Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alström syndrome: insights into the pathogenesis of metabolic disorders

This article has been updated

Abstract

Genetic causes of obesity include the ciliopathies Alström syndrome and Bardet–Biedl syndrome. In these disorders, mutations cause dysfunction of the primary cilium, an organelle involved in intracellular and intercellular sensing and signaling. Alström syndrome is an autosomal-recessive disorder caused solely by mutations in ALMS1. By contrast, Bardet–Biedl syndrome is caused by mutations in at least 14 genes involved in primary cilium function. Despite equivalent levels of obesity, patients with Alström syndrome are more likely than those with Bardet–Biedl syndrome to develop childhood type 2 diabetes mellitus (T2DM), suggesting that ALMS1 might have a specific role in β-cell function and/or peripheral insulin signaling pathways. How mutations in genes that encode proteins involved in primary cilium function lead to the clinical phenotypes of these syndromes is being revealed by work in mutant mouse models. With the aid of these models, insights are being obtained into the pathogenic mechanisms that underlie obesity, insulin resistance and T2DM. Research into ciliopathies, including Alström syndrome and Bardet–Biedl syndrome, should lead not only to improved treatments for individuals with these genetic disorders, but also to improved understanding of the cellular pathways involved in other common causes of obesity and T2DM.

Key Points

  • The ciliopathies are caused by dysfunction of the primary cilium, which results in altered intracellular and intercellular sensing and signaling

  • Alström syndrome is a rare ciliopathy caused by mutations in ALMS1

  • Symptoms of Alström syndrome include childhood obesity, type 2 diabetes mellitus (T2DM), retinal degeneration, sensorineural deafness, cardiomyopathy, hepatic dysfunction, renal impairment and infertility

  • As obesity and T2DM are associated with several ciliopathies, the primary cilium could be involved in appetite control, adipose tissue regulation, insulin signaling and β-cell function

  • Research into ciliopathies could cast new light on endocrine signaling pathways, which might lead to the development of novel treatments for patients with obesity and T2DM

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human ALMS1 gene and ALMS1 protein schematic (not drawn to scale).
Figure 2: The 'fat aussie' mouse model of Alström syndrome.
Figure 3: Postulated function of ALMS1 protein.

Similar content being viewed by others

Change history

  • 17 December 2010

    In the version of this article initially published online, there was an error in the name of a receptor. 5-hydroxytryptamine receptor 3 (5HT3) should have read somatostatin receptor 3 (SSTR3). The error has been corrected in all electronic versions of the text.

References

  1. Adams, M., Smith, U. M., Logan, C. V. & Johnson, C. A. Recent advances in the molecular pathology, cell biology and genetics of ciliopathies. J. Med. Genet. 45, 257–267 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Cardenas-Rodriguez, M. & Badano, J. L. Ciliary biology: understanding the cellular and genetic basis of human ciliopathies. Am. J. Med. Genet. C Semin. Med. Genet. 151C, 263–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Muller, J. et al. Identification of 28 novel mutations in the Bardet–Biedl syndrome genes: the burden of private mutations in an extensively heterogeneous disease. Hum. Genet. 127, 583–593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hampshire, D. J. et al. MORM syndrome (mental retardation, truncal obesity, retinal dystrophy and micropenis), a new autosomal recessive disorder, links to 9q34. Eur. J. Hum. Genet. 14, 543–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Bielas, S. L. et al. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet. 41, 1032–1036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacoby, M. et al. INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat. Genet. 41, 1027–1031 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Alstrom, C. H., Hallgren, B., Nilsson, L. B. & Asander, H. Retinal degeneration combined with obesity, diabetes mellitus and neurogenous deafness: a specific syndrome (not hitherto described) distinct from the Laurence-Moon-Bardet–Biedl syndrome: aclinical, endocrinological and genetic examination based on a large pedigree. Acta Psychiatr. Neurol. Scand. Suppl. 129, 1–35 (1959).

    CAS  PubMed  Google Scholar 

  8. Badano, J. L., Mitsuma, N., Beales, P. L. & Katsanis, N. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7, 125–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Baker, K. & Beales, P. L. Making sense of cilia in disease: the human ciliopathies. Am. J. Med. Genet. C Semin. Med. Genet. 151C, 281–295 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Orphanet [online], (2010).

  11. Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Hearn, T. et al. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome. Nat. Genet. 31, 79–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Hearn, T. et al. Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. Diabetes 54, 1581–1587 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Adams, N. A., Awadein, A. & Toma, H. S. The retinal ciliopathies. Ophthalmic Genet. 28, 113–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Beales, P. L., Elcioglu, N., Woolf, A. S., Parker, D. & Flinter, F. A. New criteria for improved diagnosis of Bardet–Biedl syndrome: results of a population survey. J. Med. Genet. 36, 437–446 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Marshall, J. D., Beck, S., Maffei, P. & Naggert, J. K. Alström syndrome. Eur. J. Hum. Genet. 15, 1193–1202 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Marshall, J. D. et al. New Alström syndrome phenotypes based on the evaluation of 182 cases. Arch. Intern. Med. 165, 675–683 (2005).

    Article  PubMed  Google Scholar 

  18. Michaud, J. L. et al. Natural history of Alström syndrome in early childhood: onset with dilated cardiomyopathy. J. Pediatr. 128, 225–229 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Satman, I. et al. Evaluation of insulin resistant diabetes mellitus in Alström syndrome: a long-term prospective follow-up of three siblings. Diabetes Res. Clin. Pract. 56, 189–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Paisey, R. B., Hodge, D. & Williams, K. Body fat distribution, serum glucose, lipid and insulin response to meals in Alström syndrome. J. Hum. Nutr. Diet. 21, 268–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Minton, J. A. et al. Syndromic obesity and diabetes: changes in body composition with age and mutation analysis of ALMS1 in 12 United Kingdom kindreds with Alstrom syndrome. J. Clin. Endocrinol. Metab. 91, 3110–3116 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Paisey, R. B. et al. Hypertriglyceridaemia in Alström's syndrome: causes and associations in 37 cases. Clin. Endocrinol. 60, 228–231 (2004).

    Article  CAS  Google Scholar 

  23. Wu, W.-C. et al. Alström syndrome with acute pancreatitis: a case report. Kaohsiung J. Med. Sci. 19, 358–361 (2003).

    Article  PubMed  Google Scholar 

  24. Awazu, M. et al. Hepatic dysfunction in two sibs with Alström syndrome: case report and review of the literature. Am. J. Med. Genet. 69, 13–16 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Connolly, M. B. et al. Hepatic dysfunction in Alström disease. Am. J. Med. Genet. 40, 421–424 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Poretsky, L., Cataldo, N. A., Rosenwaks, Z. & Giudice, L. C. The insulin-related ovarian regulatory system in health and disease. Endocr. Rev. 20, 535–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Dunaif, A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr. Rev. 18, 774–800 (1997).

    CAS  PubMed  Google Scholar 

  28. Maffei, P. et al. Characterization of the IGF system in 15 patients with Alström syndrome. Clin. Endocrinol. 66, 269–275 (2007).

    Article  CAS  Google Scholar 

  29. Mihai, C. M. et al. Impaired IGF1-GH axis and new therapeutic options in Alström syndrome patients: a case series. Cases J. 2, 19 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Welsh, L. W. Alström syndrome: progressive deafness and blindness. Ann. Otol. Rhinol. Laryngol. 116, 281–285 (2007).

    Article  PubMed  Google Scholar 

  31. Malm, E. et al. Full-field electroretinography and marked variability in clinical phenotype of Alström syndrome. Arch. Ophthalmol. 126, 51–57 (2008).

    Article  PubMed  Google Scholar 

  32. Russell-Eggitt, I. M. et al. Alström syndrome. Report of 22 cases and literature review. Ophthalmology 105, 1274–1280 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Van den Abeele, K., Craen, M., Schuil, J. & Meire, F. Ophthalmologic and systemic features of the Alström syndrome: report of 9 cases. Bull. Soc. Belge Ophtalmol. 281, 67–72 (2001).

    Google Scholar 

  34. Paisey, R. B. et al. Protection from clinical peripheral sensory neuropathy in Alström syndrome in contrast to early-onset type 2 diabetes. Diabetes Care 32, 462–464 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hoffman, J. D., Jacobson, Z., Young, T. L., Marshall, J. D. & Kaplan, P. Familial variable expression of dilated cardiomyopathy in Alström syndrome: a report of four sibs. Am. J. Med. Genet. A 135, 96–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Worthley, M. I. & Zeitz, C. J. Case of Alström syndrome with late presentation dilated cardiomyopathy. Intern. Med. J. 31, 569–570 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Loudon, M., Bellenger, N., Carey, C. & Paisey, R. Cardiac magnetic resonance imaging in Alström syndrome. Orphanet J. Rare Dis. 4, 14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Makaryus, A., Zubrow, M., Marshall, J., Gillam, L. & Mangion, J. R. Cardiac manifestations of Alström syndrome: echocardiographie findings. J. Am. Soc. Echocardiogr. 20, 1359–1363 (2007).

    Article  PubMed  Google Scholar 

  39. Smith, J. C. et al. Is arterial stiffening in Alström syndrome linked to the development of cardiomyopathy? Eur. J. Clin. Invest. 37, 99–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Goldstein, J. L. & Fialkow, P. J. The Alström syndrome. Report of three cases with further delineation of the clinical, pathophysiological, and genetic aspects of the disorder. Medicine (Baltimore) 52, 53–71 (1973).

    Article  CAS  Google Scholar 

  41. Özgül, R. K. et al. Molecular analysis and long-term clinical evaluation of three siblings with Alström syndrome. Clin. Genet. 72, 351–356 (2007).

    Article  PubMed  Google Scholar 

  42. Titomanlio, L. et al. Alström syndrome: intrafamilial phenotypic variability in sibs with a novel nonsense mutation of the ALMS1 gene. Clin. Genet. 65, 156–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Koç, E. et al. Rare case of Alstrom syndrome without obesity and with short stature, diagnosed in adulthood. Nephrology 11, 81–84 (2006).

    Article  PubMed  Google Scholar 

  44. Collin, G. B., Marshall, J. D., Cardon, L. R. & Nishina, P. M. Homozygosity mapping at Alström syndrome to chromosome 2p. Hum. Mol. Genet. 6, 213–219 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Collin, G. B. et al. Alström syndrome: further evidence for linkage to human chromosome 2p13. Hum. Genet. 105, 474–479 (1999).

    CAS  PubMed  Google Scholar 

  46. Macari, F. et al. Refinement of genetic localization of the Alström syndrome on chromosome 2p12–13 by linkage analysis in a North African family. Hum. Genet. 103, 658–661 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Zumsteg, U., Muller, P. Y. & Miserez, A. R. Alstrom syndrome: confirmation of linkage to chromosome 2p12–13 and phenotypic heterogeneity in three affected sibs. J. Med. Genet. 37, E8 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Joy, T. et al. Alstrom syndrome (OMIM 203800): a case report and literature review. Orphanet J. Rare Dis. 2, 49 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marshall, J. D. et al. Spectrum of ALMS1 variants and evaluation of genotype–phenotype correlations in Alstrom syndrome. Hum. Mutat. 28, 1114–1123 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Bond, J. et al. The importance of seeking ALMS1 mutations in infants with dilated cardiomyopathy. J. Med. Genet. 42, e10 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 't Hart, L. M., Maassen, J. A., Dekker, J. M. & Heine, R. J. Lack of association between gene variants in the ALMS1 gene and type 2 diabetes mellitus. Diabetologia 46, 1023–1024 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Patel, S. et al. Common variations in the ALMS1 gene do not contribute to susceptibility to type 2 diabetes in a large white UK population. Diabetologia 49, 1209–1213 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Collin, G. B. et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome. Nat. Genet. 31, 74–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Badano, J. L., Teslovich, T. M. & Katsanis, N. The centrosome in human genetic disease. Nat. Rev. Genet. 6, 194–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Davenport, J. R. & Yoder, B. K. An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am. J. Physiol. Renal Physiol. 289, F1159–F1169 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Fliegauf, M., Benzing, T. & Omran, H. When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 8, 880–893 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Dawe, H. R., Farr, H. & Gull, K. Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J. Cell Sci. 120, 7–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Toriello, H. V. & Parisi, M. A. Cilia and the ciliopathies: an introduction. Am. J. Med. Genet. C Semin. Med. Genet. 151C, 261–262 (2009).

    Article  PubMed  Google Scholar 

  59. Lucker, B. F. et al. Characterization of the intraflagellar transport complex B core. J. Biol. Chem. 280, 27688–27696 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Leroux, M. R. Taking vesicular transport to the cilium. Cell 129, 1041–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Yen, H.-J. et al. Bardet–Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer's vesicle cilia function. Hum. Mol. Genet. 15, 667–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Simpson, F., Kerr, M. C. & Wicking, C. Trafficking, development and hedgehog. Mech. Dev. 126, 279–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Zaghloul, N. A. & Katsanis, N. Mechanistic insights into Bardet–Biedl syndrome, a model ciliopathy. J. Clin. Invest. 119, 428–437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deane, J. A. & Ricardo, S. D. Polycystic kidney disease and the renal cilium. Nephrology 12, 559–564 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Praetorius, H. A. & Spring, K. R. The renal cell primary cilium functions as a flow sensor. Curr. Opin. Nephrol. Hypertens. 12, 517–520 (2003).

    Article  PubMed  Google Scholar 

  67. Davis, E. E., Brueckner, M. & Katsanis, N. The emerging complexity of the vertebrate cilium: new functional roles for an ancient organelle. Dev. Cell 11, 9–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Gerdes, J. M., Davis, E. E. & Katsanis, N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 137, 32–45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Michaud, E. J. & Yoder, B. K. The primary cilium in cell signaling and cancer. Cancer Res. 66, 6463–6467 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Baldari, C. T. & Rosenbaum, J. Intraflagellar transport: it's not just for cilia anymore. Curr. Opin. Cell Biol. 22, 75–80 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Liu, Q. et al. The proteome of the mouse photoreceptor sensory cilium complex. Mol. Cell. Proteomics 6, 1299–1317 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Gherman, A., Davis, E. E. & Katsanis, N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 38, 961–962 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Inglis, P. N., Boroevich, K. A. & Leroux, M. R. Piecing together a ciliome. Trends Genet. 22, 491–500 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Arsov, T. et al. Fat aussie: a new Alström syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol. Endocrinol. 20, 1610–1622 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Arsov, T. et al. Adaptive failure to high-fat diet characterizes steatohepatitis in Alms1 mutant mice. Biochem. Biophys. Res. Commun. 342, 1152–1159 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Davis, R. E. et al. A knockin mouse model of the Bardet–Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc. Natl Acad. Sci. USA 104, 19422–19427 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rahmouni, K. et al. Leptin resistance contributes to obesity and hypertension in mouse models of Bardet–Biedl syndrome. J. Clin. Invest. 118, 1458–1467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Coll, A. P., Farooqi, I. S. & O'Rahilly, S. The hormonal control of food intake. Cell 129, 251–262 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ellacott, K. L. & Cone, R. D. The central melanocortin system and the integration of short- and long-term regulators of energy homeostasis. Recent Prog. Horm. Res. 59, 395–408 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Collin, G. B. et al. Alms1-disrupted mice recapitulate human Alström syndrome. Hum. Mol. Genet. 14, 2323–2333 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Moritz, O. L. et al. Mutant rab8 impairs docking and fusion of rhodopsin-bearing post-golgi membranes and causes cell death of transgenic Xenopus rods. Mol. Biol. Cell 12, 2341–2351 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Larter, C. Z. et al. Roles of adipose restriction and metabolic factors in progression of steatosis to steatohepatitis in obese, diabetic mice. J. Gastroenterol. Hepatol. 24, 1658–1668 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Bratanova-Tochkova, T. K. et al. Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes 51 (Suppl. 1), S83–S90 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Seo, S. et al. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum. Mol. Genet. 18, 1323–1331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Davenport, J. R. et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr. Biol. 17, 1586–1594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Satir, P. Cilia biology: stop overeating now! Curr. Biol. 17, R963–R965 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Berbari, N. F., Bishop, G. A., Askwith, C. C., Lewis, J. S. & Mykytyn, K. Hippocampal neurons possess primary cilia in culture. J. Neurosci. Res. 85, 1095–1100 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Fuchs, J. L. & Schwark, H. D. Neuronal primary cilia: a review. Cell Biol. Int. 28, 111–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Whitfield, J. F. The neuronal primary cilium—an extrasynaptic signaling device. Cell. Signal. 16, 763–767 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Sen Gupta, P., Prodromou, N. V. & Chapple, J. P. Can faulty antennae increase adiposity? The link between cilia proteins and obesity. J. Endocrinol. 203, 327–336 (2009).

    Article  PubMed  CAS  Google Scholar 

  93. Mok, C. A., Héon, E. & Zhen, M. Ciliary dysfunction and obesity. Clin. Genet. 77, 18–27 (2009).

    Article  PubMed  CAS  Google Scholar 

  94. Li, G. et al. A role for Alström syndrome protein, Alms1, in kidney ciliogenesis and cellular quiescence. PLoS Genet. 3, e8 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Nogales-Cadenas, R., Abascal, F., Díez-Pérez, J., Carazo, J. M. & Pascual-Montano, A. CentrosomeDB: a human centrosomal proteins database. Nucleic Acids Res. 37, D175–D180 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Arnaiz, O. et al. Cildb: a knowledgebase for centrosomes and cilia. Database 2009, bap022 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Nachury, M. V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Finetti, F. et al. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat. Cell Biol. 11, 1332–1339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Berbari, N. F., Lewis, J. S., Bishop, G. A., Askwith, C. C. & Mykytyn, K. Bardet–Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc. Natl Acad. Sci. USA 105, 4242–4246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brailov, I. et al. Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res. 872, 271–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Händel, M. et al. Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89, 909–926 (1999).

    Article  PubMed  Google Scholar 

  102. Pazour, G. J. & Witman, G. B. The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell Biol. 15, 105–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Stanic, D. et al. Developmental changes in frequency of the ciliary somatostatin receptor 3 protein. Brain Res. 1249, 101–112 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Chen, Y. et al. Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity. Endocrinology 143, 2469–2477 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Praetorius, H. A., Praetorius, J., Nielsen, S., Frokiaer, J. & Spring, K. R. β1-Integrins in the primary cilium of MDCK cells potentiate fibronectin-induced Ca2+ signaling. Am. J. Physiol. Renal Physiol. 287, F969–F978 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Raychowdhury, M. K. et al. Vasopressin receptor-mediated functional signaling pathway in primary cilia of renal epithelial cells. Am. J. Physiol. Renal Physiol. 296, F87–F97 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Marley, A. & von Zastrow, M. DISC1 regulates primary cilia that display specific dopamine receptors. PLoS ONE 5, e10902 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Zhu, D., Shi, S., Wang, H. & Liao, K. Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes. J. Cell Sci. 122, 2760–2768 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Marion, V. et al. Transient ciliogenesis involving Bardet–Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc. Natl Acad. Sci. USA 106, 1820–1825 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Romano, S. et al. Regulation of Alström syndrome gene expression during adipogenesis and its relationship with fat cell insulin sensitivity. Int. J. Mol. Med. 21, 731–736 (2008).

    CAS  PubMed  Google Scholar 

  111. Huang-Doran, I. & Semple, R. K. Knockdown of the Alström syndrome-associated gene Alms1 in 3T3-L1 preadipocytes impairs adipogenesis but has no effect on cell-autonomous insulin action. Int. J. Obes. 34, 1554–1558 (2010).

    Article  CAS  Google Scholar 

  112. Graser, S. et al. Cep164, a novel centriole appendage protein required for primary cilium formation. J. Cell Biol. 179, 321–330 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Purvis, T. L. et al. Transcriptional regulation of the Alström syndrome gene ALMS1 by members of the RFX family and Sp1. Gene 460, 20–29 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bonnafe, E. et al. The transcription factor RFX3 directs nodal cilium development and left-right asymmetry specification. Mol. Cell. Biol. 24, 4417–4427 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Essner, J. J. et al. Conserved function for embryonic nodal cilia. Nature 418, 37–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Nonaka, S., Shiratori, H., Saijoh, Y. & Hamada, H. Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418, 96–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Benso, C., Hadjadj, E., Conrath, J. & Denis, D. Three new cases of Alström syndrome. Graefes Arch. Clin. Exp. Ophthalmol. 240, 622–627 (2002).

    Article  PubMed  Google Scholar 

  119. Sinha, S. et al. Effect of metformin and rosiglitazone in a prepubertal boy with Alström syndrome. J. Pediatr. Endocrinol. Metab. 20, 1045–1052 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Paisey, R. B. New insights and therapies for the metabolic consequences of Alström syndrome. Curr. Opin. Lipidol. 20, 315–320 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Holder, M., Hecker, W. & Gilli, G. Impaired glucose tolerance leads to delayed diagnosis of Alström syndrome. Diabetes Care 18, 698–700 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Lee, N.-C. et al. Caloric restriction in Alström syndrome prevents hyperinsulinemia. Am. J. Med. Genet. A 149A, 666–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mihai, C., Catrinoiu, D., Marshall, J., Stoicescu, R. & Tofolean, I. Cilia, Alström syndrome-molecular mechanisms and therapeutic perspectives. J. Med. Life 1, 254–261 (2008).

    PubMed  Google Scholar 

  124. Tai, T. S., Lin, S. Y. & Sheu, W. H. Metabolic effects of growth hormone therapy in an Alström syndrome patient. Horm. Res. 60, 297–301 (2003).

    CAS  PubMed  Google Scholar 

  125. Goerler, H. et al. Heart-lung transplantation in a 14-year-old boy with Alström syndrome. J. Heart Lung Transplant. 26, 1217–1218 (2007).

    Article  PubMed  Google Scholar 

  126. Hitz, M.-P. et al. Levosimendan for bridging in a pediatric patient with Alström syndrome awaiting heart-lung transplantation. Clin. Res. Cardiol. 97, 846–848 (2008).

    Article  PubMed  Google Scholar 

  127. Alström Syndrome International [online], (2010).

  128. Alström Syndrome UK [online], (2010).

Download references

Acknowledgements

The authors acknowledge the financial support of the Canberra Hospital Private Practice Fund towards the initial characterization studies of the fat aussie Alström syndrome mutant strain. D. Girard is the recipient of a PhD scholarship from Flinders University and Vaxine Pty Ltd.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this Review.

Corresponding author

Correspondence to Nikolai Petrovsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girard, D., Petrovsky, N. Alström syndrome: insights into the pathogenesis of metabolic disorders. Nat Rev Endocrinol 7, 77–88 (2011). https://doi.org/10.1038/nrendo.2010.210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing