Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The emerging role of HDL in glucose metabolism

Abstract

A low plasma level of HDL cholesterol is an atherosclerotic risk factor; however, emerging evidence suggests that low HDL levels might also contribute to the pathophysiology of type 2 diabetes mellitus (T2DM) through direct effects on plasma glucose. In the past decade, animal and clinical studies have uncovered a previously undescribed spectrum of HDL actions, indicating that HDL may control glucose homeostasis through mechanisms including insulin secretion, direct glucose uptake by muscle via the AMP-activated protein kinase, and possibly enhanced insulin sensitivity. These effects are mediated by multiple cell types via mechanisms including preservation of cell function through cellular lipid removal and also via direct signaling events. We suggest a paradigm shift from HDL being a bystander to being an active player in diabetic pathophysiology, which raises the possibility that HDL elevation could be a novel therapeutic avenue for T2DM. The entry of HDL-raising agents of the cholesteryl ester transfer protein (CETP) inhibitor class into late-phase clinical trials creates potential for rapid clinical translation. This Review will discuss the emerging evidence for a role of HDL-mediated glucose regulation in the pathophysiology of T2DM, and will also outline the therapeutic potential for HDL elevation for the prevention and management of T2DM.

Key Points

  • Animal and clinical studies have provided preliminary evidence for a previously undescribed spectrum of HDL actions related to glucose metabolism

  • HDL might influence glucose homeostasis through mechanisms including insulin secretion, enhanced insulin sensitivity and direct glucose uptake by muscle

  • These effects might be mediated by mechanisms including preservation of cellular function through cellular lipid removal and also via direct signaling events

  • The existence of these mechanisms suggests a paradigm shift from HDL being a bystander to being an active player in diabetic pathophysiology

  • HDL-raising agents in development for atherosclerotic vascular disease could also have efficacy in glycemic control, with potential application in the prevention and treatment of type 2 diabetes mellitus

  • Further human, animal and cellular studies are required to substantiate the effects of HDL on glucose metabolism as well as to delineate mechanisms underlying this relationship and establish its clinical relevance

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mechanisms affecting HDL and ApoA-I concentrations and functionality in T2DM.
Figure 2: Potential mechanisms by which HDL might influence glucose homeostasis.
Figure 3: Effect of rHDL infusion on plasma insulin and glucose concentrations.

References

  1. Barter, P. et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N. Engl. J. Med. 357, 1301–1310 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Gordon, D. J. & Rifkind, B. M. High-density lipoprotein—the clinical implications of recent studies. N. Engl. J. Med. 321, 1311–1316 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Barter, P. J. et al. Antiinflammatory properties of HDL. Circ. Res. 95, 764–772 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Patel, S. et al. Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes. J. Am. Coll. Cardiol. 53, 962–971 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Navab, M. et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. J. Lipid Res. 41, 1495–1508 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Navab, M. et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J. Lipid Res. 41, 1481–1494 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Calkin, A. C. et al. Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation 120, 2095–2104 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Drew, B. G., Fidge, N. H., Gallon-Beaumier, G., Kemp, B. E. & Kingwell, B. A. High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proc. Natl Acad. Sci. USA 101, 6999–7004 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuhanna, I. S. et al. High-density lipoprotein binding to scavenger receptor-B1 activates endothelial nitric oxide synthase. Nat. Med. 7, 853–857 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Brunham, L. R. et al. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat. Med. 13, 340–347 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Abderrahmani, A. et al. Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells. Diabetologia 50, 1304–1314 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Drew, B. G. et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation 119, 2103–2111 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Fryirs, M. A. et al. Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler. Thromb. Vasc. Biol. 30, 1642–1648 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Han, R. et al. Apolipoprotein A-I stimulates AMP-activated protein kinase and improves glucose metabolism. Diabetologia 50, 1960–1968 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Wellen, K. E. & Hotamisligil, G. S. Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111–1119 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koseki, M. et al. Impaired insulin secretion in four Tangier disease patients with ABCA1 mutations. J. Atheroscler. Thromb. 16, 292–296 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Vergeer, M. et al. Carriers of loss-of-function mutations in ABCA1 display pancreatic beta-cell dysfunction. Diabetes Care 33, 869–874 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daimon, M. et al. Association of the ABCA1 gene polymorphisms with type 2 DM in a Japanese population. Biochem. Biophys. Res. Commun. 329, 205–210 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Villarreal-Molina, M. T. et al. Association of the ATP-binding cassette transporter A1 R230C variant with early-onset type 2 diabetes in a Mexican population. Diabetes 57, 509–513 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Zhong, S. et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J. Clin. Invest. 97, 2917–2923 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. López-Ríos, L. et al. Association of Taq 1B CETP polymorphism with insulin and HOMA levels in the population of the Canary Islands. Nutr. Metab. Cardiovasc. Dis. 21, 18–24 (2011).

    Article  PubMed  CAS  Google Scholar 

  22. Ruan, X. et al. Apolipoprotein A-I possesses an anti-obesity effect associated with increase of energy expenditure and up-regulation of UCP1 in brown fat. J. Cell. Mol. Med. 15, 763–772 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Sturek, J. M. et al. An intracellular role for ABCG1-mediated cholesterol transport in the regulated secretory pathway of mouse pancreatic beta cells. J. Clin. Invest. 120, 2575–2589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cannon, C. P. et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N. Engl. J. Med. 363, 2406–2415 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Drexel, H. et al. Is atherosclerosis in diabetes and impaired fasting glucose driven by elevated LDL cholesterol or by decreased HDL cholesterol? Diabetes Care 28, 101–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Ford, E. S., Giles, W. H. & Dietz, W. H. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287, 356–359 (2002).

    Article  PubMed  Google Scholar 

  27. Gatti, A. et al. Poor glycemic control is an independent risk factor for low HDL cholesterol in patients with type 2 diabetes. Diabetes Care 32, 1550–1552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haffner, S. M., Stern, M. P., Hazuda, H. P., Mitchell, B. D. & Patterson, J. K. Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA 263, 2893–2898 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Buijsse, B., Simmons, R. K., Griffin, S. J. & Schulze, M. B. Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol. Rev. 33, 46–62 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bozorgmanesh, M., Hadaegh, F., Ghaffari, S., Harati, H. & Azizi, F. A simple risk score effectively predicted type 2 diabetes in Iranian adult population: population-based cohort study. Eur. J. Public Health 21, 554–559 (2011).

    Article  PubMed  Google Scholar 

  31. Dhanaraj, E. et al. Predictors of metabolic syndrome in Asian north Indians with newly detected type 2 diabetes. Indian J. Med. Res. 129, 506–514 (2009).

    PubMed  Google Scholar 

  32. Fagot-Campagna, A. et al. HDL cholesterol subfractions and risk of developing type 2 diabetes among Pima Indians. Diabetes Care 22, 271–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Schulze, M. B. et al. Use of multiple metabolic and genetic markers to improve the prediction of type 2 diabetes: the EPIC-Potsdam Study. Diabetes Care 32, 2116–2119 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. von Eckardstein, A., Schulte, H. & Assmann, G. Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: implications for the definition of impaired fasting glucose by the American Diabetes Association. Prospective Cardiovascular Münster. J. Clin. Endocrinol. Metab. 85, 3101–3108 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Franks, P. W. et al. Childhood predictors of young-onset type 2 diabetes. Diabetes 56, 2964–2972 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt, M. I. et al. Identifying individuals at high risk for diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care 28, 2013–2018 (2005).

    Article  PubMed  Google Scholar 

  37. Aekplakorn, W. et al. A risk score for predicting incident diabetes in the Thai population. Diabetes Care 29, 1872–1877 (2006).

    Article  PubMed  Google Scholar 

  38. Wilson, P. W. et al. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch. Intern. Med. 167, 1068–1074 (2007).

    Article  PubMed  Google Scholar 

  39. Khera, A. V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364, 127–135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brunzell, J. D. & Hokanson, J. E. Dyslipidemia of central obesity and insulin resistance. Diabetes Care 22 (Suppl. 3), C10–C13 (1999).

    PubMed  Google Scholar 

  41. Ginsberg, H. N. Insulin resistance and cardiovascular disease. J. Clin. Invest. 106, 453–458 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Murao, K. et al. Effects of glucose and insulin on rat apolipoprotein A-I gene expression. J. Biol. Chem. 273, 18959–18965 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Mooradian, A. D., Haas, M. J. & Wong, N. C. Transcriptional control of apolipoprotein A-I gene expression in diabetes. Diabetes 53, 513–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Haas, M. J., Pun, K., Reinacher, D., Wong, N. C. & Mooradian, A. D. Effects of ketoacidosis on rat apolipoprotein A1 gene expression: a link with acidosis but not with ketones. J. Mol. Endocrinol. 25, 129–139 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Haas, M. J., Reinacher, D., Li, J. P., Wong, N. C. & Mooradian, A. D. Regulation of apoA1 gene expression with acidosis: requirement for a transcriptional repressor. J. Mol. Endocrinol. 27, 43–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Borggreve, S. E., De Vries, R. & Dullaart, R. P. Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin:cholesterol acyltransferase and lipid transfer proteins. Eur. J. Clin. Invest. 33, 1051–1069 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Pont, F., Duvillard, L., Florentin, E., Gambert, P. & Vergès, B. High-density lipoprotein apolipoprotein A-I kinetics in obese insulin resistant patients. An in vivo stable isotope study. Int. J. Obes. Relat. Metab. Disord. 26, 1151–1158 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Vajo, Z., Terry, J. G. & Brinton, E. A. Increased intra-abdominal fat may lower HDL levels by increasing the fractional catabolic rate of Lp A-I in postmenopausal women. Atherosclerosis 160, 495–501 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Berthezene, F. Non-insulin dependent diabetes and reverse cholesterol transport. Atherosclerosis 124 (Suppl.), S39–S42 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Hoang, A. et al. Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties. Diabetologia 50, 1770–1779 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Calvo, C., Ponsin, G. & Berthezene, F. Characterization of the non enzymatic glycation of high density lipoprotein in diabetic patients. Diabetes Metab. 14, 264–269 (1988).

    CAS  Google Scholar 

  53. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Kooner, J. S. et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 43, 984–989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barter, P. J. et al. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Circulation 124, 555–562 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Fielding, C. J. & Fielding, P. E. Cellular cholesterol efflux. Biochim. Biophys. Acta 1533, 175–189 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Oram, J. F. & Vaughan, A. M. ATP-binding cassette cholesterol transporters and cardiovascular disease. Circ. Res. 99, 1031–1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Kennedy, M. A. et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell. Metab. 1, 121–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Zhu, X. et al. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J. Biol. Chem. 283, 22930–22941 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun, Y. et al. Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K. Circ. Res. 104, 455–465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yvan-Charvet, L. et al. SR-BI inhibits ABCG1-stimulated net cholesterol efflux from cells to plasma HDL. J. Lipid Res. 49, 107–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Senokuchi, T. et al. Forkhead transcription factors (FoxOs) promote apoptosis of insulin-resistant macrophages during cholesterol-induced endoplasmic reticulum stress. Diabetes 57, 2967–2976 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yvan-Charvet, L. et al. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J. Clin. Invest. 117, 3900–3908 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Matveyenko, A. V., Gurlo, T., Daval, M., Butler, A. E. & Butler, P. C. Successful versus failed adaptation to high-fat diet-induced insulin resistance: the role of IAPP-induced beta-cell endoplasmic reticulum stress. Diabetes 58, 906–916 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nofer, J. R. et al. High density lipoprotein-associated lysosphingolipids reduce E-selectin expression in human endothelial cells. Biochem. Biophys. Res. Commun. 310, 98–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Kimura, T. et al. Role of scavenger receptor class B type I and sphingosine 1-phosphate receptors in high density lipoprotein-induced inhibition of adhesion molecule expression in endothelial cells. J. Biol. Chem. 281, 37457–37467 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. McGrath, K. C. et al. Role of 3beta-hydroxysteroid-delta24 reductase in mediating antiinflammatory effects of high-density lipoproteins in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 29, 877–882 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Murphy, A. J. et al. High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler. Thromb. Vasc. Biol. 28, 2071–2077 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. von Eckardstein, A. & Sibler, R. A. Possible contributions of lipoproteins and cholesterol to the pathogenesis of diabetes mellitus type 2. Curr. Opin. Lipidol. 22, 26–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Hao, M., Head, W. S., Gunawardana, S. C., Hasty, A. H. & Piston, D. W. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes 56, 2328–2338 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Ishikawa, M. et al. Cholesterol accumulation and diabetes in pancreatic beta-cell-specific SREBP-2 transgenic mice: a new model for lipotoxicity. J. Lipid Res. 49, 2524–2534 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Iwasaki, Y. et al. Nuclear SREBP-1a causes loss of pancreatic beta-cells and impaired insulin secretion. Biochem. Biophys. Res. Commun. 378, 545–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Rütti, S. et al. Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology 150, 4521–4530 (2009).

    Article  PubMed  CAS  Google Scholar 

  75. Vikman, J., Jimenez-Feltström, J., Nyman, P., Thelin, J. & Eliasson, L. Insulin secretion is highly sensitive to desorption of plasma membrane cholesterol. FASEB J. 23, 58–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Esposito, K., Giugliano, D., Nappo, F. & Marfella, R. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation 110, 214–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Ceriello, A. et al. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 53, 701–710 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Monnier, L. et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295, 1681–1687 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Nalysnyk, L., Hernandez-Medina, M. & Krishnarajah, G. Glycaemic variability and complications in patients with diabetes mellitus: evidence from a systematic review of the literature. Diabetes Obes. Metab. 12, 288–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Varma, V. et al. Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action. Am. J. Physiol. Endocrinol. Metab. 296, E1300–E1310 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hotamisligil, G. S. & Erbay, E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol. 8, 923–934 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chavez, J. A. et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J. Biol. Chem. 278, 10297–10303 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Montell, E. et al. DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells. Am. J. Physiol. Endocrinol. Metab. 280, E229–E237 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Nguyen, M. T. et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282, 35279–35292 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Samokhvalov, V., Bilan, P. J., Schertzer, J. D., Antonescu, C. N. & Klip, A. Palmitate- and lipopolysaccharide-activated macrophages evoke contrasting insulin responses in muscle cells. Am. J. Physiol. Endocrinol. Metab. 296, E37–E46 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Muscat, G. E. et al. Regulation of cholesterol homeostasis and lipid metabolism in skeletal muscle by liver X receptors. J. Biol. Chem. 277, 40722–40728 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, Y. et al. Adipocyte modulation of high-density lipoprotein cholesterol. Circulation 121, 1347–1355 (2011).

    Article  CAS  Google Scholar 

  88. Lavelle-Jones, M., Scott, M. H., Kolterman, O., Moossa, A. R. & Olefsky, J. M. Non-insulin-mediated glucose uptake predominates in postabsorptive dogs. Am. J. Physiol. 252, E660–E666 (1987).

    CAS  PubMed  Google Scholar 

  89. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kemp, B. E. et al. Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem. Sci. 24, 22–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Kimura, T. et al. Mechanism and role of high density lipoprotein-induced activation of AMP-activated protein kinase in endothelial cells. J. Biol. Chem. 285, 4387–4397 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Li, J. et al. Exendin-4 regulates pancreatic ABCA1 transcription via CaMKK/CaMKIV pathway. J. Cell. Mol. Med. 14, 1083–1087 (2010).

    CAS  PubMed  Google Scholar 

  93. Zhang, Q. et al. High density lipoprotein (HDL) promotes glucose uptake in adipocytes and glycogen synthesis in muscle cells. PLoS ONE 6, e23556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kodama, S. et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch. Intern. Med. 167, 999–1008 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Kraus, W. E. et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N. Engl. J. Med. 347, 1483–1492 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Nilsson, P., Lundgren, H., Söderström, M., Fagerström, K. O. & Nilsson-Ehle, P. Effects of smoking cessation on insulin and cardiovascular risk factors–a controlled study of 4 months' duration. J. Intern. Med. 240, 189–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Dixon, J. B., Anderson, M., Cameron-Smith, D. & O'Brien, P. E. Sustained weight loss in obese subjects has benefits that are independent of attained weight. Obes. Res. 12, 1895–1902 (2004).

    Article  PubMed  Google Scholar 

  98. McLaughlin, T. et al. Persistence of improvement in insulin sensitivity following a dietary weight loss programme. Diabetes Obes. Metab. 10, 1186–1194 (2008).

    CAS  PubMed  Google Scholar 

  99. Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9,795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Ginsberg, H. N. et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1563–1574 (2010).

    Article  PubMed  Google Scholar 

  101. Tenenbaum, A. et al. Peroxisome proliferator-activated receptor ligand bezafibrate for prevention of type 2 diabetes mellitus in patients with coronary artery disease. Circulation 109, 2197–2202 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Tenenbaum, H. et al. Long-term effect of bezafibrate on pancreatic beta-cell function and insulin resistance in patients with diabetes. Atherosclerosis 194, 265–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Elam, M. B. et al. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: A randomized trial. Arterial Disease Multiple Intervention Trial. JAMA 284, 1263–1270 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. McCormack, P. L. & Keating, G. M. Prolonged-release nicotinic acid: a review of its use in the treatment of dyslipidaemia. Drugs 65, 2719–2740 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Rajpathak, S. N. et al. Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Diabetes Care 32, 1924–1929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sattar, N. et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375, 735–742 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Preiss, D. et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA 305, 2556–2564 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Heinecke, J. W. The protein cargo of HDL: implications for vascular wall biology and therapeutics. J. Clin. Lipidol. 4, 371–375 (2011).

    Article  Google Scholar 

  109. Vaisar, T. et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest. 117, 746–756 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bensinger, S. J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mendez, A. J. Cholesterol efflux mediated by apolipoproteins is an active cellular process distinct from efflux mediated by passive diffusion. J. Lipid Res. 38, 1807–1821 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors have received grants from the National Health and Medical Research Council of Australia and the OIS program of the Victorian State Government, Australia.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was initially drafted by B. G Drew and B. A. Kingwell and then critically reviewed and edited by all authors.

Corresponding author

Correspondence to Bronwyn A. Kingwell.

Ethics declarations

Competing interests

P. Barter declares associations with the following companies: Merck (consultant, speakers bureau, grant/research support), Roche (consultant, speakers bureau, grant/research support). B. A. Kingwell declares associations with the following companies: CSL Behring AG (speakers bureau, grant/research support), F. Hoffmann-La Roche (grant/research support). The other authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Drew, B., Rye, KA., Duffy, S. et al. The emerging role of HDL in glucose metabolism. Nat Rev Endocrinol 8, 237–245 (2012). https://doi.org/10.1038/nrendo.2011.235

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing