Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effects of poor and short sleep on glucose metabolism and obesity risk

Abstract

The importance of sleep to hormones and glucose metabolism was first documented more than four decades ago. Since then, sleep curtailment has become an endemic behavior in modern society. In addition, the prevalence of sleep disorders, particularly obstructive sleep apnea (OSA), has increased. OSA is very common in endocrine and metabolic disorders, but often remains undiagnosed. This Review summarizes the laboratory and epidemiologic evidence that suggests how sleep loss, either behavioral or disease-related, and poor quality of sleep might promote the development of obesity and diabetes mellitus, and exacerbate existing endocrine conditions. Treatment of sleep disorders has the potential to improve glucose metabolism and energy balance. Screening for habitual sleep patterns and OSA might be critically important for patients with endocrine and metabolic disorders.

Key Points

  • Sleep loss, be it behavioral or related to sleep disorders, is an increasingly common condition in modern society

  • Experimental reduction of the duration or quality of sleep has a deleterious effect on glucose metabolism

  • Experimental reduction of sleep duration downregulates the satiety hormone, leptin, upregulates the appetite-stimulating hormone, ghrelin, and increases hunger and appetite

  • Numerous cross-sectional and prospective, epidemiologic studies have provided evidence of an association between short-duration and/or poor-quality sleep and the prevalence or incidence of diabetes mellitus or obesity

  • Effective treatment of obstructive sleep apnea, a sleep disorder that is highly prevalent in metabolic and endocrine disorders, has the potential to improve glucose metabolism and energy balance

  • Screening for habitual sleep patterns and obstructive sleep apnea might be critically important for patients with endocrine and metabolic disorders

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Results from intravenous glucose-tolerance tests in healthy individuals when fully rested and after sleep manipulations.
Figure 2: Effect of sleep duration on leptin and ghrelin levels.
Figure 3: Prevalence of impaired glucose tolerance and degree of insulin resistance, as assessed by the HOMA index, in control women without OSA, women with PCOS and without OSA, and women with PCOS and mild (5<AHI<15, moderate (15<AHI<30), and severe (AHI≥15) OSA.

References

  1. Gronfier, C. & Brandenberger, G. Ultradian rhythms in pituitary and adrenal hormones: their relations to sleep. Sleep Med. Rev. 2, 17–29 (1998).

    CAS  Article  Google Scholar 

  2. Van Cauter, E. Endocrine physiology. In Principles and Practice of Sleep Medicine, 4th edn (eds Kryger, M., Roth, T. & Dement, W. C.) 266–282 (Elsevier–Saunders, Philadelphia, 2005).

    Chapter  Google Scholar 

  3. Sakurai, T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat. Rev. Neurosci. 8, 171–181 (2007).

    CAS  Article  Google Scholar 

  4. Adamantidis, A. & de Lecea, L. The hypocretins as sensors for metabolism and arousal. J. Physiol. 587, 33–40 (2009).

    CAS  Article  Google Scholar 

  5. Wu, M. F., John, J., Maidment, N., Lam, H. A. & Siegel, J. M. Hypocretin release in normal and narcoleptic dogs after food and sleep deprivation, eating, and movement. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R1079–R1086 (2002).

    Article  Google Scholar 

  6. Estabrooke, I. V. et al. Fos expression in orexin neurons varies with behavioral state. J. Neurosci. 21, 1656–1662 (2001).

    CAS  Article  Google Scholar 

  7. Zeitzer, J. M., Buckmaster, C. L., Lyons, D. M. & Mignot, E. Increasing length of wakefulness and modulation of hypocretin-1 in the wake-consolidated squirrel monkey. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1736–R1742 (2007).

    CAS  Article  Google Scholar 

  8. National Sleep Foundation. 2008 “Sleep in America” poll, summary of findings 1–45 [online 19 Jan 2009] http://www.sleepfoundation.org/atf/cf/%7Bf6bf2668-a1b4-4fe8-8d1a-a5d39340d9cb%7D/2008%20POLL%20SOF.pdf (accessed 19 January 2009).

  9. Institut National de Prévention et d'Education pour la Santé. Les français et leur sommeil. 1–12 [French] [online 19 Jan 2009] http://www.inpes.sante.fr/70000/dp/08/dp080310.pdf (accessed 19 January 2009).

  10. Spiegel, K., Leproult, R. & Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 354, 1435–1439 (1999).

    CAS  Article  Google Scholar 

  11. Bergman, R. N. Minimal model: perspective from 2005. Hormone Res. 64 (Suppl. 3), S8–S15 (2005).

    Article  Google Scholar 

  12. Spiegel, K., Knutson, K., Leproult, R., Tasali, E. & Van Cauter, E. Sleep loss: a novel risk factor for insulin resistance and type 2 diabetes. J. Appl. Physiol. 99, 2008–2019 (2005).

    CAS  Article  Google Scholar 

  13. Buxton, O. M., Pavlova, M. K., Reid, E., Simonson, D. C. & Adler, G. K. Sleep restriction for one week reduces insulin sensitivity measured using the eugylcemic hyperinsulinemic clamp technique. [online 12 June 2008] http://www.journalsleep.org/PDF/AbstractBook2008.pdf (accessed 27 January 2009).

    Google Scholar 

  14. Tasali, E., Leproult, R., Ehrmann, D. A. & Van Cauter, E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc. Natl Acad. Sci. USA 105, 1044–1049 (2008).

    CAS  Article  Google Scholar 

  15. Bergman, R. N. Toward physiological understanding of glucose tolerance. Minimal model approach. Diabetes 38, 1512–1527 (1989).

    CAS  Article  Google Scholar 

  16. Knutson, K. L. & Van Cauter, E. Associations between sleep loss and increased risk of obesity and diabetes. Ann. N.Y. Acad. Sci. 1129, 287–304 (2008).

    Article  Google Scholar 

  17. Van Cauter, E. & Knutson, K. Sleep and the epidemic of obesity in children and adults. Eur. J. Endocrinol. 159 (Suppl. 1), S59–S66 (2008).

    CAS  Article  Google Scholar 

  18. Tasali, E., Leproult, R. & Spiegel, K. Reduced sleep duration or quality: relationships with insulin resistance and type 2 diabetes. Prog. Cardiovasc. Dis. (in press).

  19. Spiegel, K., Tasali, E., Penev, P. & Van Cauter, E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 141, 846–850 (2004).

    Article  Google Scholar 

  20. Nedeltcheva, A. et al. Sleep curtailment is accompanied by increased intake of calories from snacks. Am. J. Clin. Nutr. 89, 126–133 (2008).

    Article  Google Scholar 

  21. Spiegel, K. et al. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J. Clin. Endocrinol. Metab. 89, 5762–5771 (2004).

    CAS  Article  Google Scholar 

  22. Guilleminault, C. et al. Preliminary observations on the effects of sleep time in a sleep-restriction paradigm. Sleep Med. 4, 177–184 (2003).

    Article  Google Scholar 

  23. Schmid, S. M., Hallschmid, M., Jauch-Chara, K., Born, J. & Schultes, B. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J. Sleep Res. 17, 331–334 (2008).

    Article  Google Scholar 

  24. Taheri, S., Lin, L., Austin, D., Young, T. & Mignot, E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body-mass index. PLoS Med. 1, e62 (2004).

    Article  Google Scholar 

  25. Chaput, J. P., Despres, J. P., Bouchard, C. & Tremblay, A. Short sleep duration is associated with reduced leptin levels and increased adiposity: results from the Quebec family study. Obesity (Silver Spring) 15, 253–261 (2007).

    CAS  Article  Google Scholar 

  26. Littman, A. J. et al. Sleep, ghrelin, leptin and changes in body weight during a 1-year moderate-intensity physical activity intervention. Int. J. Obes. (Lond.) 31, 466–475 (2007).

    CAS  Article  Google Scholar 

  27. Cappuccio, F. P. et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep 31, 619–626 (2008).

    Article  Google Scholar 

  28. Chen, X., Beydoun, M. A. & Wang, Y. Is sleep duration associated with childhood obesity? A systematic review and meta-analysis. Obesity (Silver Spring) 16, 265–274 (2008).

    Article  Google Scholar 

  29. Patel, S. R. & Hu, F. B. Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring) 16, 643–653 (2008).

    Article  Google Scholar 

  30. Patel, S. R. et al. The association between sleep duration and obesity in older adults. Int. J. Obes (Lond.) 32, 1825–1834 (2008).

    CAS  Article  Google Scholar 

  31. Berkey, C. S., Rockett, H. R. & Colditz, G. A. Weight gain in older adolescent females: the internet, sleep, coffee, and alcohol. J. Pediatr. 153, 635–639 (2008).

    Article  Google Scholar 

  32. Keith, S. W. et al. Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int. J. Obes. (Lond.) 30, 1585–1594 (2006).

    CAS  Article  Google Scholar 

  33. Young, T. Increasing sleep duration for a healthier (and less obese?) population tomorrow. Sleep 31, 593–594 (2008).

    Article  Google Scholar 

  34. Horne, J. Too weighty a link between short sleep and obesity? Sleep 31, 595–596 (2008).

    Article  Google Scholar 

  35. Lauderdale, D. S. et al. Objectively measured sleep characteristics among early-middle-aged adults: the CARDIA study. Am. J. Epidemiol. 164, 5–16 (2006).

    Article  Google Scholar 

  36. Vgontzas, A. N. et al. Short sleep duration and obesity: the role of emotional stress and sleep disturbances. Int. J. Obes (Lond.) 32, 801–809 (2008).

    CAS  Article  Google Scholar 

  37. Sanders, M. Sleep breathing disorders. In Principles and Practice of Sleep Medicine (eds Kryger, M., Roth, T. & Dement, W. C.) 969–1157 (W.B Saunders Company, Philadelphia, 2005).

    Google Scholar 

  38. West, S. D., Nicoll, D. J. & Stradling, J. R. Prevalence of obstructive sleep apnoea in men with type 2 diabetes. Thorax 61, 945–950 (2006).

    CAS  Article  Google Scholar 

  39. Einhorn, D. et al. Prevalence of sleep apnea in a population of adults with type 2 diabetes mellitus. Endocr. Pract. 13, 355–362 (2007).

    Article  Google Scholar 

  40. Foster, G. E. et al. Sleep apnea in obese adults with type 2 diabetes: baseline results from sleep AHEAD study. Sleep 28 (Suppl.), A204 (2005). http://www.journalsleep.org/pdf/Abstractbook2005.pdf (accessed 16 February 2009).

    Google Scholar 

  41. Tasali, E., Van Cauter, E. & Ehrmann, D. Polycystic-ovary syndrome and obstrcutive sleep apnea. Sleep Med. Clin. 3, 37–46 (2008).

    Article  Google Scholar 

  42. Vgontzas, A. N. et al. Polycystic ovary syndrome is associated with obstructive sleep apnea and daytime sleepiness: role of insulin resistance. J. Clin. Endocrinol. Metab. 86, 517–520 (2001).

    CAS  PubMed  Google Scholar 

  43. Bottini, P. & Tantucci, C. Sleep apnea syndrome in endocrine diseases. Respiration 70, 320–327 (2003).

    Article  Google Scholar 

  44. Tasali, E., Mokhlesi, B. & Van Cauter, E. Obstructive sleep apnea and type 2 diabetes: interacting epidemics. Chest 133, 496–506 (2008).

    Article  Google Scholar 

  45. Tasali, E. & Ip, M. S. Obstructive sleep apnea and metabolic syndrome: alterations in glucose metabolism and inflammation. Proc. Am. Thorac. Soc. 5, 207–217 (2008).

    Article  Google Scholar 

  46. Seicean, S. et al. Sleep-disordered breathing and impaired glucose metabolism in normal-weight and overweight/obese individuals: the Sleep Heart Health Study. Diabetes Care 31, 1001–1006 (2008).

    Article  Google Scholar 

  47. Punjabi, N. M. & Beamer, B. A. Alterations in glucose disposal in sleep-disordered breathing. Am. J. Respir. Crit. Care Med. 179, 235–240 (2009).

    CAS  Article  Google Scholar 

  48. Reichmuth, K. J., Austin, D., Skatrud, J. B. & Young, T. Association of sleep apnea and type II diabetes: a population-based study. Am. J. Respir. Crit. Care Med. 172, 1590–1595 (2005).

    Article  Google Scholar 

  49. Dawson, A. et al. CPAP therapy of obstructive sleep apnea in type 2 diabetics improves glycemic control during sleep. J. Clin. Sleep Med. 4, 538–542 (2008).

    PubMed  PubMed Central  Google Scholar 

  50. Hassaballa, H. A., Tulaimat, A., Herdegen, J. J. & Mokhlesi, B. The effect of continuous, positive airway pressure on glucose control in diabetic patients with severe obstructive sleep apnea. Sleep Breath 9, 176–180 (2005).

    Article  Google Scholar 

  51. Babu, A. R., Herdegen, J., Fogelfeld, L., Shott, S. & Mazzone, T. Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea. Arch. Intern. Med. 165, 447–452 (2005).

    Article  Google Scholar 

  52. Harsch, I. A. et al. The effect of continuous, positive airway pressure treatment on insulin sensitivity in patients with obstructive sleep apnoea syndrome and type 2 diabetes. Respiration 71, 252–259 (2004).

    Article  Google Scholar 

  53. Brooks, B. et al. Obstructive sleep apnea in obese noninsulin-dependent diabetic patients: effects of continuous positive airway pressure treatment on insulin responsiveness. J. Clin. Endocrinol. Metab. 79, 1681–1685 (1994).

    CAS  PubMed  Google Scholar 

  54. West, S. D., Nicoll, D. J., Wallace, T. M., Matthews, D. R. & Stradling, J. R. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax 62, 969–974 (2007).

    Article  Google Scholar 

  55. Harsch, I. A. et al. Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. Am. J. Respir. Crit. Care Med. 169, 156–162 (2004).

    Article  Google Scholar 

  56. Schahin, S. P. et al. Long-term improvement of insulin sensitivity during CPAP therapy in the obstructive sleep-apnoea syndrome. Med. Sci. Monit. 14, CR117–CR121 (2008).

    CAS  PubMed  Google Scholar 

  57. Lindberg, E., Berne, C., Elmasry, A., Hedner, J. & Janson, C. CPAP treatment of a population-based sample—what are the benefits and the treatment compliance? Sleep Med. 7, 553–560 (2006).

    Article  Google Scholar 

  58. Dorkova, Z., Petrasova, D., Molcanyiova, A., Popovnakova, M. & Tkacova, R. Effects of CPAP on cardiovascular risk profile in patients with severe obstructive sleep apnea and metabolic syndrome. Chest 134, 686–692 (2008).

    CAS  Article  Google Scholar 

  59. Saarelainen, S., Lahtela, J. & Kallonen, E. Effect of nasal CPAP treatment on insulin sensitivity and plasma leptin. J. Sleep Res. 6, 146–147 (1997).

    CAS  Article  Google Scholar 

  60. Ip, S., Lam, K., Ho, C., Tsang, K. & Lam, W. Serum leptin and vascular risk factors in obstructive sleep apnea. Chest 118, 580–586 (2000).

    CAS  Article  Google Scholar 

  61. Smurra, M. et al. CPAP treatment does not affect glucose-insulin metabolism in sleep apneic patients. Sleep Med. 2, 207–213 (2001).

    CAS  Article  Google Scholar 

  62. Coughlin, S. R., Mawdsley, L., Mugarza, J. A., Wilding, J. P. & Calverley, P. M. Cardiovascular and metabolic effects of CPAP in obese men with OSA. Eur. Respir. J. 29, 720–727 (2007).

    CAS  Article  Google Scholar 

  63. Trenell, M. I. et al. Influence of constant, positive airway pressure therapy on lipid storage, muscle metabolism and insulin action in obese patients with severe obstructive sleep apnoea syndrome. Diabetes Obes. Metab. 9, 679–687 (2007).

    CAS  Article  Google Scholar 

  64. Teramoto, S. et al. Cardiovascular and metabolic effects of CPAP in obese obstructive sleep apnoea patients. Eur. Respir. J. 31, 223–225 (2008).

    CAS  Article  Google Scholar 

  65. Vgontzas, A. N. et al. Selective effects of CPAP on sleep apnoea-associated manifestations. Eur. J. Clin. Invest. 38, 585–595 (2008).

    CAS  Article  Google Scholar 

  66. Phillips, B. G. et al. Recent weight gain in patients with newly diagnosed obstructive sleep apnea. J. Hypertens. 17, 1297–1300 (1999).

    CAS  Article  Google Scholar 

  67. Phillips, B. G., Kato, M., Narkiewicz, K., Choe, I. & Somers, V. K. Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea. Am. J. Physiol. Heart Circ. Physiol. 279, H234–H237 (2000).

    CAS  Article  Google Scholar 

  68. Harsch, I. A. et al. Leptin and ghrelin levels in patients with obstructive sleep apnoea: effect of CPAP treatment. Eur. Respir. J. 22, 251–257 (2003).

    CAS  Article  Google Scholar 

  69. Pillar, G. & Shehadeh, N. Abdominal fat and sleep apnea: the chicken or the egg? Diabetes Care 31 (Suppl. 2), S303–S309 (2008).

    Article  Google Scholar 

  70. Chin, K. et al. Changes in intra-abdominal visceral fat and serum leptin levels in patients with obstructive sleep apnea syndrome following nasal continuous positive airway pressure therapy. Circulation 100, 706–712 (1999).

    CAS  Article  Google Scholar 

  71. Sanner, B. M., Kollhosser, P., Buechner, N., Zidek, W. & Tepel, M. Influence of treatment on leptin levels in patients with obstructive sleep apnoea. Eur. Respir. J. 23, 601–604 (2004).

    CAS  Article  Google Scholar 

  72. Rubinsztajn, R., Kumor, M., Byskiniewicz, K. & Chazan, R. The influence of 3 weeks therapy with continuous positive airway pressure on serum leptin and homocysteine concentration in patients with obstructive sleep apnea syndrome [Polish]. Pneumonol. Alergol. Pol. 74, 63–67 (2006).

    PubMed  Google Scholar 

  73. Drummond, M. et al. Autoadjusting-CPAP effect on serum leptin concentrations in obstructive sleep apnoea patients. BMC Pulm. Med. 8, 21 (2008).

    Article  Google Scholar 

  74. Takahashi, K. et al. Acylated ghrelin level in patients with OSA before and after nasal CPAP treatment. Respirology 13, 810–816 (2008).

    Article  Google Scholar 

  75. Loube, D. I., Loube, A. A. & Erman, M. K. Continuous positive airway pressure treatment results in weight loss in obese and overweight patients with obstructive sleep apnea. J. Am. Diet. Assoc. 97, 896–897 (1997).

    CAS  Article  Google Scholar 

  76. Redenius, R., Murphy, C., O'Neill, E., Al-Hamwi, M. & Zallek, S. N. Does CPAP lead to change in BMI? J. Clin. Sleep Med. 4, 205–209 (2008).

    PubMed  PubMed Central  Google Scholar 

  77. Kajaste, S., Brander, P. E., Telakivi, T., Partinen, M. & Mustajoki, P. A cognitive-behavioral weight-reduction program in the treatment of obstructive sleep apnea syndrome, with or without initial nasal CPAP: a randomized study. Sleep Med. 5, 125–131 (2004).

    Article  Google Scholar 

  78. Tasali, E. et al. Impact of obstructive sleep apnea on insulin resistance and glucose tolerance in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 93, 3878–3884 (2008).

    CAS  Article  Google Scholar 

  79. Subramanian, S., Desai, A., Joshipura, M. & Surani, S. Practice patterns of screening for sleep apnea in physicians treating PCOS patients. Sleep Breath 11, 233–237 (2007).

    Article  Google Scholar 

  80. Netzer, N. C., Stoohs, R. A., Netzer, C. M., Clark, K. & Strohl, K. P. Using the Berlin Questionnaire to identify patients at risk for the sleep-apnea syndrome. Ann. Intern. Med. 131, 485–491 (1999).

    CAS  Article  Google Scholar 

  81. Punjabi, N. M. The epidemiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 5, 136–143 (2008).

    Article  Google Scholar 

  82. Young, T., Peppard, P. E. & Taheri, S. Excess weight and sleep-disordered breathing. J. Appl. Physiol. 99, 1592–1599 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

Some research described in this article was supported by US National Institute of Health grants P01 AG-11412, R01 HL-075079, P60 DK-20595, R01 DK-0716960, R01 HL-075025 and M01 RR000055, by US Department of Defense award W81XWH-07-2-0071, by AASM/Pfizer Scholars Grant in Sleep Medicine (E Tasali), by Belgian 'Fonds de la Recherche Scientifique Médicale' (FRSM-3.4583.02), 'Fonds National de la Recherche Scientifique' (FNRS) and 'CARE Foundation' grants, by INSERM U628, and by Claude Bernard University of Lyon, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Spiegel.

Ethics declarations

Competing interests

Eve Van Cauter has declared associations with the following companies: Actelyon (consultant) and Sanofi-Aventis (consultant). The other authors declared no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spiegel, K., Tasali, E., Leproult, R. et al. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol 5, 253–261 (2009). https://doi.org/10.1038/nrendo.2009.23

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.23

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing