Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Erythropoietic stress and anemia in diabetes mellitus

Abstract

Anemia is one of the world's most common preventable conditions, yet it is often overlooked, especially in people with diabetes mellitus. Diabetes-related chronic hyperglycemia can lead to a hypoxic environment in the renal interstitium, which results in impaired production of erythropoietin by the peritubular fibroblasts and subsequent anemia. Anemia in patients with diabetes mellitus might contribute to the pathogenesis and progression of cardiovascular disease and aggravate diabetic nephropathy and retinopathy. Anemia occurs earlier in patients with diabetic renal disease than in nondiabetic individuals with chronic kidney disease. Although erythropoietin has been used to treat renal anemia for nearly two decades, debate persists over the optimal target hemoglobin level. Most guidelines recommend that hemoglobin levels be maintained between 105g/l and 125g/l. The suggested role of anemia correction—to prevent the progression of left ventricular hypertrophy in patients with diabetes mellitus—is yet to be established. However, an emphasis on regular screening for anemia, alongside that for other diabetes-related complications, might help to delay the progression of vascular complications in these patients.

Key Points

  • Anemia is a common complication of diabetes mellitus and an independent contributor to the pathogenesis and progression of other diabetes-related complications

  • Erythropoietic stress in diabetes mellitus might be caused by elevated levels of advanced glycation end products, oxidative stress, endothelial dysfunction, abnormal red blood cells and reduced bioavailability of nitric oxide

  • Anemia occurs earlier in patients with diabetic nephropathy than in nondiabetic individuals with comparable renal function

  • In patients with diabetes mellitus, correction of anemia improves quality of life and might delay the progression of diabetic complications; therefore, routine screening for anemia is recommended in this population

  • Until definitive evidence of optimal hemoglobin levels is available, treatment should aim to achieve levels of 105g/l–125g/l

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors that contribute to anemia in diabetes mellitus.
Figure 2: Changes in diabetes mellitus that lead to erythropoietic stress.

Similar content being viewed by others

References

  1. King, H., Aubert, R. E. & Herman, W. H. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21, 1414–1431 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Jonsson, B. Revealing the cost of type II diabetes in Europe. Diabetologia 45, S5–S12 (2002).

    Article  PubMed  Google Scholar 

  3. World Health Organ. Nutritional anaemias. Report of a WHO scientific group. Tech. Rep. Ser. 405, 5–37 (1968).

  4. Thomas, M. C., Macisaac, R. J., Tsalamandris, C., Power, D. & Jerums, G. Unrecognized anemia in patients with diabetes: a cross-sectional survey. Diabetes Care 26, 1164–1169 (2003).

    Article  PubMed  Google Scholar 

  5. Sarnak, M. J. et al. Anemia as a risk factor for cardiovascular disease in the Atherosclerosis Risk In Communities (ARIC) study. J. Am. Coll. Cardiol. 40, 27–33 (2002).

    Article  PubMed  Google Scholar 

  6. Silverberg, D. S. et al. The effect of correction of anaemia in diabetics and nondiabetics with severe, resistant, congestive heart failure and chronic renal failure by subcutaneous erythropoietin and intravenous iron. Nephrol. Dial. Transplant. 18, 141–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Keane, W. F. et al. The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int. 63, 1499–1507 (2003).

    Article  PubMed  Google Scholar 

  8. Sinclair, S. H. Macular retinal capillary hemodynamics in diabetic patients. Ophthalmology 98, 1580–1586 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Lameire, N. The anaemia of silent diabetic nephropathy—prevalence, psysiopathology, and management. Acta Clin. Belg. 58, 159–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Thomas, M. C., Cooper, M. E., Rossing, K. & Parving, H. H. Anaemia in diabetes: is there a rationale to TREAT? Diabetologia 49, 1151–1157 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Lundin, A. P. Quality of life: subjective and objective improvements with recombinant human erythropoietin therapy. Semin. Nephrol. 9, 22–29 (1989).

    CAS  PubMed  Google Scholar 

  12. Kausz, A. T., Obrador, G. T. & Pereira, B. J. Anemia management in patients with chronic renal insufficiency. Am. J. Kidney Dis. 36, S39–S51 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Jungers, P. et al. Beneficial influence of recombinant human erythropoietin therapy on the rate of progression of chronic renal failure in predialysis patients. Nephrol. Dial. Transplant. 16, 307–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Bosman, D. R., Winkler, A. S., Marsden, J. T., Macdougall, I. C. & Watkins, P. J. Anemia with erythropoietin deficiency occurs early in diabetic nephropathy. Diabetes Care 24, 495–499 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Grossmann, M. et al. Low testosterone and anaemia in men with type 2 diabetes. Clin. Endocrinol. [doi:10.1111/j.1365-2265.2008.03357] (Oxf.) (2008).

  16. US Renal Data System. USRDS 2002 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda MD. 2001. Ref. Type: Report.

  17. Chandra, M., Clemons, G. K. & McVicar, M. I. Relation of serum erythropoietin levels to renal excretory function: evidence for lowered set point for erythropoietin production in chronic renal failure. J. Pediatr. 113, 1015–1021 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Radtke, H. W. et al. Serum erythropoietin concentration in chronic renal failure: relationship to degree of anemia and excretory renal function. Blood 54, 877–884 (1979).

    CAS  PubMed  Google Scholar 

  19. Basturk, T. et al. Urinary N.-acetyl B glucosaminidase as an earlier marker of diabetic nephropathy and influence of low-dose perindopril/indapamide combination. Ren. Fail. 28, 125–128 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Catalano, C., Winocour, P. H., Gillespie, S., Gibb, I. & Alberti, K. G. Effect of posture and acute glycaemic control on the excretion of retinol-binding protein in normoalbuminuric insulin-dependent diabetic patients. Clin. Sci. (Lond.) 84, 461–467 (1993).

    Article  CAS  Google Scholar 

  21. Jones, S. C., Saunders, H. J. & Pollock, C. A. High glucose increases growth and collagen synthesis in cultured human tubulointerstitial cells. Diabet. Med. 16, 932–938 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Allen, D. A., Harwood, S., Varagunam, M., Raftery, M. J. & Yaqoob, M. M. High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB J. 17, 908–910 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Phillips, A. O., Topley, N., Steadman, R., Morrisey, K. & Williams, J. D. Induction of TGFβ1 synthesis in D-glucose primed human proximal tubular cells by IL-1-β and TNF-α. Kidney Int. 50, 1546–1554 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Choi, Y. J. et al. Peritubular capillary loss is associated with chronic tubulointerstitial injury in human kidney: altered expression of vascular endothelial growth factor. Hum. Pathol. 31, 1491–1497 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Palm, F. Intrarenal oxygen in diabetes and a possible link to diabetic nephropathy. Clin. Exp. Pharmacol. Physiol. 33, 997–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Komers, R. & Anderson, S. Paradoxes of nitric oxide in the diabetic kidney. Am. J. Physiol. Renal Physiol. 284, F1121–F1137 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Palm, F. et al. Polyol-pathway-dependent disturbances in renal medullary metabolism in experimental insulin-deficient diabetes mellitus in rats. Diabetologia 47, 1223–1231 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Epstein, F. H., Agmon, Y. & Brezis, M. Physiology of renal hypoxia. Ann. N. Y. Acad. Sci. 718, 72–81 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Higgins, D. F. et al. Hypoxic induction of CTGF is directly mediated by HIF-1. Am. J. Physiol. Renal Physiol. 287, F1223–F1232 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Iyer, N. V. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12, 149–162 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Maxwell, P. HIF-1: an oxygen response system with special relevance to the kidney. J. Am. Soc. Nephrol. 14, 2712–2722 (2003).

    Article  PubMed  Google Scholar 

  33. Catrina, S. B., Okamoto, K., Pereira, T., Brismar, K. & Poellinger, L. Hyperglycemia regulates hypoxia-inducible factor-1α protein stability and function. Diabetes 53, 3226–3232 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Bosman, D. R. et al. Erythropoietin response to hypoxia in patients with diabetic autonomic neuropathy and nondiabetic chronic renal failure. Diabet. Med. 19, 65–69 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Symeonidis, A. et al. Inappropriately low erythropoietin response for the degree of anemia in patients with noninsulin-dependent diabetes mellitus. Ann. Hematol. 85, 79–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Thomas, M. C., Tsalamandris, C., MacIsaac, R. & Jerums, G. Functional erythropoietin deficiency in patients with type 2 diabetes and anaemia. Diabet. Med. 23, 502–509 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Craig, K. J. et al. Anemia and diabetes in the absence of nephropathy. Diabetes Care 28, 1118–1123 (2005).

    Article  PubMed  Google Scholar 

  38. Dikow, R., Schwenger, V., Schomig, M. & Ritz, E. How should we manage anaemia in patients with diabetes? Nephrol. Dial. Transplant. 17 (Suppl. 1), 67–72 (2002).

    Article  PubMed  Google Scholar 

  39. Macdougall, I. C. & Cooper, A. C. Erythropoietin resistance: the role of inflammation and pro-inflammatory cytokines. Nephrol. Dial. Transplant. 17 (Suppl. 11), 39–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Means, R. T., Jr & Krantz, S. B. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 80, 1639–1647 (1992).

    PubMed  Google Scholar 

  41. Dai, C. H., Price, J. O., Brunner, T. & Krantz, S. B. Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon γ to produce erythroid cell apoptosis. Blood 91, 1235–1242 (1998).

    CAS  PubMed  Google Scholar 

  42. Kirstein, M. et al. Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc. Natl Acad. Sci. USA 87, 9010–9014 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miller, J. A., Gravallese, E. & Bunn, H. F. Nonenzymatic glycosylation of erythrocyte membrane proteins. Relevance to diabetes. J. Clin. Invest. 65, 896–901 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hangaishi, M. et al. Increased aggregation of human platelets produced by advanced glycation end products in vitro. Biochem. Biophys. Res. Commun. 248, 285–292 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Bucala, R. & Vlassara, H. Advanced glycosylation end products in diabetic renal and vascular disease. Am. J. Kidney Dis. 26, 875–888 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Boel, E., Selmer, J., Flodgaard, H. J. & Jensen, T. Diabetic late complications: will aldose reductase inhibitors or inhibitors of advanced glycosylation end product formation hold promise? J. Diabetes Complications 9, 104–129 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Schnackenberg, C. G. Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R335–R342 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Buerk, D. G. Can we model nitric oxide biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities. Annu. Rev. Biomed. Eng. 3, 109–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Saltzman, M. B. & McCallum, R. W. Diabetes and the stomach. Yale J. Biol. Med. 56, 179–187 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Marrollo, M. et al. Increased prevalence of Helicobacter pylori in patients with diabetes mellitus. Dig. Liver Dis. 33, 21–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. De Block, C. E. et al. Soluble transferrin receptor level: a new marker of iron-deficiency anemia, a common manifestation of gastric autoimmunity in type 1 diabetes. Diabetes Care 23, 1384–1388 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Treem, W. R. Emerging concepts in celiac disease. Curr. Opin. Pediatr. 16, 552–559 (2004).

    Article  PubMed  Google Scholar 

  53. Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 1011–1023 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Horl, W. H. Non-erythropoietin-based anaemia management in chronic kidney disease. Nephrol. Dial. Transplant. 17 (Suppl. 11), 35–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Thomas, M. C., Macisaac, R. J., Tsalamandris, C. & Jerums, G. Elevated iron indices in patients with diabetes. Diabet. Med. 21, 798–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Fujimoto, S., Kawakami, N. & Ohara, A. Nonenzymatic glycation of transferrin: decrease of iron-binding capacity and increase of oxygen radical production. Biol. Pharm. Bull. 18, 396–400 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Ting, R. Z., Szeto, C. C., Chan, M. H., Ma, K. K. & Chow, K. M. Risk factors of vitamin B12 deficiency in patients receiving metformin. Arch. Intern. Med. 166, 1975–1979 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Wagstaff, A. J. & Goa, K. L. Rosiglitazone: a review of its use in the management of type 2 diabetes mellitus. Drugs 62, 1805–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Ishani, A. et al. Angiotensin-converting enzyme inhibitor as a risk factor for the development of anemia, and the impact of incident anemia on mortality in patients with left ventricular dysfunction. J. Am. Coll. Cardiol. 45, 391–399 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Robles, N. R., Angulo, E., Grois, J. & Barquero, A. Comparative effects of fosinopril and irbesartan on hematopoiesis in essential hypertensives. Ren. Fail. 26, 399–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Virtue, M. A., Furne, J. K., Nuttall, F. Q. & Levitt, M. D. Relationship between GHb concentration and erythrocyte survival determined from breath carbon-monoxide concentration. Diabetes Care 27, 931–935 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Schmid-Schonbein, H. & Volger, E. Red-cell aggregation and red-cell deformability in diabetes. Diabetes 25, 897–902 (1976).

    CAS  PubMed  Google Scholar 

  63. Robey, C., Dasmahapatra, A., Cohen, M. P. & Suarez, S. Sorbinil partially prevents decreased erythrocyte deformability in experimental diabetes mellitus. Diabetes 36, 1010–1013 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Maeda, N., Kon, K., Imaizumi, K., Sekiya, M. & Shiga, T. Alteration of rheological properties of human erythrocytes by crosslinking of membrane proteins. Biochim. Biophys. Acta 735, 104–112 (1983).

    Article  CAS  PubMed  Google Scholar 

  65. McMillan, D. E., Utterback, N. G. & La, P. J. Reduced erythrocyte deformability in diabetes. Diabetes 27, 895–901 (1978).

    Article  CAS  PubMed  Google Scholar 

  66. Kowluru, R. et al. Reversible sodium-pump defect and swelling in the diabetic rat erythrocyte: effects on filterability and implications for microangiopathy. Proc. Natl Acad. Sci. USA 86, 3327–3331 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Testa, I., Rabini, R. A., Fumelli, P., Bertoli, E. & Mazzanti, L. Abnormal membrane fluidity and acetylcholinesterase activity in erythrocytes from insulin-dependent diabetic patients. J. Clin. Endocrinol. Metab. 67, 1129–1133 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. Jones, R. L. & Peterson, C. M. Hematologic alterations in diabetes mellitus. Am. J. Med. 70, 339–352 (1981).

    Article  CAS  PubMed  Google Scholar 

  69. Wautier, J. L. et al. Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications. Proc. Natl Acad. Sci. USA 91, 7742–7746 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cotroneo, P. et al. Blunted erythropoietin response to anemia in patients with type 1 diabetes. Diabetes. Metab. Res. Rev. 16, 172–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Jacobs, C. et al. European best-practice guidelines 5: target haemoglobin. Nephrol. Dial. Transplant. 15 (Suppl. 4), 15–19 (2000).

    Article  PubMed  Google Scholar 

  72. KDOQI Clinical Practice Guidelines for Anaemia of Chronic Kidney Disease. Am. J. Kidney Dis. 47 (Suppl. 3), S33–S53 (2006).

  73. Anaemia management in chronic kidney disease. http://guidance.nice.org.uk/cg39/?c=91526 (Accessed 15 January 09). (2006).

  74. Joss, N. et al. Anaemia is common and predicts mortality in diabetic nephropathy. QJM. 100, 641–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Gouva, C., Nikolopoulos, P., Ioannidis, J. P. & Siamopoulos, K. C. Treating anemia early in renal failure patients slows the decline of renal function: a randomized controlled trial. Kidney Int. 66, 753–760 (2004).

    Article  PubMed  Google Scholar 

  76. Singh, A. K. et al. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Drueke, T. B. et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355, 2071–2084 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Mix, T. C. et al. Rationale—Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT): evolving the management of cardiovascular risk in patients with chronic kidney disease. Am. Heart J. 149, 408–413 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Ritz, E. et al. Target level for hemoglobin correction in patients with diabetes and CKD: primary results of the Anemia Correction in Diabetes (ACORD) Study. Am. J. Kidney Dis. 49, 194–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Besarab, A. et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 339, 584–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Bachmann, S., Le Hir, M. & Eckardt, K. U. Colocalization of erythropoietin MRNA and ecto-5′-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J. Histochem. Cytochem. 41, 335–341 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Krantz, S. B. Erythropoietin. Blood 77, 419–434 (1991).

    CAS  PubMed  Google Scholar 

  83. Lappin, T. R., Maxwell, A. P. & Johnston, P. G. EPO's alter ego: erythropoietin has multiple actions. Stem Cells 20, 485–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Chong, Z. Z., Kang, J. Q. & Maiese, K. Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 106, 2973–2979 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Mitra, A. et al. Erythropoietin ameliorates renal dysfunction during endotoxaemia. Nephrol. Dial. Transplant. 22, 2349–2353 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Sharples, E. J. et al. Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J. Am. Soc. Nephrol. 15, 2115–2124 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Youssoufian, H., Longmore, G., Neumann, D., Yoshimura, A. & Lodish, H. F. Structure, function, and activation of the erythropoietin receptor. Blood 81, 2223–2236 (1993).

    CAS  PubMed  Google Scholar 

  88. Echigoya, M. H., Obikane, K., Nakashima, T. & Sasaki, S. Glomerular localization of erythropoietin receptor mRNA and protein in neonatal and mature mouse kidney. Nephron Exp. Nephrol. 100, e21–e29 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Westenfelder, C., Biddle, D. L. & Baranowski, R. L. Human, rat, and mouse kidney cells express functional erythropoietin receptors. Kidney Int. 55, 808–820 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dhruv K. Singh or Ken Farrington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D., Winocour, P. & Farrington, K. Erythropoietic stress and anemia in diabetes mellitus. Nat Rev Endocrinol 5, 204–210 (2009). https://doi.org/10.1038/nrendo.2009.17

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.17

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing