Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Food allergy

Abstract

Food allergies manifest in a variety of clinical conditions within the gastrointestinal tract, skin and lungs, with the most dramatic and sometimes fatal manifestation being anaphylactic shock. Major progress has been made in basic, translational and clinical research, leading to a better understanding of the underlying immunological mechanisms that lead to the breakdown of clinical and immunological tolerance against food antigens, which can result in either immunoglobulin E (IgE)-mediated reactions or non-IgE-mediated reactions. Lifestyle factors, dietary habits and maternal–neonatal interactions play a pivotal part in triggering the onset of food allergies, including qualitative and quantitative composition of the microbiota. These factors seem to have the greatest influence early in life, an observation that has led to the generation of hypotheses to explain the food allergy epidemic, including the dual-allergen exposure hypothesis. These hypotheses have fuelled research in preventive strategies that seek to establish desensitization to allergens and/or tolerance to allergens in affected individuals. Allergen-nonspecific therapeutic strategies have also been investigated in a number of clinical trials, which will eventually improve the treatment options for patients with food allergy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The prevalence of food allergy worldwide.
Figure 2: Ig-mediated reactions to food allergens.
Figure 3: Food allergen-specific IgG antibodies counter the effects of IgE.
Figure 4: Eosinophilic oesophagitis.
Figure 5: Immune tolerance and breakdown of tolerance to ingested antigens.
Figure 6: Integrating hypotheses of food allergy.

References

  1. 1

    Renz, H., Brandtzaeg, P. & Hornef, M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat. Rev. Immunol. 12, 9–23 (2011).

    PubMed  Google Scholar 

  2. 2

    Cao, S., Feehley, T. J. & Nagler, C. R. The role of commensal bacteria in the regulation of sensitization to food allergens. FEBS Lett. 588, 4258–4266 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Azad, M. B. et al. Infant gut microbiota and food sensitization. Associations in the first year of life. Clin. Exp. Allergy 45, 632–643 (2015).

    CAS  Google Scholar 

  4. 4

    Ling, Z. et al. Altered fecal microbiota composition associated with food allergy in infants. Appl. Environ. Microbiol. 80, 2546–2554 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. 5

    Chen, C.-C., Chen, K.-J., Kong, M.-S., Chang, H.-J. & Huang, J.-L. Alterations in the gut microbiotas of children with food sensitization in early life. Pediatr. Allergy Immunol. 27, 254–262 (2016).

    PubMed  Google Scholar 

  6. 6

    Hamilton, R. G. & Kleine-Tebbe, J. Molecular allergy diagnostics: analytical features that support clinical decisions. Curr. Allergy Asthma Rep. 15, 57 (2015).

    PubMed  Google Scholar 

  7. 7

    Hoffmann, H. J. et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy 70, 1393–1405 (2015).

    CAS  PubMed  Google Scholar 

  8. 8

    Santos, A. F. et al. Distinct parameters of the basophil activation test reflect the severity and threshold of allergic reactions to peanut. J. Allergy Clin. Immunol. 135, 179–186 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Dos Santos, A. F., Cristiano, R., Athayde-Filho, P. F. & Bortoluzzi, A. J. 2-(5-Methyl-1,3,4-oxa-diazol-2-yl)phenyl acetate. Acta Crystallogr. Sect. E Struct. Rep. Online 70, o559 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Santos, A. F. et al. Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children. J. Allergy Clin. Immunol. 134, 645–652 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. 11

    Elizur, A. & Katz, Y. Timing of allergen exposure and the development of food allergy. Treating before the horse is out of the barn. Curr. Opin. Allergy Clin. Immunol. 16, 157–164 (2016).

    CAS  PubMed  Google Scholar 

  12. 12

    Osborne, N. J. et al. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J. Allergy Clin. Immunol. 127, 668–676.e2 (2011).

    CAS  PubMed  Google Scholar 

  13. 13

    Basera, W. et al. The South African Food Sensitisation and Food Allergy population-based study of IgE-mediated food allergy. Validity, safety, and acceptability. Ann. Allergy Asthma Immunol. 115, 113–119 (2015).

    Google Scholar 

  14. 14

    Chen, J., Hu, Y., Allen, K. J., Ho, M. H. K. & Li, H. The prevalence of food allergy in infants in Chongqing. China. Pediatr. Allergy Immunol. 22, 356–360 (2011).

    Google Scholar 

  15. 15

    Xepapadaki, P. et al. Incidence and natural history of hen's egg allergy in the first 2 years of life-the EuroPrevall birth cohort study. Allergy 71, 350–357 (2016).

    CAS  PubMed  Google Scholar 

  16. 16

    Kelleher, M. M. et al. Skin barrier impairment at birth predicts food allergy at 2 years of age. J. Allergy Clin. Immunol. 137, 1111–1116.e1-8 (2016). This study emphasizes the importance of skin barrier impairment as a possible entry for allergens that trigger transcutaneous sensitization.

    CAS  PubMed  Google Scholar 

  17. 17

    Jones, S. M. & Burks, A. W. Food allergy. N. Engl. J. Med. 377, 1168–1176 (2017).

    PubMed  Google Scholar 

  18. 18

    Wood, R. A. et al. Anaphylaxis in America. the prevalence and characteristics of anaphylaxis in the United States. J. Allergy Clin. Immunol. 133, 461–467 (2014).

    PubMed  Google Scholar 

  19. 19

    Turner, P. J. & Campbell, D. E. Epidemiology of severe anaphylaxis. Can we use population-based data to understand anaphylaxis? Curr. Opin. Allergy Clin. Immunol. 16, 441–450 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Allen, K. & Koplin, J. J. in Food Allergy: Adverse Reactions to Foods and Food Additives 5th edn (eds Metcalfe, D. D., Sampson, H. A., Simon, R. A. & Lack, G. ) 121–133 (Wiley-Blackwell, 2014).

    Google Scholar 

  21. 21

    Prescott, S. L. et al. A global survey of changing patterns of food allergy burden in children. World Allergy Organiz. J. 6, 21 (2013). This is the most comprehensive survey of global changes in food allergy burden in children.

    Google Scholar 

  22. 22

    National Academies of Sciences, Engineering, and Medicine. Finding a Path to Safety in Food Allergy: Assessment of the Global Burden, Causes, Prevention, Management, and Public Policy. (The National Academies Press, 2016)

  23. 23

    Jo, J., Garssen, J., Knippels, L. & Sandalova, E. Role of cellular immunity in cow's milk allergy. Pathogenesis, tolerance induction, and beyond. Mediators Inflamm. 2014, 249784 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. 24

    Schoemaker, A. A. et al. Incidence and natural history of challenge-proven cow's milk allergy in European children — EuroPrevall birth cohort. Allergy 70, 963–972 (2015).

    CAS  PubMed  Google Scholar 

  25. 25

    Peters, R. L. et al. Natural history of peanut allergy and predictors of resolution in the first 4 years of life. A population-based assessment. J. Allergy Clin. Immunol. 135, 1257–1266.e2 (2015).

    PubMed  Google Scholar 

  26. 26

    Gounni, A. S. et al. High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367, 183–186 (1994).

    CAS  PubMed  Google Scholar 

  27. 27

    Noval Rivas, M. & Chatila, T. A. Regulatory T cells in allergic diseases. J. Allergy Clin. Immunol. 138, 639–652 (2016).

    CAS  PubMed  Google Scholar 

  28. 28

    Perrier, C. & Corthesy, B. Gut permeability and food allergies. Clin. Exp. Allergy 41, 20–28 (2011).

    CAS  Google Scholar 

  29. 29

    Williams, K. W. & Sharma, H. P. Anaphylaxis and urticaria. Immunol. Allergy Clin. North Am. 35, 199–219 (2015).

    PubMed  Google Scholar 

  30. 30

    Khan, B. Q. & Kemp, S. F. Pathophysiology of anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 11, 319–325 (2011).

    CAS  PubMed  Google Scholar 

  31. 31

    Pushparaj, P. N. et al. The cytokine interleukin-33 mediates anaphylactic shock. Proc. Natl Acad. Sci. USA 106, 9773–9778 (2009).

    CAS  PubMed  Google Scholar 

  32. 32

    Burton, O. T. et al. Direct effects of IL-4 on mast cells drive their intestinal expansion and increase susceptibility to anaphylaxis in a murine model of food allergy. Mucosal Immunol. 6, 740–750 (2013).

    CAS  PubMed  Google Scholar 

  33. 33

    Gri, G. et al. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity 29, 771–781 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Noval Rivas, M. et al. Regulatory T cell reprogramming toward a TH2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42, 512–523 (2015). Oral tolerance is another important programme of immune regulation against food antigens. In this paper, the important role of Treg cells is delineated.

    CAS  PubMed  Google Scholar 

  35. 35

    Vadas, P. et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N. Engl. J. Med. 358, 28–35 (2008).

    CAS  PubMed  Google Scholar 

  36. 36

    Tordesillas, L., Rahman, A. H., Hartmann, B. M., Sampson, H. A. & Berin, M. C. Mass cytometry profiling the response of basophils and the complete peripheral blood compartment to peanut. J. Allergy Clin. Immunol. 138, 1741–1744.e9 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Asero, R. et al. EpidemAAITO: features of food allergy in Italian adults attending allergy clinics: a multi-centre study. Clin. Exp. Allergy 39, 547–555 (2009).

    CAS  PubMed  Google Scholar 

  38. 38

    Platts-Mills, T. A. E., Schuyler, A. J., Tripathi, A. & Commins, S. P. Anaphylaxis to the carbohydrate side chain alpha-gal. Immunol. Allergy Clin. North Amer. 35, 247–260 (2015).

    Google Scholar 

  39. 39

    Wilson, J. M., Schuyler, A. J., Schroeder, N. & Platts-Mills, Galactose, T. A. E.-α-1,3-Galactose. atypical food allergen or model IgE hypersensitivity? Curr. Allergy Asthma Rep. 17, 8 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. 40

    Commins, S. P. & Platts-Mills, T. A. E. Tick bites and red meat allergy. Curr. Opin. Allergy Clin. Immunol. 13, 354–359 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Oettgen, H. C. et al. Active anaphylaxis in IgE-deficient mice. Nature 370, 367–370 (1994).

    CAS  PubMed  Google Scholar 

  42. 42

    Finkelman, F. D. Anaphylaxis. Lessons from mouse models. J. Allergy Clin. Immunol. 120, 506–517 (2007).

    CAS  PubMed  Google Scholar 

  43. 43

    Leung, D. Y. M. et al. Effect of anti-IgE therapy in patients with peanut allergy. N. Engl. J. Med. 348, 986–993 (2003). This is a key study demonstrating the benefit of pharmacotherapy directed against TH2-dependent immune pathways (in this case, anti-IgE) to modulate food allergy.

    CAS  PubMed  Google Scholar 

  44. 44

    Brandt, E. B. et al. Mast cells are required for experimental oral allergen-induced diarrhea. J. Clin. Invest. 112, 1666–1677 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Mathias, C. B. et al. IgE-mediated systemic anaphylaxis and impaired tolerance to food antigens in mice with enhanced IL-4 receptor signaling. J. Allergy Clin. Immunol. 127, 795–805.e1-6 (2011).

    CAS  PubMed  Google Scholar 

  46. 46

    Sampson, H. A. et al. Food allergy. A practice parameter update-2014. J. Allergy Clin. Immunol. 134, 1016–1025.e43 (2014).

    PubMed  Google Scholar 

  47. 47

    Forbes, E. E. et al. IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J. Exp. Med. 205, 897–913 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Chen, C.-Y. et al. Induction of Interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43, 788–802 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Louahed, J. et al. Interleukin-9 upregulates mucus expression in the airways. Am. J. Respiratory Cell. Mol. Biol. 22, 649–656 (2000).

    CAS  Google Scholar 

  50. 50

    Faulkner, H., Renauld, J. C., van Snick, J. & Grencis, R. K. Interleukin-9 enhances resistance to the intestinal nematode Trichuris muris. Infection Immun. 66, 3832–3840 (1998).

    CAS  Google Scholar 

  51. 51

    Chang, H.-C. et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11, 527–534 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Staudt, V. et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33, 192–202 (2010).

    CAS  PubMed  Google Scholar 

  53. 53

    Chatila, T. A. Interleukin-4 receptor signaling pathways in asthma pathogenesis. Trends Mol. Med. 10, 493–499 (2004).

    CAS  PubMed  Google Scholar 

  54. 54

    Malbec, O. & Daëron, M. The mast cell IgG receptors and their roles in tissue inflammation. Immunol. Rev. 217, 206–221 (2007).

    CAS  PubMed  Google Scholar 

  55. 55

    Savilahti, E. M. et al. Early recovery from cow's milk allergy is associated with decreasing IgE and increasing IgG4 binding to cow's milk epitopes. J. Allergy Clin. Immunol. 125, 1315 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Caubet, J. C. et al. Significance of ovomucoid- and ovalbumin-specific IgE/IgG4 ratios in egg allergy. J. Allergy Clin. Immunol. 129, 739–747 (2012).

    CAS  PubMed  Google Scholar 

  57. 57

    Burton, O. T. et al. Oral immunotherapy induces IgG antibodies that act through FcγRIIb to suppress IgE-mediated hypersensitivity. J. Allergy Clin. Immunol. 134, 1310–1317.e6 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Patil, S. U. et al. Peanut oral immunotherapy transiently expands circulating Ara h 2-specific B cells with a homologous repertoire in unrelated subjects. J. Allergy Clin. Immunol. 136, 125–134.e12 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Santos, A. F. et al. IgG4 inhibits peanut-induced basophil and mast cell activation in peanut-tolerant children sensitized to peanut major allergens. J. Allergy Clin. Immunol. 135, 1249–1256 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Uermosi, C. et al. Mechanisms of allergen-specific desensitization. J. Allergy Clin. Immunol. 126, 375–383 (2010).

    PubMed  Google Scholar 

  61. 61

    Holt, P. G. et al. Distinguishing benign from pathologic TH2 immunity in atopic children. J. Allergy Clin. Immunol. 137, 379–387 (2016).

    CAS  PubMed  Google Scholar 

  62. 62

    Buhner, S. & Schemann, M. Mast cell-nerve axis with a focus on the human gut. Biochim. Biophys. Acta 1822, 85–92 (2012).

    CAS  PubMed  Google Scholar 

  63. 63

    Abraham, S. N. & St John, A. L. Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10, 440–452 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Zogaj, D., Ibranji, A. & Hoxha, M. Exercise-induced anaphylaxis: the role of cofactors. Mater. Sociomed. 26, 401–404 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. 65

    Harada, S. et al. Aspirin enhances the induction of type I allergic symptoms when combined with food and exercise in patients with food-dependent exercise-induced anaphylaxis. Br. J. Dermatol. 145, 336–339 (2001).

    CAS  PubMed  Google Scholar 

  66. 66

    Bauer, C. S., Kampitak, T., Messieh, M. L., Kelly, K. J. & Vadas, P. Heterogeneity in presentation and treatment of catamenial anaphylaxis. Ann. Allergy Asthma Immunol. 111, 107–111 (2013).

    CAS  Google Scholar 

  67. 67

    Greenhawt, M., Aceves, S. S., Spergel, J. M. & Rothenberg, M. E. The management of eosinophilic esophagitis. The journal of allergy and clinical immunology. In Practice 1, 332–342 (2013).

    PubMed  Google Scholar 

  68. 68

    Mishra, A., Schlotman, J., Wang, M. & Rothenberg, M. E. Critical role for adaptive T cell immunity in experimental eosinophilic esophagitis in mice. J. Leukoc. Biol. 81, 916–924 (2007).

    CAS  PubMed  Google Scholar 

  69. 69

    Foroughi, S. et al. Anti-IgE treatment of eosinophil-associated gastrointestinal disorders. J. Allergy Clin. Immunol. 120, 594–601 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Rocha, R. et al. Omalizumab in the treatment of eosinophilic esophagitis and food allergy. Eur. J. Pediatr. 170, 1471–1474 (2011).

    CAS  PubMed  Google Scholar 

  71. 71

    Clayton, F. et al. Eosinophilic esophagitis in adults is associated with IgG4 and not mediated by IgE. Gastroenterology 147, 602–609 (2014).

    CAS  PubMed  Google Scholar 

  72. 72

    Aceves, S. S. et al. Mast cells infiltrate the esophageal smooth muscle in patients with eosinophilic esophagitis, express TGF-β1, and increase esophageal smooth muscle contraction. J. Allergy Clin. Immunol. 126, 1198 (2010).

    CAS  PubMed  Google Scholar 

  73. 73

    Blanchard, C. et al. IL-13 involvement in eosinophilic esophagitis. Transcriptome analysis and reversibility with glucocorticoids. J. Allergy Clin. Immunol. 120, 1292–1300 (2007).

    CAS  PubMed  Google Scholar 

  74. 74

    Aceves, S. S., Newbury, R. O., Dohil, R., Bastian, J. F. & Broide, D. H. Esophageal remodeling in pediatric eosinophilic esophagitis. J. Allergy Clin. Immunol. 119, 206–212 (2007).

    CAS  PubMed  Google Scholar 

  75. 75

    Blanchard, C. et al. Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. J. Clin. Invest. 116, 536–547 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Sherrill, J. D. et al. Variants of thymic stromal lymphopoietin and its receptor associate with eosinophilic esophagitis. J. Allergy Clin. Immunol. 126, 160–165.e3 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Kottyan, L. C. et al. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease. Nat. Genet. 46, 895–900 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Sleiman, P. M. A. et al. GWAS identifies four novel eosinophilic esophagitis loci. Nat. Commun. 5, 5593 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. 79

    Litosh, V. A. et al. Calpain-14 and its association with eosinophilic esophagitis. J. Allergy Clin. Immunol. 139, 1762 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Goldman, H. & Proujansky, R. Allergic proctitis and gastroenteritis in children. Clinical and mucosal biopsy features in 53 cases. Am. J. Surg. Pathol. 10, 75–86 (1986).

    CAS  PubMed  Google Scholar 

  81. 81

    Boyce, J. A. et al. Guidelines for the diagnosis and management of food allergy in the United States. Report of the NIAID-sponsored expert panel. J. Allergy Clin. Immunol. 126, S1–58 (2010). This guideline is of clinical relevance for the diagnosis and management of food allergies (in the United States).

    PubMed  PubMed Central  Google Scholar 

  82. 82

    Caubet, J.-C., Szajewska, H., Shamir, R. & Nowak Wegrzyn, A. Non-IgE-mediated gastrointestinal food allergies in children. Pediatr. Allergy Immunol. 28, 6–17 (2017).

    PubMed  Google Scholar 

  83. 83

    Berin, M. C. Immunopathophysiology of food protein-induced enterocolitis syndrome. J. Allergy Clin. Immunol. 135, 1108–1113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Chinthrajah, R. S., Hernandez, J. D., Boyd, S. D., Galli, S. J. & Nadeau, K. C. Molecular and cellular mechanisms of food allergy and food tolerance. J. Allergy Clin. Immunol. 137, 984–997 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Cerovic, V., Bain, C. C., Mowat, A. M. & Milling, S. W. F. Intestinal macrophages and dendritic cells. What's the difference? Trends Immunol. 35, 270–277 (2014).

    CAS  PubMed  Google Scholar 

  86. 86

    McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Hershberg, R. M. et al. Highly polarized HLA class II antigen processing and presentation by human intestinal epithelial cells. J. Clin. Invest. 102, 792–803 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    CAS  PubMed  Google Scholar 

  89. 89

    Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    CAS  PubMed  Google Scholar 

  90. 90

    Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    CAS  PubMed  Google Scholar 

  92. 92

    Elias, K. M. et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 111, 1013–1020 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Worthington, J. J., Czajkowska, B. I., Melton, A. C. & Travis, M. A. Intestinal dendritic cells specialize to activate transforming growth factor-β and induce Foxp3+ regulatory T cells via integrin αvβ8. Gastroenterology 141, 1802–1812 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Boyle, R. J., Hardikar, W. & Tang, M. L. K. The development of food allergy after liver transplantation. Liver Transpl. 11, 326–330 (2005).

    PubMed  Google Scholar 

  95. 95

    Brown, C. et al. High prevalence of food sensitisation in young children with liver disease. A clue to food allergy pathogenesis? Pediatr. Allergy Immunol. 23, 771–778 (2012).

    PubMed  Google Scholar 

  96. 96

    Uematsu, S. et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nature Immunol. 9, 769–776 (2008).

    CAS  Google Scholar 

  97. 97

    Cerovic, V. et al. Hyporesponsiveness of intestinal dendritic cells to TLR stimulation is limited to TLR4. J. Immunol. 182, 2405–2415 (2009).

    CAS  PubMed  Google Scholar 

  98. 98

    Laffont, S., Siddiqui, K. R. R. & Powrie, F. Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells. Eur. J. Immunol. 40, 1877–1883 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Hammad, H. & Lambrecht, B. N. Barrier epithelial cells and the control of type 2 immunity. Immunity 43, 29–40 (2015). This paper highlights the role of epithelial barrier cells in the control of type 2 immunity. This concept can be applied not only to the respiratory mucosal system but also to the gastrointestinal tract and the cutaneous barrier.

    CAS  PubMed  Google Scholar 

  100. 100

    Blazquez, A. B. & Berin, M. C. Gastrointestinal dendritic cells promote TH2 skewing via OX40L. J. Immunol. 180, 4441–4450 (2008).

    CAS  PubMed  Google Scholar 

  101. 101

    Noval Rivas, M., Burton, O. T., Oettgen, H. C. & Chatila, T. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J. Allergy Clin. Immunol. 138, 801–811.e9 (2016).

    CAS  PubMed  Google Scholar 

  102. 102

    Burton, O. T. et al. Immunoglobulin E signal inhibition during allergen ingestion leads to reversal of established food allergy and induction of regulatory T cells. Immunity 41, 141–151 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Brough, H. A. et al. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J. Allergy Clin. Immunol. 135, 164–170 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Webber, C. M. & England, R. W. Oral allergy syndrome: a clinical, diagnostic, and therapeutic challenge. Ann. Allergy Asthma Immunol. 104, 101–108 (2010).

    PubMed  Google Scholar 

  105. 105

    Benedé, S., Blázquez, A. B., Chiang, D., Tordesillas, L. & Berin, M. C. The rise of food allergy: environmental factors and emerging treatments. EBioMedicine 7, 27–34 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Stefka, A. T. et al. Commensal bacteria protect against food allergen sensitization. Proc. Natl Acad. Sci. USA 111, 13145–13150 (2014).

    CAS  PubMed  Google Scholar 

  107. 107

    Noval Rivas, M. et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J. Allergy Clin. Immunol. 131, 201–212 (2013).

    CAS  PubMed  Google Scholar 

  108. 108

    Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    CAS  Google Scholar 

  109. 109

    Fujimura, K. E. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22, 1187–1191 (2016). This paper highlights the role of the neonatal gut microbiota in promoting the development of allergic sensitization.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  PubMed  Google Scholar 

  112. 112

    Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  Google Scholar 

  113. 113

    Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).

    CAS  PubMed  Google Scholar 

  114. 114

    Kuehn, H. S. & Gilfillan, A. M. G protein-coupled receptors and the modification of FcεRI-mediated mast cell activation. Immunol. Lett. 113, 59–69 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Dwyer, D. F., Barrett, N. A. & Austen, K. F. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat. Immunol. 17, 878–887 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    McNeil, B. D. et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519, 237–241 (2015).

    CAS  PubMed  Google Scholar 

  117. 117

    Muraro, A. et al. EAACI food allergy and anaphylaxis guidelines. Diagnosis and management of food allergy. Allergy 69, 1008–1025 (2014).

    CAS  PubMed  Google Scholar 

  118. 118

    Venter, C. et al. Better recognition, diagnosis and management of non-IgE-mediated cow's milk allergy in infancy. IMAP-an international interpretation of the MAP (Milk Allergy in Primary Care) guideline. Clin. Transl Allergy 7, 26 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. 119

    Sampson, H. A. Food allergy — accurately identifying clinical reactivity. Allergy 60 (Suppl. 79), 19–24 (2005).

    PubMed  Google Scholar 

  120. 120

    Deschildre, A. et al. Food allergy phenotypes. The key to personalized therapy. Clin. Exp. Allergy 47, 1125–1137 (2017).

    CAS  Google Scholar 

  121. 121

    Sporik, R., Hill, D. J. & Hosking, C. S. Specificity of allergen skin testing in predicting positive open food challenges to milk, egg and peanut in children. Clin. Exp. Allergy 30, 1540–1546 (2000).

    CAS  Google Scholar 

  122. 122

    Otani, I. M. et al. Multiple-allergen oral immunotherapy improves quality of life in caregivers of food-allergic pediatric subjects. Allergy Asthma Clin. Immunol. 10, 25 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. 123

    Wang, J., Godbold, J. H. & Sampson, H. A. Correlation of serum allergy (IgE) tests performed by different assay systems. J. Allergy Clin. Immunol. 121, 1219–1224 (2008).

    CAS  PubMed  Google Scholar 

  124. 124

    Sampson, H. A. Utility of food-specific IgE concentrations in predicting symptomatic food allergy. J. Allergy Clin. Immunol. 107, 891–896 (2001).

    CAS  PubMed  Google Scholar 

  125. 125

    Garcia-Ara, C. et al. Specific IgE levels in the diagnosis of immediate hypersensitivity to cows’ milk protein in the infant. J. Allergy Clin. Immunol. 107, 185–190 (2001).

    CAS  PubMed  Google Scholar 

  126. 126

    Clark, A. T. & Ewan, P. W. Interpretation of tests for nut allergy in one thousand patients, in relation to allergy or tolerance. Clin. Exp. Allergy 33, 1041–1045 (2003).

    CAS  Google Scholar 

  127. 127

    Perry, T. T., Matsui, E. C., Kay Conover-Walker, M. & Wood, R. A. The relationship of allergen-specific IgE levels and oral food challenge outcome. J. Allergy Clin. Immunol. 114, 144–149 (2004).

    CAS  PubMed  Google Scholar 

  128. 128

    Komata, T., Soderstrom, L., Borres, M. P., Tachimoto, H. & Ebisawa, M. The predictive relationship of food-specific serum IgE concentrations to challenge outcomes for egg and milk varies by patient age. J. Allergy Clin. Immunol. 119, 1272–1274 (2007).

    CAS  PubMed  Google Scholar 

  129. 129

    Maloney, J. M., Rudengren, M., Ahlstedt, S., Bock, S. A. & Sampson, H. A. The use of serum-specific IgE measurements for the diagnosis of peanut, tree nut, and seed allergy. J. Allergy Clin. Immunol. 122, 145–151 (2008).

    CAS  PubMed  Google Scholar 

  130. 130

    Adatia, A. & Clarke, A. E., Yanishevsky, Y. & Ben-Shoshan, M. Sesame allergy: current perspectives. J. Asthma Allergy 10, 141–151 (2017).

    PubMed  PubMed Central  Google Scholar 

  131. 131

    Jappe, U. & Schwager, C. Relevance of lipophilic allergens in food allergy diagnosis. Curr. Allergy Asthma Rep. 17, 61 (2017).

    PubMed  Google Scholar 

  132. 132

    Sampson, H. A. et al. Standardizing double-blind, placebo-controlled oral food challenges. American Academy of Allergy, Asthma and Immunology-European Academy of Allergy and Clinical Immunology PRACTALL consensus report. J. Allergy Clin. Immunol. 130, 1260–1274 (2012).

    PubMed  Google Scholar 

  133. 133

    David, T. J., Waddington, E. & Stanton, R. H. Nutritional hazards of elimination diets in children with atopic eczema. Arch. Dis. Child. 59, 323–325 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Koplin, J. J. & Allen, K. J. Optimal timing for solids introduction — why are the guidelines always changing? Clin. Exp. Allergy 43, 826–834 (2013).

    CAS  PubMed  Google Scholar 

  135. 135

    American Academy of Pediatrics. Committee on Nutrition. Hypoallergenic infant formulas. Pediatrics 106, 346–349 (2000).

    Google Scholar 

  136. 136

    Koplin, J. J. et al. Can early introduction of egg prevent egg allergy in infants? A population-based study. J. Allergy Clin. Immunol. 126, 807–813 (2010).

    PubMed  Google Scholar 

  137. 137

    Du Toit, G. et al. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J. Allergy Clin. Immunol. 122, 984–991 (2008).

    CAS  PubMed  Google Scholar 

  138. 138

    Allen, K. J. & Koplin, J. J. Prospects for prevention of food allergy. J. Allergy Clin. Immunol. Pract. 4, 215–220 (2016).

    PubMed  Google Scholar 

  139. 139

    Lack, G. Epidemiologic risks for food allergy. J. Allergy Clin. Immunol. 121, 1331–1336 (2008).

    CAS  PubMed  Google Scholar 

  140. 140

    Weiss, S. T. & Litonjua, A. A. Childhood asthma is a fat-soluble vitamin deficiency disease. Clin. Exp. Allergy 38, 385–387 (2008).

    CAS  PubMed  Google Scholar 

  141. 141

    Strachan, D. P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989). In this paper, the hygiene hypothesis in its original context is reported for the first time.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Lowe, A. J. Prevention of Eczema By a Barrier Lipid Equilibrium Strategy (PEBBLES) pilot study - Testing the compliance and saftey of a strategy for improving infant skin function. Australia New Zealand Clinical Trials Registryhttps://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12609000727246 (2013).

  143. 143

    Allen, K. J. et al. VITALITY trial. Protocol for a randomised controlled trial to establish the role of postnatal vitamin D supplementation in infant immune health. BMJ Open 5, e009377 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. 144

    Camargo, C. A., Clark, S., Kaplan, M. S., Lieberman, P. & Wood, R. A. Regional differences in EpiPen prescriptions in the United States: the potential role of vitamin D. J. Allergy Clin. Immunol. 120, 131–136 (2007).

    PubMed  Google Scholar 

  145. 145

    Mullins, R. J. & Camargo, C. A. Latitude, sunlight, vitamin D, and childhood food allergy/anaphylaxis. Curr. Allergy Asthma Rep. 12, 64–71 (2012).

    CAS  PubMed  Google Scholar 

  146. 146

    Mullins, R. J., Clark, S. & Camargo, C. A. Regional variation in epinephrine autoinjector prescriptions in Australia. More evidence for the vitamin D-anaphylaxis hypothesis. Ann. Allergy Asthma Immunol. 103, 488–495 (2009).

    Google Scholar 

  147. 147

    Mullins, R. J. et al. Season of birth and childhood food allergy in Australia. Pediatr. Allergy Immunol. 22, 583–589 (2011).

    PubMed  Google Scholar 

  148. 148

    Vassallo, M. F. et al. Season of birth and food allergy in children. Ann. Allergy Asthma Immunol. 104, 307–313 (2010).

    PubMed  PubMed Central  Google Scholar 

  149. 149

    Allen, K. J. et al. Vitamin D insufficiency is associated with challenge-proven food allergy in infants. J. Allergy Clin. Immunol. 131, 1109–1116.e6 (2013). This study associates vitamin D insufficiency with food allergy. The study is particularly important as it was performed in challenge-proven food-allergic infants.

    CAS  PubMed  Google Scholar 

  150. 150

    Molloy, J. et al. Is low vitamin D status a risk factor for food allergy? Current evidence and future directions. Mini Rev. Med. Chem. 15, 944–952 (2015).

    CAS  PubMed  Google Scholar 

  151. 151

    Julia, V., Macia, L. & Dombrowicz, D. The impact of diet on asthma and allergic diseases. Nat. Rev. Immunol. 15, 308–322 (2015).

    CAS  PubMed  Google Scholar 

  152. 152

    Kongsbak, M. et al. Vitamin D up-regulates the vitamin D receptor by protecting it from proteasomal degradation in human CD4+ T cells. PLoS One 9, e96695 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. 153

    Wittke, A., Weaver, V., Mahon, B. D., August, A. & Cantorna, M. T. Vitamin D receptor-deficient mice fail to develop experimental allergic asthma. J. Immunol. 173, 3432–3436 (2004).

    CAS  PubMed  Google Scholar 

  154. 154

    Renz, H. et al. An exposome perspective. Early-life events and immune development in a changing world. J. Allergy Clin. Immunol. 140, 24–40 (2017).

    PubMed  Google Scholar 

  155. 155

    Ege, M. J. et al. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–709 (2011).

    CAS  PubMed  Google Scholar 

  156. 156

    Braun-Fahrländer, C. et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med. 347, 869–877 (2002). This study associates asthma protection in children living on traditional farms with chronic microbial exposure (measured as endotoxin content in mattress dust as a surrogate marker for Gram-negative bacterial exposure), highlighting the hygiene hypothesis as a concept for allergen prevention.

    PubMed  Google Scholar 

  157. 157

    Green, B. J. et al. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PLoS ONE 9, e100645 (2014).

    PubMed  PubMed Central  Google Scholar 

  158. 158

    Renz-Polster, H. et al. Caesarean section delivery and the risk of allergic disorders in childhood. Clin. Exp. Allergy 35, 1466–1472 (2005).

    CAS  Google Scholar 

  159. 159

    Thavagnanam, S., Fleming, J., Bromley, A., Shields, M. D. & Cardwell, C. R. A meta-analysis of the association between Caesarean section and childhood asthma. Clin. Exp. Allergy 38, 629–633 (2008).

    CAS  PubMed  Google Scholar 

  160. 160

    Cardwell, C. R. et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus. A meta-analysis of observational studies. Diabetologia 51, 726–735 (2008).

    CAS  PubMed  Google Scholar 

  161. 161

    Koplin, J. J. et al. Environmental and demographic risk factors for egg allergy in a population-based study of infants. Allergy 67, 1415–1422 (2012).

    CAS  PubMed  Google Scholar 

  162. 162

    Marrs, T. et al. Is there an association between microbial exposure and food allergy? A systematic review. Pediatr. Allergy Immunol. 24, 311–320.e8 (2013).

    PubMed  Google Scholar 

  163. 163

    Papathoma, E., Triga, M., Fouzas, S. & Dimitriou, G. Cesarean section delivery and development of food allergy and atopic dermatitis in early childhood. Pediatr. Allergy Immunol. 27, 419–424 (2016).

    PubMed  Google Scholar 

  164. 164

    Katz, Y. et al. Early exposure to cow's milk protein is protective against IgE-mediated cow's milk protein allergy. J. Allergy Clin. Immunol. 126, 77–82.e1 (2010).

    CAS  PubMed  Google Scholar 

  165. 165

    Du Toit, G. et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 372, 803–813 (2015). This hallmark study associates peanut consumption early in life with the prevention of peanut allergy. This study provides the database for new conceptual outreach in the area of food tolerance development.

    CAS  PubMed  Google Scholar 

  166. 166

    Koplin, J. J. et al. Understanding the feasibility and implications of implementing early peanut introduction for prevention of peanut allergy. J. Allergy Clin. Immunol. 138, 1131–1141.e2 (2016).

    PubMed  Google Scholar 

  167. 167

    Natsume, O. et al. Two-step egg introduction for prevention of egg allergy in high-risk infants with eczema (PETIT). A randomised, double-blind, placebo-controlled trial. Lancet 389, 276–286 (2017).

    PubMed  Google Scholar 

  168. 168

    Palmer, D. J. et al. Early regular egg exposure in infants with eczema. A randomized controlled trial. J. Allergy Clin. Immunol. 132, 387–392.e1 (2013).

    PubMed  Google Scholar 

  169. 169

    Palmer, D. J., Sullivan, T. R., Gold, M. S., Prescott, S. L. & Makrides, M. Randomized controlled trial of early regular egg intake to prevent egg allergy. J. Allergy Clin. Immunol. 139, 1600–1607.e2 (2017).

    CAS  PubMed  Google Scholar 

  170. 170

    Wei-Liang Tan, J. et al. A randomized trial of egg introduction from 4 months of age in infants at risk for egg allergy. J. Allergy Clin. Immunol. 139, 1621–1628.e8 (2017).

    PubMed  Google Scholar 

  171. 171

    Bellach, J. et al. Randomized placebo-controlled trial of hen's egg consumption for primary prevention in infants. J. Allergy Clin. Immunol. 139, 1591–1599.e2 (2017).

    CAS  PubMed  Google Scholar 

  172. 172

    Boyle, R. J. et al. Hydrolysed formula and risk of allergic or autoimmune disease. Systematic review and meta-analysis. BMJ 352, i974 (2016).

    PubMed  PubMed Central  Google Scholar 

  173. 173

    National Institute of Allergy and Infectious Diseases (NIAID-Panel). Addendum Guidelines for the Prevention of Peanut Allergy in the United States (National Institute of Allergy and Infectious Diseases, 2017)

  174. 174

    Tey, D. et al. Population response to change in infant feeding guidelines for allergy prevention. J. Allergy Clin. Immunol. 133, 476–484 (2014).

    PubMed  Google Scholar 

  175. 175

    Worm, M. et al. Guidelines on the management of IgE-mediated food allergies. S2k-Guidelines of the German Society for Allergology and Clinical Immunology (DGAKI) in collaboration with the German Medical Association of Allergologists (AeDA), the German Professional Association of Pediatricians (BVKJ), the German Allergy and Asthma Association (DAAB), German Dermatological Society (DDG), the German Society for Nutrition (DGE), the German Society for Gastroenterology, Digestive and Metabolic Diseases (DGVS), the German Society for Oto-Rhino-Laryngology, Head and Neck Surgery, the German Society for Pediatric and Adolescent Medicine (DGKJ), the German Society for Pediatric Allergology and Environmental Medicine (GPA), the German Society for Pneumology (DGP), the German Society for Pediatric Gastroenterology and Nutrition (GPGE), German Contact Allergy Group (DKG), the Austrian Society for Allergology and Immunology (AE-GAI), German Professional Association of Nutritional Sciences (VDOE) and the Association of the Scientific Medical Societies Germany (AWMF). Allergo J. Int. 24, 256–293 (2015).

    PubMed  PubMed Central  Google Scholar 

  176. 176

    Muraro, A. et al. Anaphylaxis: guidelines from the European Academy of Allergy and Clinical Immunology. Allergy 69, 1026–1045 (2014).

    CAS  PubMed  Google Scholar 

  177. 177

    Taylor, S. L. & Hefle, S. L. Food allergen labeling in the USA and Europe. Curr. Opin. Allergy Clin. Immunol. 6, 186–190 (2006).

    PubMed  Google Scholar 

  178. 178

    Marchisotto, M. J. et al. Food Allergen Labeling and Purchasing Habits in the United States and Canada. J. Allergy Clin. Immunol. Pract. 5, 345–351.e2 (2017).

    PubMed  Google Scholar 

  179. 179

    Hefle, S. L. & Taylor, S. L. How much food is too much? Threshold doses for allergenic foods. Curr. Allergy Asthma Rep. 2, 63–66 (2002).

    PubMed  Google Scholar 

  180. 180

    Hourihane, J. O. et al. Peanut Allergen Threshold Study (PATS). Novel single-dose oral food challenge study to validate eliciting doses in children with peanut allergy. J. Allergy Clin. Immunol. 139, 1583–1590 (2017).

    CAS  PubMed  Google Scholar 

  181. 181

    Trendelenburg, V. et al. Detection of relevant amounts of cow's milk protein in non-pre-packed bakery products sold as cow's milk-free. Allergy 70, 591–597 (2015).

    CAS  PubMed  Google Scholar 

  182. 182

    Turner, P. J. et al. Can we identify patients at risk of life-threatening allergic reactions to food? Allergy 71, 1241–1255 (2016).

    CAS  PubMed  Google Scholar 

  183. 183

    Brockow, K. et al. Effects of a structured educational intervention on knowledge and emergency management in patients at risk for anaphylaxis. Allergy 70, 227–235 (2015).

    CAS  PubMed  Google Scholar 

  184. 184

    Narisety, S. D. et al. A randomized, double-blind, placebo-controlled pilot study of sublingual versus oral immunotherapy for the treatment of peanut allergy. J. Allergy Clin. Immunol. 135, 1275–1282.e6 (2015).

    CAS  PubMed  Google Scholar 

  185. 185

    Nurmatov, U. et al. Allergen immunotherapy for IgE-mediated food allergy. A systematic review and meta-analysis. Allergy 72, 1133–1147 (2017).

    CAS  PubMed  Google Scholar 

  186. 186

    Beyer, K. A. European perspective on immunotherapy for food allergies. J. Allergy Clin. Immunol. 129, 1179–1184 (2012). This paper emphasizes the European perspective on immune therapy for food allergy.

    PubMed  Google Scholar 

  187. 187

    Jones, S. M. et al. Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults. J. Allergy Clin. Immunol. 139, 1242–1252.e9 (2017).

    CAS  PubMed  Google Scholar 

  188. 188

    Lucendo, A. J., Arias, A. & Tenias, J. M. Relation between eosinophilic esophagitis and oral immunotherapy for food allergy. A systematic review with meta-analysis. Ann. Allergy Asthma Immunol. 113, 624–629 (2014).

    Google Scholar 

  189. 189

    Wood, R. A. et al. A randomized, double-blind, placebo-controlled study of omalizumab combined with oral immunotherapy for the treatment of cow's milk allergy. J. Allergy Clin. Immunol. 137, 1103–1110.e11 (2016).

    CAS  PubMed  Google Scholar 

  190. 190

    MacGinnitie, A. J. et al. Omalizumab facilitates rapid oral desensitization for peanut allergy. J. Allergy Clin. Immunol. 139, 873–881.e8 (2017).

    CAS  PubMed  Google Scholar 

  191. 191

    Brandstrom, J. et al. Individually dosed omalizumab. An effective treatment for severe peanut allergy. Clin. Exp. Allergy 47, 540–550 (2017).

    CAS  Google Scholar 

  192. 192

    Morou, Z., Tatsioni, A., Dimoliatis, I. D. K. & Papadopoulos, N. G. Health-related quality of life in children with food allergy and their parents. A systematic review of the literature. J. Investigat. Allergol. Clin. Immunol. 24, 382–395 (2014).

    CAS  Google Scholar 

  193. 193

    Avery, N. J., King, R. M., Knight, S. & Hourihane, J. O. Assessment of quality of life in children with peanut allergy. Pediatr. Allergy Immunol. 14, 378–382 (2003).

    PubMed  Google Scholar 

  194. 194

    Flokstra- de Blok, B. M. J. et al. Health-related quality of life of food allergic patients. Comparison with the general population and other diseases. Allergy 65, 238–244 (2010).

    Google Scholar 

  195. 195

    Primeau, M. N. et al. The psychological burden of peanut allergy as perceived by adults with peanut allergy and the parents of peanut-allergic children. Clin. Exp. Allergy 30, 1135–1143 (2000).

    CAS  Google Scholar 

  196. 196

    Salvilla, S. A. et al. Disease-specific health-related quality of life instruments for IgE-mediated food allergy. Allergy 69, 834–844 (2014).

    CAS  PubMed  Google Scholar 

  197. 197

    Cohen, B. L., Noone, S., Munoz-Furlong, A. & Sicherer, S. H. Development of a questionnaire to measure quality of life in families with a child with food allergy. J. Allergy Clin. Immunol. 114, 1159–1163 (2004).

    PubMed  Google Scholar 

  198. 198

    Howe, L., Franxman, T., Teich, E. & Greenhawt, M. What affects quality of life among caregivers of food-allergic children? Ann. Allergy Asthma Immunol. 113, 69–74.e2 (2014).

    Google Scholar 

  199. 199

    Allen, C. W., Bidarkar, M. S., vanNunen, S. A. & Campbell, D. E. Factors impacting parental burden in food-allergic children. J. Paediatr. Child Health 51, 696–698 (2015).

    PubMed  Google Scholar 

  200. 200

    Ward, C. E. & Greenhawt, M. J. Treatment of allergic reactions and quality of life among caregivers of food-allergic children. Ann. Allergy Asthma Immunol. 114, 312–318.e2 (2015).

    Google Scholar 

  201. 201

    Lieberman, J. A., Weiss, C., Furlong, T. J., Sicherer, M. & Sicherer, S. H. Bullying among pediatric patients with food allergy. Ann. Allergy Asthma Immunol. 105, 282–286 (2010).

    Google Scholar 

  202. 202

    Muraro, A. et al. Comparison of bullying of food-allergic versus healthy schoolchildren in Italy. J. Allergy Clin. Immunol. 134, 749–751 (2014).

    PubMed  Google Scholar 

  203. 203

    Shemesh, E. et al. Child and parental reports of bullying in a consecutive sample of children with food allergy. Pediatrics 131, e10–e17 (2013).

    PubMed  PubMed Central  Google Scholar 

  204. 204

    Annunziato, R. A. et al. Longitudinal evaluation of food allergy-related bullying. J. Allergy Clin. Immunol. Pract. 2, 639–641 (2014).

    PubMed  Google Scholar 

  205. 205

    van der Velde, J. L. et al. Food allergy-related quality of life after double-blind, placebo-controlled food challenges in adults, adolescents, and children. J. Allergy Clin. Immunol. 130, 1136–1143.e2 (2012).

    PubMed  Google Scholar 

  206. 206

    Franxman, T. J., Howe, L., Teich, E. & Greenhawt, M. J. Oral food challenge and food allergy quality of life in caregivers of children with food allergy. J. Allergy Clin. Immunol. Pract. 3, 50–56 (2015).

    PubMed  Google Scholar 

  207. 207

    Epstein Rigbi, N. et al. Patient quality of life following induction of oral immunotherapy for food allergy. Pediatr. Allergy Immunol. 27, 263–268 (2016).

    PubMed  Google Scholar 

  208. 208

    Factor, J. M., Mendelson, L., Lee, J., Nouman, G. & Lester, M. R. Effect of oral immunotherapy to peanut on food-specific quality of life. Ann. Allergy Asthma Immunol. 109, 348–352.e2 (2012).

    CAS  PubMed  Google Scholar 

  209. 209

    LeBovidge, J. S. et al. Evaluation of a group intervention for children with food allergy and their parents. Ann. Allergy Asthma Immunol. 101, 160–165 (2008).

    Google Scholar 

  210. 210

    Baptist, A. P. et al. A self-regulation intervention can improve quality of life for families with food allergy. J. Allergy Clin. Immunol. 130, 263–265.e6 (2012).

    PubMed  Google Scholar 

  211. 211

    Kelleher, M. M. et al. Twenty four-hour helpline access to expert management advice for food-allergy-triggered anaphylaxis in infants, children and young people. A pragmatic, randomized controlled trial. Allergy 68, 1598–1604 (2013).

    CAS  PubMed  Google Scholar 

  212. 212

    Herbert, L., Shemesh, E. & Bender, B. Clinical management of psychosocial concerns related to food allergy. J. Allergy Clin. Immunol. Pract. 4, 205–213 (2016).

    PubMed  Google Scholar 

  213. 213

    Shreffler, W. G., Beyer, K., Chu, T.-H. T., Burks, A. W. & Sampson, H. A. Microarray immunoassay: association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes. J. Allergy Clin. Immunol. 113, 776–782 (2004).

    CAS  PubMed  Google Scholar 

  214. 214

    Lin, J. et al. A bioinformatics approach to identify patients with symptomatic peanut allergy using peptide microarray immunoassay. J. Allergy Clin. Immunol. 129, 1321–1328.e5 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215

    Nowak-Wegrzyn, A. et al. Tolerance to extensively heated milk in children with cow's milk allergy. J. Allergy Clin. Immunol. 122, 342–347.e2 (2008).

    PubMed  Google Scholar 

  216. 216

    Lemon-Mule, H. et al. Immunologic changes in children with egg allergy ingesting extensively heated egg. J. Allergy Clin. Immunol. 122, 977–983.e1 (2008).

    CAS  PubMed  Google Scholar 

  217. 217

    Hefle, S. L. et al. Consumer attitudes and risks associated with packaged foods having advisory labeling regarding the presence of peanuts. J. Allergy Clin. Immunol. 120, 171–176 (2007).

    PubMed  Google Scholar 

  218. 218

    Flinterman, A. E. et al. Peanut epitopes for IgE and IgG4 in peanut-sensitized children in relation to severity of peanut allergy. J. Allergy Clin. Immunol. 121, 737–743.e10 (2008).

    CAS  PubMed  Google Scholar 

  219. 219

    Wanich, N., Nowak-Wegrzyn, A., Sampson, H. A. & Shreffler, W. G. Allergen-specific basophil suppression associated with clinical tolerance in patients with milk allergy. J. Allergy Clin. Immunol. 123, 789–794.e20 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. 220

    MacGlashan, D. JR. Expression profiling of human basophils. Modulation by cytokines and secretagogues. PloS ONE 10, e0126435 (2015).

    PubMed  PubMed Central  Google Scholar 

  221. 221

    1,000 Days. Good nutrition in the 1,000 days between a woman's pregnancy and her child's second birthday sets the foundation for all the days that follow. 1,000 Dayshttp://thousanddays.org/ (2017).

  222. 222

    Schäfer, T. et al. S3-Guideline on allergy prevention. 2014 update: Guideline of the German Society for Allergology and Clinical Immunology (DGAKI) and the German Society for Pediatric and Adolescent Medicine (DGKJ). Allergo J. Int. 23, 186–199 (2014).

    PubMed  PubMed Central  Google Scholar 

  223. 223

    Blander, J. M., Longman, R. S., Iliev, I. D., Sonnenberg, G. F. & Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18, 851–860 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. 224

    Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl Med. 6, 237ra65 (2014).

    PubMed  PubMed Central  Google Scholar 

  225. 225

    Magne, F., Puchi Silva, A., Carvajal, B. & Gotteland, M. The elevated rate of Cesarean section and its contribution to non-communicable chronic diseases in Latin America: the growing involvement of the microbiota. Front. Pediatr. 5, 192 (2017).

    PubMed  PubMed Central  Google Scholar 

  226. 226

    Subramanian, S. et al. Cultivating healthy growth and nutrition through the gut microbiota. Cell 161, 36–48 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. 227

    Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. 228

    Venkataraman, D. et al. Filaggrin loss-of-function mutations are associated with food allergy in childhood and adolescence. J. Allergy Clin. Immunol. 134, 876–882.e4 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. 229

    Kusunoki, T. et al. SPINK5 polymorphism is associated with disease severity and food allergy in children with atopic dermatitis. J. Allergy Clin. Immunol. 115, 636–638 (2005).

    CAS  PubMed  Google Scholar 

  230. 230

    Galand, C. et al. IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J. Allergy Clin. Immunol. 138, 1356–1366 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. 231

    Genuneit, J. et al. Overview of systematic reviews in allergy epidemiology. Allergy 72, 849–856 (2017).

    CAS  PubMed  Google Scholar 

  232. 232

    Du Toit, G., Tsakok, T., Lack, S. & Lack, G. Prevention of food allergy. J. Allergy Clin. Immunol. 137, 998–1010 (2016).

    CAS  PubMed  Google Scholar 

  233. 233

    Guillet, G. & Guillet, M. H. Natural history of sensitizations in atopic dermatitis. A 3-year follow-up in 250 children. Food allergy and high risk of respiratory symptoms. Arch. Dermatol. 128, 187–192 (1992).

    CAS  PubMed  Google Scholar 

  234. 234

    Martin, P. E. et al. Which infants with eczema are at risk of food allergy? Results from a population-based cohort. Clin. Exp. Allergy 45, 255–264 (2015).

    CAS  Google Scholar 

  235. 235

    Tsakok, T. et al. Does atopic dermatitis cause food allergy? A systematic review. J. Allergy Clin. Immunol. 137, 1071–1078 (2016).

    PubMed  Google Scholar 

  236. 236

    Prescott, S. & Allen, K. J. Food allergy. Riding the second wave of the allergy epidemic. Pediatr. Allergy Immunol. 22, 155–160 (2011).

    PubMed  Google Scholar 

  237. 237

    Panjari, M. et al. Nut allergy prevalence and differences between Asian-born children and Australian-born children of Asian descent. A state-wide survey of children at primary school entry in Victoria, Australia. Clin. Exp. Allergy 46, 602–609 (2016).

    CAS  PubMed  Google Scholar 

  238. 238

    Klemans, R. J. B. et al. The diagnostic value of specific IgE to Ara h 2 to predict peanut allergy in children is comparable to a validated and updated diagnostic prediction model. J. Allergy Clin. Immunol. 131, 157–163 (2013).

    CAS  PubMed  Google Scholar 

  239. 239

    Masthoff, L. J. N. et al. Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults. J. Allergy Clin. Immunol. 132, 393–399 (2013).

    CAS  PubMed  Google Scholar 

  240. 240

    Boyano Martinez, T. et al. Validity of specific IgE antibodies in children with egg allergy. Clin. Exp. Allergy 31, 1464–1469 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

H.R. is supported by the Deutsche Zentrum für Lungenforschung (DZL; Germany; no. 82DZL00502) and the Deutsche Forschungsgemeinschaft (DFG; Germany)-funded SFB 1021. S.H.S. is supported by grants to his institution from the Food Allergy Research & Education organization and the US National Institute of Allergy and Infectious Diseases. H.A.S. has received funding paid to his institution for grant support from the US National Institute of Allergy and Infectious Diseases. K.B. has received grant money for research from the European Union, the German Research Foundation, the German Federal Ministry for Education and Research, the Food Allergy & Anaphylaxis Network and the Foundation for the Treatment of Peanut Allergy. H.C.O. received support from US NIH grant 1R01AI119918-01, the Bunning Family Foundation, the Nanji Family Fund, the Rao Chakravorti Family Fund and the Christine Olsen and Robert Small Food Allergy Research Fund at Boston Children's Hospital. The authors thank I. Schmidt (Philipps University Marburg) for her excellent editorial assistance.

Author information

Affiliations

Authors

Contributions

Introduction (H.R.); Epidemiology (K.J.A. and K.B.); Mechanisms/pathophysiology (H.C.O.); Diagnosis, screening and prevention (H.A.S., K.J.A. and G.L.); Management (K.B.); Quality of life (S.H.S.); Outlook (H.R.); and Overview of the Primer (H.R.).

Corresponding author

Correspondence to Harald Renz.

Ethics declarations

Competing interests

S.H.S. has received funding paid to his institution for grant support from HAL Allergy and has received royalties from UpToDate. H.A.S. is a part-time employee of DBV Technologies, serving as its chief scientific officer; he has consulted for Allertein, Hycor and UCB and he owns stock options in DBV Technologies. K.B. has received grant money for research from Aimmune, Danone, DBV, DST Diagnostic, Hipp, Hycor and ThermoFisher; she has received speaker fees or honoraria for advisory boards from Aimmune, ALK, AllergoPharma, Bausch & Lomb, Danone, HAL Allergy, Meda Pharma, MedUpdate, Nestlé, Novartis and Unilever. The remaining authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Renz, H., Allen, K., Sicherer, S. et al. Food allergy. Nat Rev Dis Primers 4, 17098 (2018). https://doi.org/10.1038/nrdp.2017.98

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing