Vitamin B12 deficiency

A Correction to this article was published on 20 July 2017

Abstract

Vitamin B12 (B12; also known as cobalamin) is a B vitamin that has an important role in cellular metabolism, especially in DNA synthesis, methylation and mitochondrial metabolism. Clinical B12 deficiency with classic haematological and neurological manifestations is relatively uncommon. However, subclinical deficiency affects between 2.5% and 26% of the general population depending on the definition used, although the clinical relevance is unclear. B12 deficiency can affect individuals at all ages, but most particularly elderly individuals. Infants, children, adolescents and women of reproductive age are also at high risk of deficiency in populations where dietary intake of B12-containing animal-derived foods is restricted. Deficiency is caused by either inadequate intake, inadequate bioavailability or malabsorption. Disruption of B12 transport in the blood, or impaired cellular uptake or metabolism causes an intracellular deficiency. Diagnostic biomarkers for B12 status include decreased levels of circulating total B12 and transcobalamin-bound B12, and abnormally increased levels of homocysteine and methylmalonic acid. However, the exact cut-offs to classify clinical and subclinical deficiency remain debated. Management depends on B12 supplementation, either via high-dose oral routes or via parenteral administration. This Primer describes the current knowledge surrounding B12 deficiency, and highlights improvements in diagnostic methods as well as shifting concepts about the prevalence, causes and manifestations of B12 deficiency.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Vitamin B12 and folate metabolism and function.
Figure 2: Prevalence of low and marginal vitamin B12.
Figure 3: Biomarkers of vitamin B12 status during pregnancy and lactation.
Figure 4: Absorption, enterohepatic circulation and intracellular metabolism of vitamin B12.
Figure 5: Mechanism and complications of autoimmune gastritis.
Figure 6: Blood and bone marrow morphological changes in vitamin B12 deficiency.
Figure 7: Determinants of vitamin B12 status.

References

  1. 1

    Green, R. & Miller, J. W. in Handbook of Vitamins 5th edn (eds Zempleni, J. et al.) 447–489 (Taylor & Francis, 2014). A comprehensive review of B12 biochemistry, nutrition and metabolism.

    Google Scholar 

  2. 2

    Nielsen, M. J. et al. Vitamin B12 transport from food to the body's cells — a sophisticated, multistep pathway. Nat. Rev. Gastroenterol. Hepatol. 9, 345–354 (2012). A thorough review of B12 absorption, cellular uptake and intracellular metabolism in health and disease.

    Google Scholar 

  3. 3

    Allen, L. H. How common is vitamin B-12 deficiency? Am. J. Clin. Nutr. 89, 693S–696S (2009).

    Google Scholar 

  4. 4

    Stabler, S. P. Clinical practice. Vitamin B12 deficiency. N. Engl. J. Med. 368, 149–160 (2013). An authoritative review of B12 deficiency from the clinical perspective.

    Google Scholar 

  5. 5

    Green, R. Vitamin B12 deficiency from the perspective of a practicing hematologist. Blood 129, 2603–2611 (2017). A recent and authoritative up-to-date summary of the clinical aspects of B12 deficiency with emphasis on the haematological perspective.

    Google Scholar 

  6. 6

    Lindenbaum, J. et al. Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N. Engl. J. Med. 318, 1720–1728 (1988).

    Google Scholar 

  7. 7

    Carmel, R. Subtle and atypical cobalamin deficiency states. Am. J. Hematol. 34, 108–114 (1990).

    Google Scholar 

  8. 8

    Green, R. Metabolite assays in cobalamin and folate deficiency. Baillieres Clin. Haematol. 8, 533–566 (1995).

    Google Scholar 

  9. 9

    Green, R. Screening for vitamin B12 deficiency: caveat emptor. Ann. Intern. Med. 124, 509–511 (1996).

    Google Scholar 

  10. 10

    Carmel, R. Subclinical cobalamin deficiency. Curr. Opin. Gastroenterol. 28, 151–158 (2012). A detailed description of the puzzling but common entity of B12 inadequacy without frank manifestations of deficiency.

    Google Scholar 

  11. 11

    Carmel, R. Cobalamin, the stomach, and aging. Am. J. Clin. Nutr. 66, 750–759 (1997).

    Google Scholar 

  12. 12

    Carmel, R. & Sarrai, M. Diagnosis and management of clinical and subclinical cobalamin deficiency: advances and controversies. Curr. Hematol. Rep. 5, 23–33 (2006).

    Google Scholar 

  13. 13

    Carmel, R. et al. Update on cobalamin, folate, and homocysteine. Hematology Am. Soc. Hematol. Educ. Program 2003, 62–81 (2003).

    Google Scholar 

  14. 14

    Carmel, R. Prevalence of undiagnosed pernicious anemia in the elderly. Arch. Intern. Med. 156, 1097–1100 (1996).

    Google Scholar 

  15. 15

    Yajnik, C. S. et al. Vitamin B12 deficiency and hyperhomocysteinemia in rural and urban Indians. J. Assoc. Physicians India 54, 775–782 (2006).

    Google Scholar 

  16. 16

    Premkumar, M. et al. Cobalamin and folic acid status in relation to the etiopathogenesis of pancytopenia in adults at a tertiary care centre in north India. Anemia 2012, 707402 (2012).

    Google Scholar 

  17. 17

    James, J. S. Low vitamin B-12 blood levels associated with faster progression to AIDS. AIDS Treat. News 264, 3–4 (1997).

    Google Scholar 

  18. 18

    Allen, L. H. Causes of vitamin B12 and folate deficiency. Food Nutr. Bull. 29 (Suppl. 2), S20–S34 (2008).

    Google Scholar 

  19. 19

    Bailey, R. L. et al. Monitoring of vitamin B-12 nutritional status in the United States by using plasma methylmalonic acid and serum vitamin B-12. Am. J. Clin. Nutr. 94, 552–561 (2011).

    Google Scholar 

  20. 20

    Yang, Q. et al. Folic acid source, usual intake, and folate and vitamin B-12 status in US adults: National Health and Nutrition Examination Survey (NHANES) 2003–2006. Am. J. Clin. Nutr. 91, 64–72 (2010).

    Google Scholar 

  21. 21

    Pennypacker, L. C. et al. High prevalence of cobalamin deficiency in elderly outpatients. J. Am. Geriatr. Soc. 40, 1197–1204 (1992).

    Google Scholar 

  22. 22

    Clarke, R. et al. Vitamin B12 and folate deficiency in later life. Age Ageing 33, 34–41 (2004).

    Google Scholar 

  23. 23

    Carmel, R. et al. Serum cobalamin, homocysteine, and methylmalonic acid concentrations in a multiethnic elderly population: ethnic and sex differences in cobalamin and metabolite abnormalities. Am. J. Clin. Nutr. 70, 904–910 (1999).

    Google Scholar 

  24. 24

    Stabler, S. P., Lindenbaum, J. & Allen, R. H. Vitamin B-12 deficiency in the elderly: current dilemmas. Am. J. Clin. Nutr. 66, 741–749 (1997).

    Google Scholar 

  25. 25

    Naurath, H. J. et al. Effects of vitamin B12, folate, and vitamin B6 supplements in elderly people with normal serum vitamin concentrations. Lancet 346, 85–89 (1995).

    Google Scholar 

  26. 26

    van Asselt, D. Z. et al. Cobalamin-binding proteins in normal and cobalamin-deficient older subjects. Ann. Clin. Biochem. 40, 65–69 (2003).

    Google Scholar 

  27. 27

    Johnson, M. A. et al. Vitamin B12 deficiency in African American and white octogenarians and centenarians in Georgia. J. Nutr. Health Aging 14, 339–345 (2010).

    Google Scholar 

  28. 28

    Murphy, M. M. et al. Longitudinal study of the effect of pregnancy on maternal and fetal cobalamin status in healthy women and their offspring. J. Nutr. 137, 1863–1867 (2007).

    Google Scholar 

  29. 29

    Greibe, E. et al. Uptake of cobalamin and markers of cobalamin status: a longitudinal study of healthy pregnant women. Clin. Chem. Lab Med. 49, 1877–1882 (2011).

    Google Scholar 

  30. 30

    Milman, N. et al. Cobalamin status during normal pregnancy and postpartum: a longitudinal study comprising 406 Danish women. Eur. J. Haematol. 76, 521–525 (2006).

    Google Scholar 

  31. 31

    Bae, S. et al. Vitamin B-12 status differs among pregnant, lactating, and control women with equivalent nutrient intakes. J. Nutr. 145, 1507–1514 (2015).

    Google Scholar 

  32. 32

    Obeid, R. et al. The cobalamin-binding proteins transcobalamin and haptocorrin in maternal and cord blood sera at birth. Clin. Chem. 52, 263–269 (2006).

    Google Scholar 

  33. 33

    McLean, E., de Benoist, B. & Allen, L. H. Review of the magnitude of folate and vitamin B12 deficiencies worldwide. Food Nutr. Bull. 29 (Suppl. 2), S38–S51 (2008).

    Google Scholar 

  34. 34

    Barnabe, A. et al. Folate, vitamin B12 and homocysteine status in the post-folic acid fortification era in different subgroups of the Brazilian population attended to at a public health care center. Nutr. J. 14, 19 (2015).

    Google Scholar 

  35. 35

    Yusufji, D., Mathan, V. I. & Baker, S. J. Iron, folate, and vitamin B12 nutrition in pregnancy: a study of 1 000 women from southern India. Bull. World Health Organ. 48, 15–22 (1973).

    Google Scholar 

  36. 36

    Koc, A. et al. High frequency of maternal vitamin B12 deficiency as an important cause of infantile vitamin B12 deficiency in Sanliurfa province of Turkey. Eur. J. Nutr. 45, 291–297 (2006).

    Google Scholar 

  37. 37

    Yajnik, C. S. et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51, 29–38 (2008).

    Google Scholar 

  38. 38

    Tucker, K. L. et al. Plasma vitamin B-12 concentrations relate to intake source in the Framingham Offspring study. Am. J. Clin. Nutr. 71, 514–522 (2000).

    Google Scholar 

  39. 39

    Monsen, A. L. et al. Cobalamin status and its biochemical markers methylmalonic acid and homocysteine in different age groups from 4 days to 19 years. Clin. Chem. 49, 2067–2075 (2003).

    Google Scholar 

  40. 40

    Fokkema, M. R. et al. Plasma total homocysteine increases from day 20 to 40 in breastfed but not formula-fed low-birthweight infants. Acta Paediatr. 91, 507–511 (2002).

    Google Scholar 

  41. 41

    Greibe, E. et al. Cobalamin and haptocorrin in human milk and cobalamin-related variables in mother and child: a 9-mo longitudinal study. Am. J. Clin. Nutr. 98, 389–395 (2013).

    Google Scholar 

  42. 42

    Molloy, A. M. et al. Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development. Food Nutr. Bull. 29 (Suppl. 2), S101–S111 (2008).

    Google Scholar 

  43. 43

    Bjorke-Monsen, A. L. et al. Common metabolic profile in infants indicating impaired cobalamin status responds to cobalamin supplementation. Pediatrics 122, 83–91 (2008).

    Google Scholar 

  44. 44

    Hay, G. et al. Folate and cobalamin status in relation to breastfeeding and weaning in healthy infants. Am. J. Clin. Nutr. 88, 105–114 (2008).

    Google Scholar 

  45. 45

    Torsvik, I. et al. Cobalamin supplementation improves motor development and regurgitations in infants: results from a randomized intervention study. Am. J. Clin. Nutr. 98, 1233–1240 (2013).

    Google Scholar 

  46. 46

    Cobayashi, F. et al. Genetic and environmental factors associated with vitamin B12 status in Amazonian children. Public Health Nutr. 18, 2202–2210 (2015).

    Google Scholar 

  47. 47

    Hine, B. et al. Transcobalamin derived from bovine milk stimulates apical uptake of vitamin B12 into human intestinal epithelial cells. J. Cell. Biochem. 115, 1948–1954 (2014).

    Google Scholar 

  48. 48

    Chanarin, I. Cobalamins and nitrous oxide: a review. J. Clin. Pathol. 33, 909–916 (1980).

    Google Scholar 

  49. 49

    Green, R. & Kinsella, L. J. Current concepts in the diagnosis of cobalamin deficiency. Neurology 45, 1435–1440 (1995).

    Google Scholar 

  50. 50

    O’Leary, P. W., Combs, M. J. & Schilling, R. F. Synergistic deleterious effects of nitrous oxide exposure and vitamin B12 deficiency. J. Lab. Clin. Med. 105, 428–431 (1985).

    Google Scholar 

  51. 51

    Toh, B. H., van Driel, I. R. & Gleeson, P. A. Pernicious anemia. N. Engl. J. Med. 337, 1441–1448 (1997). A landmark paper on the clinical and immunological basis of the disease that is the essential paradigm of B12 deficiency and its immunological basis.

    Google Scholar 

  52. 52

    Hershko, C. et al. Variable hematologic presentation of autoimmune gastritis: age-related progression from iron deficiency to cobalamin depletion. Blood 107, 1673–1679 (2006).

    Google Scholar 

  53. 53

    Amedei, A. et al. Molecular mimicry between Helicobacter pylori antigens and H+, K+ — adenosine triphosphatase in human gastric autoimmunity. J. Exp. Med. 198, 1147–1156 (2003).

    Google Scholar 

  54. 54

    Doscherholmen, A., McMahon, J. & Ripley, D. Vitamin B12 assimilation from chicken meat. Am. J. Clin. Nutr. 31, 825–830 (1978).

    Google Scholar 

  55. 55

    Bellou, A. et al. Cobalamin deficiency with megaloblastic anaemia in one patient under long-term omeprazole therapy. J. Intern. Med. 240, 161–164 (1996).

    Google Scholar 

  56. 56

    Lam, J. R. et al. Proton pump inhibitor and histamine 2 receptor antagonist use and vitamin B12 deficiency. JAMA 310, 2435–2442 (2013).

    Google Scholar 

  57. 57

    Degnan, P. H., Taga, M. E. & Goodman, A. L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 20, 769–778 (2014).

    Google Scholar 

  58. 58

    Fedosov, S. N. et al. Mechanisms of discrimination between cobalamins and their natural analogues during their binding to the specific B12-transporting proteins. Biochemistry 46, 6446–6458 (2007).

    Google Scholar 

  59. 59

    Tanwar, V. S. et al. Common variant in FUT2 gene is associated with levels of vitamin B12 in Indian population. Gene 515, 224–228 (2013).

    Google Scholar 

  60. 60

    Kelly, R. J. et al. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270, 4640–4649 (1995).

    Google Scholar 

  61. 61

    Hazra, A. et al. Common variants of FUT2 are associated with plasma vitamin B12 levels. Nat. Genet. 40, 1160–1162 (2008).

    Google Scholar 

  62. 62

    Tanaka, T. et al. Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am. J. Hum. Genet. 84, 477–482 (2009).

    Google Scholar 

  63. 63

    Jensen, L. L. et al. Lack of megalin expression in adult human terminal ileum suggests megalin-independent cubilin/amnionless activity during vitamin B12 absorption. Physiol. Rep. 2, e12086 (2014).

    Google Scholar 

  64. 64

    Beedholm-Ebsen, R. et al. Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin. Blood 115, 1632–1639 (2010).

    Google Scholar 

  65. 65

    Aminoff, M. et al. Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor, cubilin, cause hereditary megaloblastic anaemia 1. Nat. Genet. 21, 309–313 (1999).

    Google Scholar 

  66. 66

    Tanner, S. M. et al. Amnionless, essential for mouse gastrulation, is mutated in recessive hereditary megaloblastic anemia. Nat. Genet. 33, 426–429 (2003).

    Google Scholar 

  67. 67

    Gueant, J. L. et al. Decreased activity of intestinal and urinary intrinsic factor receptor in Grasbeck-Imerslund disease. Gastroenterology 108, 1622–1628 (1995).

    Google Scholar 

  68. 68

    Quadros, E. V. & Sequeira, J. M. Cellular uptake of cobalamin: transcobalamin and the TCblR/CD320 receptor. Biochimie 95, 1008–1018 (2013).

    Google Scholar 

  69. 69

    Gherasim, C., Lofgren, M. & Banerjee, R. Navigating the B12 road: assimilation, delivery, and disorders of cobalamin. J. Biol. Chem. 288, 13186–13193 (2013). An in-depth review of the fascinating molecular ensemble that is involved in the handling of this precious micronutrient in genetically normal and mutated cells.

    Google Scholar 

  70. 70

    Froese, D. S. & Gravel, R. A. Genetic disorders of vitamin B12 metabolism: eight complementation groups — eight genes. Expert Rev. Mol. Med. 12, e37 (2010). A well-illustrated, concise but complete summary of the eight recognized inborn errors of B12 metabolism that uses the ‘experiments of nature’ to explain the complex network of intracellular pathways involved in B12 processing.

    Google Scholar 

  71. 71

    Whitehead, V. M. Acquired and inherited disorders of cobalamin and folate in children. Br. J. Haematol. 134, 125–136 (2006).

    Google Scholar 

  72. 72

    Trakadis, Y. J. et al. Update on transcobalamin deficiency: clinical presentation, treatment and outcome. J. Inherit. Metab. Dis. 37, 461–473 (2014).

    Google Scholar 

  73. 73

    Miller, J. W. et al. Transcobalamin II 775G>C polymorphism and indices of vitamin B12 status in healthy older adults. Blood 100, 718–720 (2002).

    Google Scholar 

  74. 74

    Namour, F. et al. Transcobalamin codon 259 polymorphism in HT-29 and Caco-2 cells and in Caucasians: relation to transcobalamin and homocysteine concentration in blood. Blood 97, 1092–1098 (2001).

    Google Scholar 

  75. 75

    Watkins, D. & Rosenblatt, D. S. Lessons in biology from patients with inborn errors of vitamin B12 metabolism. Biochimie 95, 1019–1022 (2013).

    Google Scholar 

  76. 76

    Sharma, G. S., Kumar, T. & Singh, L. R. N-homocysteinylation induces different structural and functional consequences on acidic and basic proteins. PLoS ONE 9, e116386 (2014).

    Google Scholar 

  77. 77

    Ghemrawi, R. et al. Decreased vitamin B12 availability induces ER stress through impaired SIRT1-deacetylation of HSF1. Cell Death Dis. 4, e553 (2013).

    Google Scholar 

  78. 78

    Hannibal, L., DiBello, P. M. & Jacobsen, D. W. Proteomics of vitamin B12 processing. Clin. Chem. Lab. Med. 51, 477–488 (2013).

    Google Scholar 

  79. 79

    Richard, E. et al. Oxidative stress and apoptosis in homocystinuria patients with genetic remethylation defects. J. Cell. Biochem. 114, 183–191 (2013).

    Google Scholar 

  80. 80

    Peracchi, M. et al. Human cobalamin deficiency: alterations in serum tumour necrosis factor-alpha and epidermal growth factor. Eur. J. Haematol. 67, 123–127 (2001).

    Google Scholar 

  81. 81

    Scalabrino, G. et al. High tumor necrosis factor-alpha levels in cerebrospinal fluid of cobalamin-deficient patients. Ann. Neurol. 56, 886–890 (2004).

    Google Scholar 

  82. 82

    Caterino, M. et al. The proteome of cblC defect: in vivo elucidation of altered cellular pathways in humans. J. Inherit. Metab. Dis. 38, 969–979 (2015).

    Google Scholar 

  83. 83

    Troen, A. M. et al. B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice. Proc. Natl Acad. Sci. USA 105, 12474–12479 (2008).

    Google Scholar 

  84. 84

    Fuso, A. & Scarpa, S. One-carbon metabolism and Alzheimer's disease: is it all a methylation matter? Neurobiol. Aging 32, 1192–1195 (2011).

    Google Scholar 

  85. 85

    Scalabrino, G. The multi-faceted basis of vitamin B12 (cobalamin) neurotrophism in adult central nervous system: lessons learned from its deficiency. Prog. Neurobiol. 88, 203–220 (2009).

    Google Scholar 

  86. 86

    Battaglia-Hsu, S. F. et al. Vitamin B12 deficiency reduces proliferation and promotes differentiation of neuroblastoma cells and up-regulates PP2A, proNGF, and TACE. Proc. Natl Acad. Sci. USA 106, 21930–21935 (2009).

    Google Scholar 

  87. 87

    Rosenblatt, D. S. & Whitehead, V. M. Cobalamin and folate deficiency: acquired and hereditary disorders in children. Semin. Hematol. 36, 19–34 (1999).

    Google Scholar 

  88. 88

    Dror, D. K. & Allen, L. H. Effect of vitamin B12 deficiency on neurodevelopment in infants: current knowledge and possible mechanisms. Nutr. Rev. 66, 250–255 (2008).

    Google Scholar 

  89. 89

    Demir, N. et al. Clinical and neurological findings of severe vitamin B12 deficiency in infancy and importance of early diagnosis and treatment. J. Paediatr. Child Health 49, 820–824 (2013).

    Google Scholar 

  90. 90

    Copp, A. J. et al. Spina bifida. Nat. Rev. Dis. Primers 1, 15007 (2015).

    Google Scholar 

  91. 91

    Molloy, A. M. et al. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic acid fortification. Pediatrics 123, 917–923 (2009).

    Google Scholar 

  92. 92

    Suarez, L. et al. Maternal serum B12 levels and risk for neural tube defects in a Texas–Mexico border population. Ann. Epidemiol. 13, 81–88 (2003).

    Google Scholar 

  93. 93

    Green, R. & Miller, J. W. Vitamin B12 deficiency is the dominant nutritional cause of hyperhomocysteinemia in a folic acid-fortified population. Clin. Chem. Lab. Med. 43, 1048–1051 (2005).

    Google Scholar 

  94. 94

    Smith, A. D. et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS ONE 5, e12244 (2010).

    Google Scholar 

  95. 95

    de Jager, C. A. et al. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int. J. Geriatr. Psychiatry 27, 592–600 (2012).

    Google Scholar 

  96. 96

    Douaud, G. et al. Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment. Proc. Natl Acad. Sci. USA 110, 9523–9528 (2013).

    Google Scholar 

  97. 97

    Haan, M. N. et al. Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. Am. J. Clin. Nutr. 85, 511–517 (2007).

    Google Scholar 

  98. 98

    Morris, M. S. et al. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am. J. Clin. Nutr. 85, 193–200 (2007).

    Google Scholar 

  99. 99

    Brito, A. et al. Vitamin B-12 treatment of asymptomatic, deficient, elderly Chileans improves conductivity in myelinated peripheral nerves, but high serum folate impairs vitamin B-12 status response assessed by the combined indicator of vitamin B-12 status. Am. J. Clin. Nutr. 103, 250–257 (2016).

    Google Scholar 

  100. 100

    Chhabra, N., Lee, S. & Sakalis, E. G. Cobalamin deficiency causing severe hemolytic anemia: a pernicious presentation. Am. J. Med. 128, e5–e6 (2015).

    Google Scholar 

  101. 101

    Parmentier, S. et al. Severe pernicious anemia with distinct cytogenetic and flow cytometric aberrations mimicking myelodysplastic syndrome. Ann. Hematol. 91, 1979–1981 (2012).

    Google Scholar 

  102. 102

    Andres, E. et al. Current hematological findings in cobalamin deficiency. A study of 201 consecutive patients with documented cobalamin deficiency. Clin. Lab. Haematol. 28, 50–56 (2006).

    Google Scholar 

  103. 103

    Green, R. Anemias beyond B12 and iron deficiency: the buzz about other B's, elementary, and nonelementary problems. Hematology Am. Soc. Hematol. Educ. Program 2012, 492–498 (2012).

    Google Scholar 

  104. 104

    Devalia, V., Hamilton, M. S. & Molloy, A. M. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br. J. Haematol. 166, 496–513 (2014).

    Google Scholar 

  105. 105

    Lindenbaum, J. et al. Diagnosis of cobalamin deficiency: II. Relative sensitivities of serum cobalamin, methylmalonic acid, and total homocysteine concentrations. Am. J. Hematol. 34, 99–107 (1990).

    Google Scholar 

  106. 106

    Fedosov, S. N. et al. Combined indicator of vitamin B12 status: modification for missing biomarkers and folate status and recommendations for revised cut-points. Clin. Chem. Lab. Med. 53, 1215–1225 (2015).

    Google Scholar 

  107. 107

    Carmel, R. & Agrawal, Y. P. Failures of cobalamin assays in pernicious anemia. N. Engl. J. Med. 367, 385–386 (2012).

    Google Scholar 

  108. 108

    Nexo, E. Variation with age of reference values for P-cobalamins. Scand. J. Haematol. 30, 430–432 (1983).

    Google Scholar 

  109. 109

    Arendt, J. F. & Nexo, E. Unexpected high plasma cobalamin: proposal for a diagnostic strategy. Clin. Chem. Lab. Med. 51, 489–496 (2013).

    Google Scholar 

  110. 110

    Herzlich, B. & Herbert, V. Depletion of serum holotranscobalamin II. An early sign of negative vitamin B12 balance. Lab. Invest. 58, 332–337 (1988).

    Google Scholar 

  111. 111

    Risch, M. et al. Vitamin B12 and folate levels in healthy Swiss senior citizens: a prospective study evaluating reference intervals and decision limits. BMC Geriatr. 15, 82 (2015).

    Google Scholar 

  112. 112

    Miller, J. W. et al. Measurement of total vitamin B12 and holotranscobalamin, singly and in combination, in screening for metabolic vitamin B12 deficiency. Clin. Chem. 52, 278–285 (2006).

    Google Scholar 

  113. 113

    Nexo, E. & Hoffmann-Lucke, E. Holotranscobalamin, a marker of vitamin B-12 status: analytical aspects and clinical utility. Am. J. Clin. Nutr. 94, 359S–365S (2011).

    Google Scholar 

  114. 114

    Refsum, H. et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin. Chem. 50, 3–32 (2004).

    Google Scholar 

  115. 115

    Rasmussen, K. et al. Age- and gender-specific reference intervals for total homocysteine and methylmalonic acid in plasma before and after vitamin supplementation. Clin. Chem. 42, 630–636 (1996).

    Google Scholar 

  116. 116

    Vogiatzoglou, A. et al. Determinants of plasma methylmalonic acid in a large population: implications for assessment of vitamin B12 status. Clin. Chem. 55, 2198–2206 (2009).

    Google Scholar 

  117. 117

    Molloy, A. M. et al. A common polymorphism in HIBCH influences methylmalonic acid concentrations in blood independently of cobalamin. Am. J. Hum. Genet. 98, 869–882 (2016).

    Google Scholar 

  118. 118

    Hvas, A. M. & Nexo, E. Diagnosis and treatment of vitamin B12 deficiency — an update. Haematologica 91, 1506–1512 (2006).

    Google Scholar 

  119. 119

    Bailey, R. L. et al. Modeling a methylmalonic acid-derived change point for serum vitamin B-12 for adults in NHANES. Am. J. Clin. Nutr. 98, 460–467 (2013).

    Google Scholar 

  120. 120

    Morris, M. S. et al. Elevated serum methylmalonic acid concentrations are common among elderly Americans. J. Nutr. 132, 2799–2803 (2002).

    Google Scholar 

  121. 121

    Loikas, S. et al. Renal impairment compromises the use of total homocysteine and methylmalonic acid but not total vitamin B12 and holotranscobalamin in screening for vitamin B12 deficiency in the aged. Clin. Chem. Lab. Med. 45, 197–201 (2007).

    Google Scholar 

  122. 122

    Carmel, R. Anemia and aging: an overview of clinical, diagnostic and biological issues. Blood Rev. 15, 9–18 (2001).

    Google Scholar 

  123. 123

    Green, R. & Dwyre, D. M. Evaluation of macrocytic anemias. Semin. Hematol. 52, 279–286 (2015).

    Google Scholar 

  124. 124

    Lachner, C., Steinle, N. I. & Regenold, W. T. The neuropsychiatry of vitamin B12 deficiency in elderly patients. J. Neuropsychiatry Clin. Neurosci. 24, 5–15 (2012).

    Google Scholar 

  125. 125

    Reynolds, E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 5, 949–960 (2006).

    Google Scholar 

  126. 126

    Biemans, E. et al. Cobalamin status and its relation with depression, cognition and neuropathy in patients with type 2 diabetes mellitus using metformin. Acta Diabetol. 52, 383–393 (2015).

    Google Scholar 

  127. 127

    Clarke, R. et al. Low vitamin B-12 status and risk of cognitive decline in older adults. Am. J. Clin. Nutr. 86, 1384–1391 (2007).

    Google Scholar 

  128. 128

    Doets, E. L. et al. Vitamin B12 intake and status and cognitive function in elderly people. Epidemiol. Rev. 35, 2–21 (2013).

    Google Scholar 

  129. 129

    O’Leary, F., Allman-Farinelli, M. & Samman, S. Vitamin B12 status, cognitive decline and dementia: a systematic review of prospective cohort studies. Br. J. Nutr. 108, 1948–1961 (2012).

    Google Scholar 

  130. 130

    Vogiatzoglou, A. et al. Cognitive function in an elderly population: interaction between vitamin B12 status, depression, and apolipoprotein E ε4: the Hordaland Homocysteine Study. Psychosom. Med. 75, 20–29 (2013).

    Google Scholar 

  131. 131

    Aisen, P. S. et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA 300, 1774–1783 (2008).

    Google Scholar 

  132. 132

    McMahon, J. A. et al. A controlled trial of homocysteine lowering and cognitive performance. N. Engl. J. Med. 354, 2764–2772 (2006).

    Google Scholar 

  133. 133

    Eussen, S. J. et al. Effect of oral vitamin B-12 with or without folic acid on cognitive function in older people with mild vitamin B-12 deficiency: a randomized, placebo-controlled trial. Am. J. Clin. Nutr. 84, 361–370 (2006).

    Google Scholar 

  134. 134

    Durga, J. et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 369, 208–216 (2007).

    Google Scholar 

  135. 135

    Sato, Y. et al. Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial. JAMA 293, 1082–1088 (2005).

    Google Scholar 

  136. 136

    Dangour, A. D. et al. A randomised controlled trial investigating the effect of vitamin B12 supplementation on neurological function in healthy older people: the Older People and Enhanced Neurological function (OPEN) study protocol [ISRCTN54195799]. Nutr. J. 10, 22 (2011).

    Google Scholar 

  137. 137

    Hvas, A. M., Morkbak, A. L. & Nexo, E. Plasma holotranscobalamin compared with plasma cobalamins for assessment of vitamin B12 absorption; optimisation of a non-radioactive vitamin B12 absorption test (CobaSorb). Clin. Chim. Acta 376, 150–154 (2007).

    Google Scholar 

  138. 138

    Bor, M. V. et al. Nonradioactive vitamin B12 absorption test evaluated in controls and in patients with inherited malabsorption of vitamin B12. Clin. Chem. 51, 2151–2155 (2005).

    Google Scholar 

  139. 139

    Hvas, A. M. et al. The vitamin B12 absorption test, CobaSorb, identifies patients not requiring vitamin B12 injection therapy. Scand. J. Clin. Lab. Invest. 71, 432–438 (2011).

    Google Scholar 

  140. 140

    Carkeet, C. et al. Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically labeled 14C-cobalamin. Proc. Natl Acad. Sci. USA 103, 5694–5699 (2006).

    Google Scholar 

  141. 141

    Stabler, S. P. Vitamin B12 deficiency. N. Engl. J. Med. 368, 2041–2042 (2013).

    Google Scholar 

  142. 142

    Toh, B. H. Diagnosis and classification of autoimmune gastritis. Autoimmun. Rev. 13, 459–462 (2014).

    Google Scholar 

  143. 143

    Lahner, E. et al. Reassessment of intrinsic factor and parietal cell autoantibodies in atrophic gastritis with respect to cobalamin deficiency. Am. J. Gastroenterol. 104, 2071–2079 (2009).

    Google Scholar 

  144. 144

    de Benoist, B. Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food Nutr. Bull. 29 (Suppl. 2), S238–S244 (2008).

    Google Scholar 

  145. 145

    World Health Organization. The implications for training of embracing: a life course approach to health (WHO, 2000).

  146. 146

    Duggan, C. et al. Vitamin B-12 supplementation during pregnancy and early lactation increases maternal, breast milk, and infant measures of vitamin B-12 status. J. Nutr. 144, 758–764 (2014).

    Google Scholar 

  147. 147

    Siddiqua, T. J. et al. Vitamin B12 supplementation during pregnancy and postpartum improves B12 status of both mothers and infants but vaccine response in mothers only: a randomized clinical trial in Bangladesh. Eur. J. Nutr. 55, 281–293 (2016).

    Google Scholar 

  148. 148

    Watanabe, F. Vitamin B12 sources and bioavailability. Exp. Biol. Med. (Maywood) 232, 1266–1274 (2007).

    Google Scholar 

  149. 149

    Naik, S. et al. Daily milk intake improves vitamin B-12 status in young vegetarian Indians: an intervention trial. Nutr. J. 12, 136 (2013).

    Google Scholar 

  150. 150

    Potdar, R. D. et al. Improving women's diet quality preconceptionally and during gestation: effects on birth weight and prevalence of low birth weight — a randomized controlled efficacy trial in India (Mumbai Maternal Nutrition Project). Am. J. Clin. Nutr. 100, 1257–1268 (2014).

    Google Scholar 

  151. 151

    Kehoe, S. H. et al. Effects of a food-based intervention on markers of micronutrient status among Indian women of low socio-economic status. Br. J. Nutr. 113, 813–821 (2015).

    Google Scholar 

  152. 152

    Winkels, R. M. et al. Bread cofortified with folic acid and vitamin B-12 improves the folate and vitamin B-12 status of healthy older people: a randomized controlled trial. Am. J. Clin. Nutr. 88, 348–355 (2008).

    Google Scholar 

  153. 153

    Dhonukshe-Rutten, R. A. et al. Effect of supplementation with cobalamin carried either by a milk product or a capsule in mildly cobalamin-deficient elderly Dutch persons. Am. J. Clin. Nutr. 82, 568–574 (2005).

    Google Scholar 

  154. 154

    Tapola, N. S. et al. Mineral water fortified with folic acid, vitamins B6, B12, D and calcium improves folate status and decreases plasma homocysteine concentration in men and women. Eur. J. Clin. Nutr. 58, 376–385 (2004).

    Google Scholar 

  155. 155

    Mohammad, M. A. et al. Plasma cobalamin and folate and their metabolic markers methylmalonic acid and total homocysteine among Egyptian children before and after nutritional supplementation with the probiotic bacteria Lactobacillus acidophilus in yoghurt matrix. Int. J. Food Sci. Nutr. 57, 470–480 (2006).

    Google Scholar 

  156. 156

    Miller, J. W. et al. Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate. Am. J. Clin. Nutr. 90, 1586–1592 (2009).

    Google Scholar 

  157. 157

    Selhub, J., Morris, M. S. & Jacques, P. F. In vitamin B12 deficiency, higher serum folate is associated with increased total homocysteine and methylmalonic acid concentrations. Proc. Natl Acad. Sci. USA 104, 19995–20000 (2007).

    Google Scholar 

  158. 158

    Carmel, R. How I treat cobalamin (vitamin B12) deficiency. Blood 112, 2214–2221 (2008).

    Google Scholar 

  159. 159

    Obeid, R., Fedosov, S. N. & Nexo, E. Cobalamin coenzyme forms are not likely to be superior to cyano- and hydroxyl-cobalamin in prevention or treatment of cobalamin deficiency. Mol. Nutr. Food Res. 59, 1364–1372 (2015).

    Google Scholar 

  160. 160

    Berlin, H., Berlin, R. & Brante, G. Oral treatment of pernicious anemia with high doses of vitamin B12 without intrinsic factor. Acta Med. Scand. 184, 247–258 (1968).

    Google Scholar 

  161. 161

    Kuzminski, A. M. et al. Effective treatment of cobalamin deficiency with oral cobalamin. Blood 92, 1191–1198 (1998).

    Google Scholar 

  162. 162

    Castelli, M. C. et al. Comparing the efficacy and tolerability of a new daily oral vitamin B12 formulation and intermittent intramuscular vitamin B12 in normalizing low cobalamin levels: a randomized, open-label, parallel-group study. Clin. Ther. 33, 358–371.e2 (2011).

    Google Scholar 

  163. 163

    Kim, H. I. et al. Oral vitamin B12 replacement: an effective treatment for vitamin B12 deficiency after total gastrectomy in gastric cancer patients. Ann. Surg. Oncol. 18, 3711–3717 (2011).

    Google Scholar 

  164. 164

    Rajan, S. et al. Response of elevated methylmalonic acid to three dose levels of oral cobalamin in older adults. J. Am. Geriatr. Soc. 50, 1789–1795 (2002).

    Google Scholar 

  165. 165

    Eussen, S. J. et al. Oral cyanocobalamin supplementation in older people with vitamin B12 deficiency: a dose-finding trial. Arch. Intern. Med. 165, 1167–1172 (2005).

    Google Scholar 

  166. 166

    Bor, M. V. et al. Daily intake of 4 to 7 μg dietary vitamin B-12 is associated with steady concentrations of vitamin B-12-related biomarkers in a healthy young population. Am. J. Clin. Nutr. 91, 571–577 (2010).

    Google Scholar 

  167. 167

    Green, R. et al. Absorption of biliary cobalamin in baboons following total gastrectomy. J. Lab. Clin. Med. 100, 771–777 (1982).

    Google Scholar 

  168. 168

    Green, R. in Advances in Thomas Addison's Diseases (eds Bhatt, R., James, V. H. T., Besser, G. M., Bottazzo, G. F. & Keen, H. ) 377–390 (Society for Endocrinology & The Thomas Addison Society, 1994).

    Google Scholar 

  169. 169

    Kumar, N. Neurologic aspects of cobalamin (B12) deficiency. Handb. Clin. Neurol. 120, 915–926 (2014). A complete description of the protean neurological manifestations of B12 deficiency.

    Google Scholar 

  170. 170

    Pittock, S. J., Payne, T. A. & Harper, C. M. Reversible myelopathy in a 34-year-old man with vitamin B12 deficiency. Mayo Clin. Proc. 77, 291–294 (2002).

    Google Scholar 

  171. 171

    Hirota, W. K. et al. ASGE guideline: the role of endoscopy in the surveillance of premalignant conditions of the upper GI tract. Gastrointest. Endosc. 63, 570–580 (2006).

    Google Scholar 

  172. 172

    Finkelstein, J. L., Layden, A. J. & Stover, P. J. Vitamin B-12 and perinatal health. Adv. Nutr. 6, 552–563 (2015).

    Google Scholar 

  173. 173

    Vogiatzoglou, A. et al. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology 71, 826–832 (2008).

    Google Scholar 

  174. 174

    Zhang, Y. et al. Decreased brain levels of vitamin B12 in aging, autism and schizophrenia. PLoS ONE 11, e0146797 (2016).

    Google Scholar 

  175. 175

    Stone, N. et al. Bioinformatic and genetic association analysis of microRNA target sites in one-carbon metabolism genes. PLoS ONE 6, e21851 (2011).

    Google Scholar 

  176. 176

    Joslin, A. C. et al. Concept mapping one-carbon metabolism to model future ontologies for nutrient-gene-phenotype interactions. Genes Nutr. 9, 419 (2014).

    Google Scholar 

  177. 177

    Grarup, N. et al. Genetic architecture of vitamin B12 and folate levels uncovered applying deeply sequenced large datasets. PLoS Genet. 9, e1003530 (2013). An informative and detailed description of the genetic blueprint of the architecture of the genome as it applies to B12 status as well as the closely related vitamin B9 (folate).

    Google Scholar 

  178. 178

    Deegan, K. L. et al. Breast milk vitamin B-12 concentrations in Guatemalan women are correlated with maternal but not infant vitamin B-12 status at 12 months postpartum. J. Nutr. 142, 112–116 (2012).

    Google Scholar 

  179. 179

    Ford, C. et al. Vitamin B12 levels in human milk during the first nine months of lactation. Int. J. Vitam. Nutr. Res. 66, 329–331 (1996).

    Google Scholar 

  180. 180

    Thomas, M. R. et al. The effects of vitamin C, vitamin B6, vitamin B12, folic acid, riboflavin, and thiamin on the breast milk and maternal status of well-nourished women at 6 months postpartum. Am. J. Clin. Nutr. 33, 2151–2156 (1980).

    Google Scholar 

  181. 181

    Greibe, E. & Nexo, E. Forms and amounts of vitamin B12 in infant formula: a pilot study. PLoS ONE 11, e0165458 (2016).

    Google Scholar 

  182. 182

    Strand, T. A. et al. Vitamin B-12, folic acid, and growth in 6- to 30-month-old children: a randomized controlled trial. Pediatrics 135, e918–e926 (2015).

    Google Scholar 

  183. 183

    Hussein, L. et al. Serum vitamin B12 concentrations among mothers and newborns and follow-up study to assess implication on the growth velocity and the urinary methylmalonic acid excretion. Int. J. Vitam. Nutr. Res. 79, 297–307 (2009).

    Google Scholar 

  184. 184

    Jenssen, H. B. et al. Biochemical signs of impaired cobalamin function do not affect hematological parameters in young infants: results from a double-blind randomized controlled trial. Pediatr. Res. 74, 327–332 (2013).

    Google Scholar 

  185. 185

    Bhate, V. K. et al. Vitamin B12 and folate during pregnancy and offspring motor, mental and social development at 2 years of age. J. Dev. Orig. Health Dis. 3, 123–130 (2012).

    Google Scholar 

  186. 186

    Bhate, V. et al. Vitamin B12 status of pregnant Indian women and cognitive function in their 9-year-old children. Food Nutr. Bull. 29, 249–254 (2008).

    Google Scholar 

  187. 187

    Strand, T. A. et al. Cobalamin and folate status predicts mental development scores in North Indian children 12–18 mo of age. Am. J. Clin. Nutr. 97, 310–317 (2013).

    Google Scholar 

  188. 188

    Leishear, K. et al. Relationship between vitamin B12 and sensory and motor peripheral nerve function in older adults. J. Am. Geriatr. Soc. 60, 1057–1063 (2012).

    Google Scholar 

  189. 189

    Lildballe, D. L. et al. Association of cognitive impairment with combinations of vitamin B12-related parameters. Clin. Chem. 57, 1436–1443 (2011).

    Google Scholar 

  190. 190

    Smith, A. D. & Refsum, H. Vitamin B-12 and cognition in the elderly. Am. J. Clin. Nutr. 89, 707S–711S (2009).

    Google Scholar 

  191. 191

    McLean, R. R. et al. Plasma B vitamins, homocysteine and their relation with bone loss and hip fracture in elderly men and women. J. Clin. Endocrinol. Metab. 93, 2206–2212 (2008).

    Google Scholar 

  192. 192

    Park, S. et al. Age-related hearing loss, methylmalonic acid, and vitamin B12 status in older adults. J. Nutr. Elder. 25, 105–120 (2006).

    Google Scholar 

  193. 193

    Gopinath, B. et al. Homocysteine, folate, vitamin B-12, and 10-y incidence of age-related macular degeneration. Am. J. Clin. Nutr. 98, 129–135 (2013).

    Google Scholar 

  194. 194

    Herbert, V. & Zalusky, R. Interrelations of vitamin B12 and folic acid metabolism: folic acid clearance studies. J. Clin. Invest. 41, 1263–1276 (1962).

    Google Scholar 

  195. 195

    Allen, L. H. Folate and vitamin B12 status in the Americas. Nutr. Rev. 62, S29–S33 (2004).

    Google Scholar 

  196. 196

    Brito, A. et al. Folate and vitamin B12 status in Latin America and the Caribbean: an update. Food Nutr. Bull. 36 (Suppl. 2), S109–S118 (2015).

    Google Scholar 

  197. 197

    Campbell, A. K. et al. Plasma vitamin B-12 concentrations in an elderly latino population are predicted by serum gastrin concentrations and crystalline vitamin B-12 intake. J. Nutr. 133, 2770–2776 (2003).

    Google Scholar 

  198. 198

    MacFarlane, A. J., Greene-Finestone, L. S. & Shi, Y. Vitamin B-12 and homocysteine status in a folate-replete population: results from the Canadian Health Measures Survey. Am. J. Clin. Nutr. 94, 1079–1087 (2011).

    Google Scholar 

  199. 199

    Quay, T. A. et al. High prevalence of suboptimal vitamin B12 status in young adult women of South Asian and European ethnicity. Appl. Physiol. Nutr. Metab. 40, 1279–1286 (2015).

    Google Scholar 

  200. 200

    Clarke, R. et al. Detection of vitamin B12 deficiency in older people by measuring vitamin B12 or the active fraction of vitamin B12, holotranscobalamin. Clin. Chem. 53, 963–970 (2007).

    Google Scholar 

  201. 201

    Karabulut, A. et al. Premarital screening of 466 Mediterranean women for serum ferritin, vitamin B12, and folate concentrations. Turk. J. Med. Sci. 45, 358–363 (2015).

    Google Scholar 

  202. 202

    Benson, J. et al. Low vitamin B12 levels among newly-arrived refugees from Bhutan, Iran and Afghanistan: a multicentre Australian study. PLoS ONE 8, e57998 (2013).

    Google Scholar 

  203. 203

    Sivaprasad, M. et al. Status of vitamin B12 and folate among the urban adult population in South India. Ann. Nutr. Metab. 68, 94–102 (2016).

    Google Scholar 

  204. 204

    El-Khateeb, M. et al. Vitamin B12 deficiency in Jordan: a population-based study. Ann. Nutr. Metab. 64, 101–105 (2014).

    Google Scholar 

  205. 205

    Thuesen, B. H. et al. Lifestyle and genetic determinants of folate and vitamin B12 levels in a general adult population. Br. J. Nutr. 103, 1195–1204 (2010).

    Google Scholar 

  206. 206

    el Kholty, S. et al. Portal and biliary phases of enterohepatic circulation of corrinoids in humans. Gastroenterology 101, 1399–1408 (1991).

    Google Scholar 

  207. 207

    Lai, S. C. et al. The transcobalamin receptor knockout mouse: a model for vitamin B12 deficiency in the central nervous system. FASEB J. 27, 2468–2475 (2013).

    Google Scholar 

  208. 208

    Tateyama, M. et al. CD4 T lymphocytes are primed to express Fas ligand by CD4 cross-linking and to contribute to CD8 T-cell apoptosis via Fas/FasL death signaling pathway. Blood 96, 195–202 (2000).

    Google Scholar 

  209. 209

    Refsum, H. et al. Holotranscobalamin and total transcobalamin in human plasma: determination, determinants, and reference values in healthy adults. Clin. Chem. 52, 129–137 (2006).

    Google Scholar 

Download references

Acknowledgements

The authors thank N. DeGeorge and L. Texeira for their administrative and editing support. The authors also thank K. Eriksen (MRC Elsie Widdowson Laboratory, Cambridge, UK), S. Moore (MRC Unit The Gambia and Division of Women's Health, King's College London, UK), R. Wessells and S. Hess (Program in International and Community Nutrition, University of California, USA), and G. Kac (Nutritional Epidemiology Observatory, Rio de Janeiro Federal University, Brazil) for providing data from The Gambia, Niger and Brazil to construct Figure 2.

Author information

Affiliations

Authors

Contributions

Introduction (R.G.); Epidemiology (L.H.A., A.B., A.M.M., A.-L.B.-M., J.W.M. and P.M.U.); Mechanisms/pathophysiology (J.-L.G. and B.-H.T.); Diagnosis, screening and prevention (E.N. and C.Y.); Management (S.S.); Quality of life (S.S.); Outlook (R.G.); Overview of Primer (R.G.).

Corresponding author

Correspondence to Ralph Green.

Ethics declarations

Competing interests

R.G. has previously served on speakers’ bureaus and as a consultant for Emisphere Technologies. J.W.M. has served on a scientific steering committee for Emisphere Technologies. A.M.M. received an honorarium as a speaker at the Abbott Transformation Forum, Manchester, UK. S.S. indirectly benefits from the activities of a company formed by the University of Colorado aimed at measuring vitamin B12-related metabolites. Otherwise she does not have any conflict of interest. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Green, R., Allen, L., Bjørke-Monsen, AL. et al. Vitamin B12 deficiency. Nat Rev Dis Primers 3, 17040 (2017). https://doi.org/10.1038/nrdp.2017.40

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing