Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tumour-induced osteomalacia

Abstract

Tumour-induced osteomalacia (TIO), also known as oncogenic osteomalacia, is a rare paraneoplastic disorder caused by tumours that secrete fibroblast growth factor 23 (FGF23). Owing to the role of FGF23 in renal phosphate handling and vitamin D synthesis, TIO is characterized by decreased renal tubular reabsorption of phosphate, by hypophosphataemia and by low levels of active vitamin D. Chronic hypophosphataemia ultimately results in osteomalacia (that is, inadequate bone mineralization). The diagnosis of TIO is usually suspected when serum phosphate levels are chronically low in the setting of bone pain, fragility fractures and muscle weakness. Locating the offending tumour can be very difficult, as the tumour is often very small and can be anywhere in the body. Surgical removal of the tumour is the only definitive treatment. When the tumour cannot be located or when complete resection is not possible, medical treatment with phosphate salts or active vitamin D is necessary. One of the most promising emerging treatments for unresectable tumours that cause TIO is the anti-FGF23 monoclonal antibody KRN23. The recent identification of a fusion of fibronectin and fibroblast growth factor receptor 1 (FGFR1) as a molecular driver in some tumours not only sheds light on the pathophysiology of TIO but also opens the door to a better understanding of the transcription, translocation, post-translational modification and secretion of FGF23, as well as suggesting approaches to targeted therapy. Further study will reveal if the FGFR1 pathway is also involved in tumours that do not harbour the translocation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Phosphate homeostasis.
Figure 2: The histological features of phosphaturic mesenchymal tumours.
Figure 3: Fibronectin–fibroblast growth factor receptor 1 signalling and translocations.
Figure 4: Phosphate transport in bone.
Figure 5: A diagnostic algorithm.
Figure 6: Histology and imaging of tumour-induced osteomalacia.
Figure 7: An algorithm to locate and treat the tumour associated with tumour-induced osteomalacia.

References

  1. 1

    Folpe, A. L. et al. Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am. J. Surg. Pathol. 28, 1–30 (2004). An extensive evaluation of the histological aspects of osteomalacia associated with mesenchymal tumours.

    Google Scholar 

  2. 2

    Chong, W. H., Molinolo, A. A., Chen, C. C. & Collins, M. T. Tumor-induced osteomalacia. Endocr. Relat. Cancer 18, R53–R77 (2011). An in-depth review covering various aspects of TIO.

    Google Scholar 

  3. 3

    Bielesz, B., Klaushofer, K. & Oberbauer, R. Renal phosphate loss in hereditary and acquired disorders of bone mineralization. Bone 35, 1229–1239 (2004).

    Google Scholar 

  4. 4

    Carpenter, T. O. Primary disorders of phosphate metabolism. EndoTexthttps://www.ncbi.nlm.nih.gov/books/NBK279172/ (2014). A general review of phosphate metabolism and related disorders.

  5. 5

    Crossen, S. S. et al. Tumor-induced osteomalacia in a 3-year-old with unresectable central giant cell lesions. J. Pediatr. Hematol. Oncol. 39, e21–e24 (2017).

    Google Scholar 

  6. 6

    Imel, E. A. et al. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia. J. Clin. Endocrinol. Metab. 91, 2055–2061 (2006).

    Google Scholar 

  7. 7

    Jiang, Y. et al. Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: report of 39 cases and review of the literature. J. Bone Miner. Res. 27, 1967–1975 (2012).

    Google Scholar 

  8. 8

    Endo, I. et al. Nationwide survey of fibroblast growth factor 23 (FGF23)-related hypophosphatemic diseases in Japan: prevalence, biochemical data and treatment. Endocr. J. 62, 811–816 (2015).

    Google Scholar 

  9. 9

    Evans, D. J. & Azzopardi, J. G. Distinctive tumours of bone and soft tissue causing acquired vitamin-D-resistant osteomalacia. Lancet 1, 353–354 (1972).

    Google Scholar 

  10. 10

    Weidner, N. & Santa Cruz, D. Phosphaturic mesenchymal tumors. A polymorphous group causing osteomalacia or rickets. Cancer 59, 1442–1454 (1987).

    Google Scholar 

  11. 11

    Sahoo, J. et al. Tumor(s) induced osteomalacia — a curious case of double trouble. J. Clin. Endocrinol. Metab. 99, 395–398 (2014).

    Google Scholar 

  12. 12

    Higley, M., Beckett, B., Schmahmann, S., Dacey, E. & Foss, E. Locally aggressive and multifocal phosphaturic mesenchymal tumors: two unusual cases of tumor-induced osteomalacia. Skeletal Radiol. 44, 1825–1831 (2015).

    Google Scholar 

  13. 13

    Annamalai, A. K. et al. Needle(s) in the haystack — synchronous multifocal tumor-induced osteomalacia. J. Clin. Endocrinol. Metab. 101, 390–393 (2016).

    Google Scholar 

  14. 14

    Leaf, D. E., Pereira, R. C., Bazari, H. & Juppner, H. Oncogenic osteomalacia due to FGF23-expressing colon adenocarcinoma. J. Clin. Endocrinol. Metab. 98, 887–891 (2013).

    Google Scholar 

  15. 15

    Lyles, K. W., Berry, W. R., Haussler, M., Harrelson, J. M. & Drezner, M. K. Hypophosphatemic osteomalacia: association with prostatic carcinoma. Ann. Intern. Med. 93, 275–278 (1980).

    Google Scholar 

  16. 16

    Mak, M. P. et al. Advanced prostate cancer as a cause of oncogenic osteomalacia: an underdiagnosed condition. Support. Care Cancer 20, 2195–2197 (2012).

    Google Scholar 

  17. 17

    Lim, Y. H. et al. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Hum. Mol. Genet. 23, 397–407 (2014).

    Google Scholar 

  18. 18

    Ovejero, D. & Collins, M. T. RAS in FGF23: another piece in the puzzle. J. Clin. Endocrinol. Metab. 99, 63–66 (2014).

    Google Scholar 

  19. 19

    Lim, Y. H. et al. Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a multilineage somatic mosaic RASopathy. J. Am. Acad. Dermatol. 75, 420–427 (2016).

    Google Scholar 

  20. 20

    Ovejero, D. et al. Cutaneous skeletal hypophosphatemia syndrome: clinical spectrum, natural history, and treatment. Osteoporos. Int. 27, 3615–3626 (2016). An in-depth review of the cutaneous skeletal hypophosphataemia syndrome.

    Google Scholar 

  21. 21

    Carter, J. M., Caron, B. L., Dogan, A. & Folpe, A. L. A novel chromogenic in situ hybridization assay for FGF23 mRNA in phosphaturic mesenchymal tumors. Am. J. Surg. Pathol. 39, 75–83 (2015).

    Google Scholar 

  22. 22

    Rowe, P. S. et al. MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone 34, 303–319 (2004).

    Google Scholar 

  23. 23

    Carpenter, T. O. et al. Fibroblast growth factor 7: an inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J. Clin. Endocrinol. Metab. 90, 1012–1020 (2005).

    Google Scholar 

  24. 24

    Berndt, T. et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J. Clin. Invest. 112, 785–794 (2003).

    Google Scholar 

  25. 25

    De Beur, S. M. et al. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J. Bone Miner. Res. 17, 1102–1110 (2002).

    Google Scholar 

  26. 26

    Habra, M. A. et al. Expression analysis of fibroblast growth factor-23, matrix extracellular phosphoglycoprotein, secreted frizzled-related protein-4, and fibroblast growth factor-7: identification of fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein as major factors involved in tumor-induced osteomalacia. Endocr. Pract. 14, 1108–1114 (2008).

    Google Scholar 

  27. 27

    Imanishi, Y. et al. Matrix extracellular phosphoglycoprotein is expressed in causative tumors of oncogenic osteomalacia. J. Bone Miner. Metab. 30, 93–99 (2012).

    Google Scholar 

  28. 28

    Riminucci, M. et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J. Clin. Invest. 112, 683–692 (2003). A seminal paper showing that FGF23 is produced by fibrous dysplasia tissue.

    Google Scholar 

  29. 29

    Sitara, D. et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 23, 421–432 (2004).

    Google Scholar 

  30. 30

    Mirams, M., Robinson, B. G., Mason, R. S. & Nelson, A. E. Bone as a source of FGF23: regulation by phosphate? Bone 35, 1192–1199 (2004).

    Google Scholar 

  31. 31

    Lee, J. C. et al. Identification of a novel FN1–FGFR1 genetic fusion as a frequent event in phosphaturic mesenchymal tumour. J. Pathol. 235, 539–545 (2015).

    Google Scholar 

  32. 32

    Lee, J. C. et al. Characterization of FN1–FGFR1 and novel FN1–FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors. Mod. Pathol. 29, 1335–1346 (2016). A paper that demonstrates the central role of the FGF1–FGFR1 signalling pathway.

    Google Scholar 

  33. 33

    Tanner, Y. & Grose, R. P. Dysregulated FGF signalling in neoplastic disorders. Semin. Cell Dev. Biol. 53, 126–135 (2016).

    Google Scholar 

  34. 34

    Cheng, W., Wang, M., Tian, X. & Zhang, X. An overview of the binding models of FGFR tyrosine kinases in complex with small molecule inhibitors. Eur. J. Med. Chem. 126, 476–490 (2017).

    Google Scholar 

  35. 35

    Wohrle, S. et al. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. J. Bone Miner. Res. 28, 899–911 (2013).

    Google Scholar 

  36. 36

    Imel, E. A. & Peacock, M. X-linked hypophosphatemia: understanding and management. Drugs Future 35, 755–763 (2010).

    Google Scholar 

  37. 37

    Lederer, E. Regulation of serum phosphate. J. Physiol. 592, 3985–3995 (2014).

    Google Scholar 

  38. 38

    Fukumoto, S. The role of bone in phosphate metabolism. Mol. Cell. Endocrinol. 310, 63–70 (2009).

    Google Scholar 

  39. 39

    Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19, 429–435 (2004).

    Google Scholar 

  40. 40

    Murer, H. et al. Renal brush border membrane Na/Pi-cotransport: molecular aspects in PTH-dependent and dietary regulation. Kidney Int. 49, 1769–1773 (1996).

    Google Scholar 

  41. 41

    Blau, J. E. & Collins, M. T. The PTH–vitamin D–FGF23 axis. Rev. Endocr. Metab. Disord. 16, 165–174 (2015).

    Google Scholar 

  42. 42

    Peacock, M., Heyburn, P. J. & Aaron, J. E. Vitamin D resistant hypophosphataemic osteomalacia: treatment with 1α-hydroxyvitamin D3 . Clin. Endocrinol. (Oxf.) 7, 231s–237s (1977).

    Google Scholar 

  43. 43

    Kido, S., Kaneko, I., Tatsumi, S., Segawa, H. & Miyamoto, K. Vitamin D and type II sodium-dependent phosphate cotransporters. Contrib. Nephrol. 180, 86–97 (2013).

    Google Scholar 

  44. 44

    DeLuca, H. F. The metabolism and functions of vitamin D. Adv. Exp. Med. Biol. 196, 361–375 (1986).

    Google Scholar 

  45. 45

    Sabbagh, Y. Phosphate as a sensor and signaling molecule. Clin. Nephrol. 79, 57–65 (2013).

    Google Scholar 

  46. 46

    Bergwitz, C. & Juppner, H. Phosphate sensing. Adv. Chronic Kidney Dis. 18, 132–144 (2011).

    Google Scholar 

  47. 47

    Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).

    Google Scholar 

  48. 48

    Jaaskelainen, T., Huhtakangas, J. & Maenpaa, P. H. Negative regulation of human parathyroid hormone gene promoter by vitamin D3 through nuclear factor Y. Biochem. Biophys. Res. Commun. 328, 831–837 (2005).

    Google Scholar 

  49. 49

    Rhee, Y. et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49, 636–643 (2011).

    Google Scholar 

  50. 50

    Geller, J. L. et al. Cinacalcet in the management of tumor-induced osteomalacia. J. Bone Miner. Res. 22, 931–937 (2007).

    Google Scholar 

  51. 51

    Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride (National Academies Press, 1997).

  52. 52

    Yates, A. A., Schlicker, S. A. & Suitor, C. W. Dietary reference intakes: the new basis for recommendations for calcium and related nutrients, B vitamins, and choline. J. Am. Diet Assoc. 98, 699–706 (1998).

    Google Scholar 

  53. 53

    Fleet, J. C. & Peacock, M. in The Physiological Basis of Metabolic Bone Disease (eds Morris, H. A., Anderson, P. H. & Christopher Nordin, B. E. ) 13–40 (CRC Press, 2014).

    Google Scholar 

  54. 54

    Sabbagh, Y. et al. Intestinal Npt2b plays a major role in phosphate absorption and homeostasis. J. Am. Soc. Nephrol. 20, 2348–2358 (2009).

    Google Scholar 

  55. 55

    Burnett, S. M. et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J. Bone Miner. Res. 21, 1187–1196 (2006).

    Google Scholar 

  56. 56

    Berndt, T. et al. Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc. Natl Acad. Sci. USA 104, 11085–11090 (2007).

    Google Scholar 

  57. 57

    Labonte, E. D. et al. Gastrointestinal inhibition of sodium–hydrogen exchanger 3 reduces phosphorus absorption and protects against vascular calcification in CKD. J. Am. Soc. Nephrol. 26, 1138–1149 (2015).

    Google Scholar 

  58. 58

    Block, G. A. et al. Effect of tenapanor on serum phosphate in patients receiving hemodialysis. J. Am. Soc. Nephrol. 28, 1933–1942 (2017).

    Google Scholar 

  59. 59

    Marks, J. et al. Intestinal phosphate absorption and the effect of vitamin D: a comparison of rats with mice. Exp. Physiol. 91, 531–537 (2006).

    Google Scholar 

  60. 60

    Capuano, P. et al. Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1αOHase-deficient mice. Am. J. Physiol. Cell Physiol. 288, C429–C434 (2005).

    Google Scholar 

  61. 61

    Peacock, M., Aaron, J. E., Walker, G. S. & Davison, A. M. Bone disease and hyperparathyroidism in chronic renal failure: the effect of 1α-hydroxyvitamin D3 . Clin. Endocrinol. (Oxf.) 7, 73s–81s (1977).

    Google Scholar 

  62. 62

    Davis, G. R. et al. Absorption of phosphate in the jejunum of patients with chronic renal failure before and after correction of vitamin D deficiency. Gastroenterology 85, 908–916 (1983).

    Google Scholar 

  63. 63

    Xu, H., Inouye, M., Hines, E. R., Collins, J. F. & Ghishan, F. K. Transcriptional regulation of the human NaPi-IIb cotransporter by EGF in Caco-2 cells involves c-myb. Am. J. Physiol. Cell Physiol. 284, C1262–C1271 (2003).

    Google Scholar 

  64. 64

    Khuituan, P. et al. Fibroblast growth factor-23 abolishes 1,25-dihydroxyvitamin D3-enhanced duodenal calcium transport in male mice. Am. J. Physiol. Endocrinol. Metab. 302, E903–E913 (2012).

    Google Scholar 

  65. 65

    Corut, A. et al. Mutations in SLC34A2 cause pulmonary alveolar microlithiasis and are possibly associated with testicular microlithiasis. Am. J. Hum. Genet. 79, 650–656 (2006).

    Google Scholar 

  66. 66

    Stokman, L. et al. A case of pulmonary alveolar microlithiasis associated with a homozygous 195 kb deletion encompassing the entire SLC34A2 gene. Clin. Case Rep. 4, 412–415 (2016).

    Google Scholar 

  67. 67

    Tiosano, D. & Hochberg, Z. Hypophosphatemia: the common denominator of all rickets. J. Bone Miner. Metab. 27, 392–401 (2009).

    Google Scholar 

  68. 68

    Munns, C. F. et al. Global consensus recommendations on prevention and management of nutritional rickets. J. Clin. Endocrinol. Metab. 101, 394–415 (2016).

    Google Scholar 

  69. 69

    Kazama, J. J. Oral phosphate binders: history and prospects. Bone 45 (Suppl. 1), S8–S12 (2009).

    Google Scholar 

  70. 70

    Pivnick, E. K., Kerr, N. C., Kaufman, R. A., Jones, D. P. & Chesney, R. W. Rickets secondary to phosphate depletion. A sequela of antacid use in infancy. Clin. Pediatr. (Phila.) 34, 73–78 (1995).

    Google Scholar 

  71. 71

    Peacock, M. in The Parathyroids 3rd edn (eds Bilezikian, J. P. et al.) 455–467 (2015). An extensive review on the role of the kidney in regulating mineral metabolism.

    Google Scholar 

  72. 72

    Miyamoto, K. et al. Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J. Pharm. Sci. 100, 3719–3730 (2011).

    Google Scholar 

  73. 73

    Walton, R. J. & Bijvoet, O. L. Nomogram for derivation of renal threshold phosphate concentration. Lancet 2, 309–310 (1975).

    Google Scholar 

  74. 74

    Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    Google Scholar 

  75. 75

    Karim, Z. et al. NHERF1 mutations and responsiveness of renal parathyroid hormone. N. Engl. J. Med. 359, 1128–1135 (2008).

    Google Scholar 

  76. 76

    Ansermet, C. et al. Renal Fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron. J. Am. Soc. Nephrol. 28, 1073–1078 (2017).

    Google Scholar 

  77. 77

    Wang, H. et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J. Bone Miner. Res. 23, 939–948 (2008).

    Google Scholar 

  78. 78

    Wallimann, T., Tokarska-Schlattner, M. & Schlattner, U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40, 1271–1296 (2011).

    Google Scholar 

  79. 79

    Argov, Z., Lofberg, M. & Arnold, D. L. Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve 23, 1316–1334 (2000).

    Google Scholar 

  80. 80

    Kemp, G. J., Meyerspeer, M. & Moser, E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed. 20, 555–565 (2007).

    Google Scholar 

  81. 81

    Pesta, D. H. et al. Hypophosphatemia promotes lower rates of muscle ATP synthesis. FASEB J. 30, 3378–3387 (2016).

    Google Scholar 

  82. 82

    MacDonald, R. Red cell 2,3-diphosphoglycerate and oxygen affinity. Anaesthesia 32, 544–553 (1977).

    Google Scholar 

  83. 83

    Kavanaugh, M. P. & Kabat, D. Identification and characterization of a widely expressed phosphate transporter/retrovirus receptor family. Kidney Int. 49, 959–963 (1996).

    Google Scholar 

  84. 84

    McCance, R. A. Osteomalacia with Looser's nodes (Milkman's syndrome) due to a raised resistance to vitamin D acquired about the age of 15 years. Q. J. Med. 16, 33–46 (1947).

    Google Scholar 

  85. 85

    Peacock, M. in Metabolic Bone and Stone Disease 3rd edn (eds Nordin, B. E. C., Need, A. G. & Morris, H. A. ) 83–118 (Churchill Livingstone, 1993).

    Google Scholar 

  86. 86

    Wang, Y. & DeLuca, H. F. Is the vitamin D receptor found in muscle? Endocrinology 152, 354–363 (2011).

    Google Scholar 

  87. 87

    Piemonte, S. et al. Six-year follow-up of a characteristic osteolytic lesion in a patient with tumor-induced osteomalacia. Eur. J. Endocrinol. 170, K1–K4 (2014).

    Google Scholar 

  88. 88

    Jan de Beur, S. M. Tumor-induced osteomalacia. JAMA 294, 1260–1267 (2005).

    Google Scholar 

  89. 89

    Leow, M. K. et al. Oncogenic osteomalacia presenting as a crippling illness in a young man. Lancet 384, 1236 (2014).

    Google Scholar 

  90. 90

    Ogose, A. et al. Recurrent malignant variant of phosphaturic mesenchymal tumor with oncogenic osteomalacia. Skeletal Radiol. 30, 99–103 (2001).

    Google Scholar 

  91. 91

    Morimoto, T. et al. Malignant phosphaturic mesenchymal tumor of the pelvis: a report of two cases. Oncol. Lett. 8, 67–71 (2014).

    Google Scholar 

  92. 92

    Kruse, K., Kracht, U. & Gopfert, G. Renal threshold phosphate concentration (TmPO4/GFR). Arch. Dis. Child. 57, 217–223 (1982).

    Google Scholar 

  93. 93

    Liu, S. & Quarles, L. D. How fibroblast growth factor 23 works. J. Am. Soc. Nephrol. 18, 1637–1647 (2007).

    Google Scholar 

  94. 94

    Solano, A., Lew, S. Q. & Ing, T. S. Dent–Wrong disease and other rare causes of the Fanconi syndrome. Clin. Kidney J. 7, 344–347 (2014).

    Google Scholar 

  95. 95

    Klootwijk, E. D. et al. Renal Fanconi syndrome: taking a proximal look at the nephron. Nephrol. Dial. Transplant. 30, 1456–1460 (2015).

    Google Scholar 

  96. 96

    Kumar, R., Folpe, A. L. & Mullan, B. P. Tumor-induced osteomalacia. Transl Endocrinol. Metab. 7, 1871 (2015).

    Google Scholar 

  97. 97

    El-Maouche, D. et al. Stability and degradation of fibroblast growth factor 23 (FGF23): the effect of time and temperature and assay type. Osteoporos. Int. 27, 2345–2353 (2016).

    Google Scholar 

  98. 98

    Goetz, R. et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23–FGFR–Klotho complex formation. Proc. Natl Acad. Sci. USA 107, 407–412 (2010).

    Google Scholar 

  99. 99

    Bhattacharyya, N., Chong, W. H., Gafni, R. I. & Collins, M. T. Fibroblast growth factor 23: state of the field and future directions. Trends Endocrinol. Metab. 23, 610–618 (2012).

    Google Scholar 

  100. 100

    Imel, E. A. et al. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J. Clin. Endocrinol. Metab. 96, 3541–3549 (2011).

    Google Scholar 

  101. 101

    Houang, M. et al. Phosphaturic mesenchymal tumors show positive staining for somatostatin receptor 2A (SSTR2A). Hum. Pathol. 44, 2711–2718 (2013).

    Google Scholar 

  102. 102

    Ishii, A. et al. The levels of somatostatin receptors in causative tumors of oncogenic osteomalacia are insufficient for their agonist to normalize serum phosphate levels. Calcif. Tissue Int. 86, 455–462 (2010).

    Google Scholar 

  103. 103

    Jan de Beur, S. M. et al. Localisation of mesenchymal tumours by somatostatin receptor imaging. Lancet 359, 761–763 (2002).

    Google Scholar 

  104. 104

    Chong, W. H. et al. Tumor localization and biochemical response to cure in tumor-induced osteomalacia. J. Bone Miner. Res. 28, 1386–1398 (2013). An important paper that addresses the problem of tumour localization.

    Google Scholar 

  105. 105

    Clifton-Bligh, R. J. et al. Improving diagnosis of tumor-induced osteomalacia with Gallium-68 DOTATATE PET/CT. J. Clin. Endocrinol. Metab. 98, 687–694 (2013).

    Google Scholar 

  106. 106

    Reubi, J. C. et al. Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur. J. Nucl. Med. 27, 273–282 (2000).

    Google Scholar 

  107. 107

    El-Maouche, D. et al. 68Ga-DOTATATE for tumor localization in tumor-induced osteomalacia. J. Clin. Endocrinol. Metab. 101, 3575–3581 (2016).

    Google Scholar 

  108. 108

    Ferraz, M. P. et al. Concordance between whole-body scintigraphy 111In-octreotide and 99mTc-sestamibi uptake in the detection of four tumor-induced osteomalacia cases. J. Clin. Endocrinol. Metab. 99, 699–700 (2014).

    Google Scholar 

  109. 109

    Nakanishi, K. et al. Whole-body MR imaging in detecting phosphaturic mesenchymal tumor (PMT) in tumor-induced hypophosphatemic osteomalacia. Magn. Reson. Med. Sci. 12, 47–52 (2013).

    Google Scholar 

  110. 110

    Chakraborty, P. P., Bhattacharjee, R., Mukhopadhyay, S. & Chowdhury, S. ‘Rachitic rosary sign’ and ‘tie sign’ of the sternum in tumour-induced osteomalacia. BMJ Case Rep.http://dx.doi.org/10.1136/bcr-2016-214766 (2016).

  111. 111

    Andreopoulou, P. et al. Selective venous catheterization for the localization of phosphaturic mesenchymal tumors. J. Bone Miner. Res. 26, 1295–1302 (2011).

    Google Scholar 

  112. 112

    Takeuchi, Y. et al. Venous sampling for fibroblast growth factor-23 confirms preoperative diagnosis of tumor-induced osteomalacia. J. Clin. Endocrinol. Metab. 89, 3979–3982 (2004).

    Google Scholar 

  113. 113

    van Boekel, G. et al. Tumor producing fibroblast growth factor 23 localized by two-staged venous sampling. Eur. J. Endocrinol. 158, 431–437 (2008).

    Google Scholar 

  114. 114

    Sciubba, D. M. et al. En bloc spondylectomy for treatment of tumor-induced osteomalacia. J. Neurosurg. Spine 11, 600–604 (2009).

    Google Scholar 

  115. 115

    Wagner, C. A., Rubio-Aliaga, I., Biber, J. & Hernando, N. Genetic diseases of renal phosphate handling. Nephrol. Dial. Transplant. 29 (Suppl. 4), iv45–iv54 (2014).

    Google Scholar 

  116. 116

    Lee, J. Y. & Imel, E. A. The changing face of hypophosphatemic disorders in the FGF-23 era. Pediatr. Endocrinol. Rev. 10 (Suppl. 2), 367–379 (2013).

    Google Scholar 

  117. 117

    Clunie, G. P., Fox, P. E. & Stamp, T. C. Four cases of acquired hypophosphataemic (‘oncogenic’) osteomalacia. Problems of diagnosis, treatment and long-term management. Rheumatology (Oxford) 39, 1415–1421 (2000).

    Google Scholar 

  118. 118

    Uramoto, N., Furukawa, M. & Yoshizaki, T. Malignant phosphaturic mesenchymal tumor, mixed connective tissue variant of the tongue. Auris Nasus Larynx 36, 104–105 (2009).

    Google Scholar 

  119. 119

    Yu, W. J., He, J. W., Fu, W. Z., Wang, C. & Zhang, Z. L. Reports of 17 Chinese patients with tumor-induced osteomalacia. J. Bone Miner. Metab. 35, 298–307 (2017).

    Google Scholar 

  120. 120

    Harvey, J. N., Gray, C. & Belchetz, P. E. Oncogenous osteomalacia and malignancy. Clin. Endocrinol. (Oxf.) 37, 379–382 (1992).

    Google Scholar 

  121. 121

    Sun, Z. J., Jin, J., Qiu, G. X., Gao, P. & Liu, Y. Surgical treatment of tumor-induced osteomalacia: a retrospective review of 40 cases with extremity tumors. BMC Musculoskelet. Disord. 16, 43 (2015).

    Google Scholar 

  122. 122

    Dadoniene, J. et al. Tumour-induced osteomalacia: a literature review and a case report. World J. Surg. Oncol. 14, 4 (2016).

    Google Scholar 

  123. 123

    Hautmann, A. H., Hautmann, M. G., Kolbl, O., Herr, W. & Fleck, M. Tumor-induced osteomalacia: an up-to-date review. Curr. Rheumatol. Rep. 17, 512 (2015).

    Google Scholar 

  124. 124

    Ruka, W. et al. The megavoltage radiation therapy in treatment of patients with advanced or difficult giant cell tumors of bone. Int. J. Radiat. Oncol. Biol. Phys. 78, 494–498 (2010).

    Google Scholar 

  125. 125

    Caudell, J. J. et al. Radiotherapy in the management of giant cell tumor of bone. Int. J. Radiat. Oncol. Biol. Phys. 57, 158–165 (2003).

    Google Scholar 

  126. 126

    Tutton, S., Olson, E., King, D. & Shaker, J. L. Successful treatment of tumor-induced osteomalacia with CT-guided percutaneous ethanol and cryoablation. J. Clin. Endocrinol. Metab. 97, 3421–3425 (2012).

    Google Scholar 

  127. 127

    Hesse, E., Rosenthal, H. & Bastian, L. Radiofrequency ablation of a tumor causing oncogenic osteomalacia. N. Engl. J. Med. 357, 422–424 (2007).

    Google Scholar 

  128. 128

    Paglia, F., Dionisi, S. & Minisola, S. Octreotide for tumor-induced osteomalacia. N. Engl. J. Med. 346, 1748–1749 (2002).

    Google Scholar 

  129. 129

    Seufert, J. et al. Octreotide therapy for tumor-induced osteomalacia. N. Engl. J. Med. 345, 1883–1888 (2001).

    Google Scholar 

  130. 130

    Khosravi, A. et al. Determination of the elimination half-life of fibroblast growth factor-23. J. Clin. Endocrinol. Metab. 92, 2374–2377 (2007).

    Google Scholar 

  131. 131

    Zimering, M. B., Caldarella, F. A., White, K. E. & Econs, M. J. Persistent tumor-induced osteomalacia confirmed by elevated postoperative levels of serum fibroblast growth factor-23 and 5-year follow-up of bone density changes. Endocr. Pract. 11, 108–114 (2005).

    Google Scholar 

  132. 132

    Bhambri, R. et al. Changes in bone mineral density following treatment of osteomalacia. J. Clin. Densitom. 9, 120–127 (2006).

    Google Scholar 

  133. 133

    Collins, M. T. et al. Striking response of tumor-induced osteomalacia to the FGFR inhibitor NVP-BGJ398. Annual Meeting of the American Society for Bone and Mineral Research SA0035 (2015).

  134. 134

    Zhang, M. Y. et al. Chronic inhibition of ERK1/2 signaling improves disordered bone and mineral metabolism in hypophosphatemic (Hyp) mice. Endocrinology 153, 1806–1816 (2012).

    Google Scholar 

  135. 135

    Carpenter, T. O. et al. Effects of KRN23, an anti-FGF23 antibody, in patients with tumor induced osteomalacia and epidermal nevus syndrome: results from an ongoing phase 2 study. Annual Meeting of the American Society for Bone and Mineral Research 1098 (2016).

  136. 136

    Aono, Y. et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J. Bone Miner. Res. 24, 1879–1888 (2009).

    Google Scholar 

  137. 137

    Carpenter, T. O. et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J. Clin. Invest. 124, 1587–1597 (2014). A study that shows the effect of pharmacological treatment in patients with X-linked hypophosphataemia.

    Google Scholar 

  138. 138

    Imel, E. A. et al. Prolonged correction of serum phosphorus in adults with X-linked hypophosphatemia using monthly doses of KRN23. J. Clin. Endocrinol. Metab. 100, 2565–2573 (2015).

    Google Scholar 

  139. 139

    Zhang, X. et al. Pharmacokinetics and pharmacodynamics of a human monoclonal anti-FGF23 antibody (KRN23) in the first multiple ascending-dose trial treating adults with X-linked hypophosphatemia. J. Clin. Pharmacol. 56, 176–185 (2016).

    Google Scholar 

  140. 140

    Fukumoto, S. FGF23–FGF receptor/klotho pathway as a new drug target for disorders of bone and mineral metabolism. Calcif. Tissue Int. 98, 334–340 (2016). An extensive review that discusses the potential of the FGF23–FGFR–KLOTHO complex as a therapeutic target.

    Google Scholar 

  141. 141

    Wolf, M. & White, K. E. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. Curr. Opin. Nephrol. Hypertens. 23, 411–419 (2014).

    Google Scholar 

  142. 142

    Wolf, M., Koch, T. A. & Bregman, D. B. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J. Bone Miner. Res. 28, 1793–1803 (2013).

    Google Scholar 

  143. 143

    Bishay, R. H., Ganda, K. & Seibel, M. J. Long-term iron polymaltose infusions associated with hypophosphataemic osteomalacia: a report of two cases and review of the literature. Ther. Adv. Endocrinol. Metab. 8, 14–19 (2017).

    Google Scholar 

  144. 144

    Hediger, M. A., Clemencon, B., Burrier, R. E. & Bruford, E. A. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol. Aspects Med. 34, 95–107 (2013).

    Google Scholar 

  145. 145

    Reimer, R. J. SLC17: a functionally diverse family of organic anion transporters. Mol. Aspects Med. 34, 350–359 (2013).

    Google Scholar 

  146. 146

    Forster, I. C., Hernando, N., Biber, J. & Murer, H. Phosphate transporters of the SLC20 and SLC34 families. Mol. Aspects Med. 34, 386–395 (2013).

    Google Scholar 

  147. 147

    Biber, J., Hernando, N. & Forster, I. Phosphate transporters and their function. Annu. Rev. Physiol. 75, 535–550 (2013).

    Google Scholar 

  148. 148

    Albano, G. et al. Sodium-dependent phosphate transporters in osteoclast differentiation and function. PLoS ONE 10, e0125104 (2015).

    Google Scholar 

  149. 149

    Zoidis, E., Ghirlanda-Keller, C., Gosteli-Peter, M., Zapf, J. & Schmid, C. Regulation of phosphate (Pi) transport and NaPi-III transporter (Pit-1) mRNA in rat osteoblasts. J. Endocrinol. 181, 531–540 (2004).

    Google Scholar 

  150. 150

    Cowan, C. M. et al. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2. Biochem. Biophys. Res. Commun. 422, 351–357 (2012).

    Google Scholar 

  151. 151

    Wang, L., Nancollas, G. H., Henneman, Z. J., Klein, E. & Weiner, S. Nanosized particles in bone and dissolution insensitivity of bone mineral. Biointerphases 1, 106–111 (2006).

    Google Scholar 

Download references

Acknowledgements

The authors thank J. Berglund (NIH, Bethesda, Maryland, USA) for the image used in Figure 3b.

Author information

Affiliations

Authors

Contributions

Introduction (S.M.); Epidemiology (S.M.); Mechanisms/pathophysiology (M.P. and S.F.); Diagnosis, screening and prevention (S.M., J.P., S.H.T. and M.T.C.); Management (S.M. and C.C.); Quality of life (S.F.); Outlook (all); Overview of Primer (S.M.).

Corresponding author

Correspondence to Salvatore Minisola.

Ethics declarations

Competing interests

S.M. has served as speaker for Abiogen, Amgen, Diasorin, Eli Lilly, Italfarmaco, Fujii, Merck Sharp & Dohme and Takeda. He has also served on the advisory boards of Amgen and Eli Lilly. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Minisola, S., Peacock, M., Fukumoto, S. et al. Tumour-induced osteomalacia. Nat Rev Dis Primers 3, 17044 (2017). https://doi.org/10.1038/nrdp.2017.44

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing