-4 gene polymorphism is associated with both Graves disease and autoimmune hypothyroidism. Clin. Endocrinol. (Oxf.) 46, 551–554 (1997).

    Article  CAS  Google Scholar 

  75. Sale, M. M. et al. Association of autoimmune thyroid disease with a microsatellite marker for the thyrotropin receptor gene and CTLA-4 in a Japanese population. Proc. Assoc. Am. Physicians 109, 453–461 (1997).

    CAS  PubMed  Google Scholar 

  76. Yanagawa, T., Hidaka, Y., Guimaraes, V., Soliman, M. & DeGroot, L. J. CTLA-4 gene polymorphism associated with Graves' disease in a Caucasian population. J. Clin. Endocrinol. Metab. 80, 41–45 (1995).

    CAS  PubMed  Google Scholar 

  77. Marron, M. P. et al. Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA4 polymorphisms in multiple ethnic groups. Hum. Mol. Genet. 6, 1275–1282 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Nistico, L. et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum. Mol. Genet. 5, 1075–1080 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Seidl, C. et al. CTLA4 codon 17 dimorphism in patients with rheumatoid arthritis. Tissue Antigens 51, 62–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Vaidya, B. et al. An association between the CTLA4 exon 1 polymorphism and early rheumatoid arthritis with autoimmune endocrinopathies. Rheumatology (Oxford) 41, 180–183 (2002).

    Article  CAS  Google Scholar 

  81. Vaidya, B. et al. Association analysis of the cytotoxic T lymphocyte antigen-4 (CTLA-4) and autoimmune regulator-1 (AIRE-1) genes in sporadic autoimmune Addison's disease. J. Clin. Endocrinol. Metab. 85, 688–691 (2000).

    CAS  PubMed  Google Scholar 

  82. Kemp, E. H. et al. A cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphism is associated with autoimmune Addison's disease in English patients. Clin. Endocrinol. (Oxf.) 49, 609–613 (1998).

    Article  CAS  Google Scholar 

  83. Blomhoff, A. et al. Polymorphisms in the cytotoxic T lymphocyte antigen-4 gene region confer susceptibility to Addison's disease. J. Clin. Endocrinol. Metab. 89, 3474–3476 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Gerold, K. D. et al. The soluble ctla-4 splice variant protects from type 1 diabetes and potentiates regulatory T-cell function. Diabetes 60, 1955–1963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Daroszewski, J. et al. Soluble CTLA-4 receptor an immunological marker of Graves' disease and severity of ophthalmopathy is associated with CTLA-4 Jo31 and CT60 gene polymorphisms. Eur. J. Endocrinol. 161, 787–793 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Oaks, M. K. & Hallett, K. M. Cutting edge: a soluble form of CTLA-4 in patients with autoimmune thyroid disease. J. Immunol. 164, 5015–5018 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kahles, H. et al. Sex-specific association of PTPN22 1858T with type 1 diabetes but not with Hashimoto's thyroiditis or Addison's disease in the German population. Eur. J. Endocrinol. 153, 895–899 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Velaga, M. R. et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves' disease. J. Clin. Endocrinol. Metab. 89, 5862–5865 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Skinningsrud, B. et al. Mutation screening of PTPN22: association of the 1858T-allele with Addison's disease. Eur. J. Hum. Genet. 16, 977–982 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Roycroft, M. et al. The tryptophan 620 allele of the lymphoid tyrosine phosphatase (PTPN22) gene predisposes to autoimmune Addison's disease. Clin. Endocrinol. (Oxf.) 70, 358–362 (2009).

    Article  CAS  Google Scholar 

  93. Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37, 1317–1319 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Rieck, M. et al. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J. Immunol. 179, 4704–4710 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Arechiga, A. F. et al. Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J. Immunol. 182, 3343–3347 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, J. et al.The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat. Genet. 43, 902–907 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Brown, J. A. et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J. Immunol. 170, 1257–1266 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Hayashi, M., Kouki, T., Takasu, N., Sunagawa, S. & Komiya, I. Association of an A/C single nucleotide polymorphism in programmed cell death-ligand 1 gene with Graves' disease in Japanese patients. Eur. J. Endocrinol. 158, 817–822 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Mitchell, A. L. et al. Programmed death ligand 1 (PD-L1) gene variants contribute to autoimmune Addison's disease and Graves' disease susceptibility. J. Clin. Endocrinol. Metab. 94, 5139–5145 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Capon, F. et al. Fine mapping of the PSORS4 psoriasis susceptibility region on chromosome 1q21. J. Invest. Dermatol. 116, 728–730 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Kochi, Y. et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat. Genet. 37, 478–485 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kyogoku, C. et al. Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum. 46, 1242–1254 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Ehrhardt, G. R. et al. Fc receptor-like proteins (FCRL): immunomodulators of B cell function. Adv. Exp. Med. Biol. 596, 155–162 (2007).

    Article  PubMed  Google Scholar 

  104. Owen, C. J. et al. Analysis of the Fc receptor-like-3 (FCRL3) locus in Caucasians with autoimmune disorders suggests a complex pattern of disease association. J. Clin. Endocrinol. Metab. 92, 1106–1111 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Cummings, J. R. et al. The genetics of NOD-like receptors in Crohn's disease. Tissue Antigens 76, 48–56 (2010).

    CAS  PubMed  Google Scholar 

  106. Jin, Y., Birlea, S. A., Fain, P. R. & Spritz, R. A. Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. J. Invest. Dermatol. 127, 2558–2562 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Magitta, N. F. et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison's disease and type 1 diabetes. Genes Immun. 10, 120–124 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Zurawek, M. et al. A coding variant in NLRP1 is associated with autoimmune Addison's disease. Hum. Immunol. 71, 530–534 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Hakonarson, H. et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448, 591–594 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Zoledziewska, M. et al. Variation within the CLEC16A gene shows consistent disease association with both multiple sclerosis and type 1 diabetes in Sardinia. Genes Immun. 10, 15–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Dubois, P. C. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Marquez, A. et al. Specific association of a CLEC16A/KIAA0350 polymorphism with NOD2/CARD15 Crohn's disease patients. Eur. J. Hum. Genet. 17, 1304–1308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Skinningsrud, B. et al. A CLEC16A variant confers risk for juvenile idiopathic arthritis and anti-CCP negative rheumatoid arthritis. Ann. Rheum. Dis. 69, 1471–1474 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Todd, J. A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mathieu, C., Waer, M., Laureys, J., Rutgeerts, O. & Bouillon, R. Prevention of autoimmune diabetes in NOD mice by 1,25 dihydroxyvitamin D3. Diabetologia 37, 552–558 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Zella, J. B. & DeLuca, H. F. Vitamin D and autoimmune diabetes. J. Cell Biochem. 88, 216–222 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Pani, M. A. et al. A polymorphism within the vitamin D-binding protein gene is associated with Graves' disease but not with Hashimoto's thyroiditis. J. Clin. Endocrinol. Metab. 87, 2564–2567 (2002).

    CAS  PubMed  Google Scholar 

  118. Lopez, E. R. et al. A promoter polymorphism of the CYP27B1 gene is associated with Addison's disease, Hashimoto's thyroiditis, Graves' disease and type 1 diabetes mellitus in Germans. Eur. J. Endocrinol. 151, 193–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Jennings, C. E., Owen, C. J., Wilson, V. & Pearce, S. H. A haplotype of the CYP27B1 promoter is associated with autoimmune Addison's disease but not with Graves' disease in a UK population. J. Mol. Endocrinol. 34, 859–863 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Betterle, C., Dal Pra, C., Mantero, F. & Zanchetta, R. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr. Rev. 23, 327–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Dickerman, Z., Grant, D. R., Faiman, C. & Winter, J. S. Intraadrenal steroid concentrations in man: zonal differences and developmental changes. J. Clin. Endocrinol. Metab. 59, 1031–1036 (1984).

    Article  CAS  PubMed  Google Scholar 

  122. Rozkova, D., Horvath, R., Bartunkova, J. & Spisek, R. Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin. Immunol. 120, 260–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Franchimont, D. et al. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J. Immunol. 164, 1768–1774 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Abe, M. & Thomson, A. W. Dexamethasone preferentially suppresses plasmacytoid dendritic cell differentiation and enhances their apoptotic death. Clin. Immunol. 118, 300–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Cidlowski, J. A. et al. The biochemistry and molecular biology of glucocorticoid-induced apoptosis in the immune system. Recent Prog. Horm. Res. 51, 457–490; discussion 490–491 (1996).

    CAS  PubMed  Google Scholar 

  126. Moser, M. et al. Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur. J. Immunol. 25, 2818–2824 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Zubiaga, A. M., Munoz, E. & Huber, B. T. IL-4 and IL-2 selectively rescue Th cell subsets from glucocorticoid-induced apoptosis. J. Immunol. 149, 107–112 (1992).

    CAS  PubMed  Google Scholar 

  128. Hayashi, Y., Hiyoshi, T., Takemura, T., Kurashima, C. & Hirokawa, K. Focal lymphocytic infiltration in the adrenal cortex of the elderly: immunohistological analysis of infiltrating lymphocytes. Clin. Exp. Immunol. 77, 101–105 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Vergeer, M. et al. Genetic variant of the scavenger receptor BI in humans. N. Engl. J. Med. 364, 136–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Metherell, L. et al. Mutations in GPX1 and NNT, endcoding antioxidant defense genes, cause familial glucocorticoid deficiency [Abstract]. Endocr. Rev. 32 (meeting abstracts), OR22–25 (2011).

    Google Scholar 

  131. Gombos, Z. et al. Analysis of extended human leukocyte antigen haplotype association with Addison's disease in three populations. Eur. J. Endocrinol. 157, 757–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Skinningsrud, B. et al. Multiple loci in the HLA complex are associated with Addison's disease. J. Clin. Endocrinol. Metab. 96, E1703–E1708 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Pani, M. A., Seissler, J., Usadel, K. H. & Badenhoop, K. Vitamin D receptor genotype is associated with Addison's disease. Eur. J. Endocrinol. 147, 635–640 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. L. Mitchell is in receipt of a clinical research training fellowship from the Medical Research Council, UK. S. H. S Pearce's research work is supported by European Union Framework 7 grant 201167 to the Euradrenal Consortium and grants G07017632 & G0900001 from the Medical Research Council, UK. A. L. Mitchell and S. H. S. Pearce thank their collaborator, Professor Eystein Husebye, Dr Martina Ericksen and the group at Haukeland University Hospital, Bergen, Norway, for contributing family data on Addison disease gathered from the Norwegian registry of organ-specific autoimmune diseases for this Review.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Anna L. Mitchell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, A., Pearce, S. Autoimmune Addison disease: pathophysiology and genetic complexity. Nat Rev Endocrinol 8, 306–316 (2012). https://doi.org/10.1038/nrendo.2011.245

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing