Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Patent foramen ovale

Abstract

Patent foramen ovale (PFO) is the most common congenital heart abnormality of fetal origin and is present in approximately 25% of the worldwide adult population. PFO is the consequence of failed closure of the foramen ovale, a normal structure that exists in the fetus to direct blood flow directly from the right to the left atrium, bypassing the pulmonary circulation. PFO has historically been associated with an increased risk of stroke, the mechanism of which has been attributed to the paradoxical embolism of venous thrombi that shunt through the PFO directly to the left atrium. However, several studies have failed to show an increased risk of stroke in asymptomatic patients with a PFO, and the risk of stroke recurrence is low in patients who have had a stroke that may be attributed to a PFO. With the advent of transoesophageal and transthoracic echocardiography, as well as transcranial Doppler, a PFO can be routinely detected in clinical practice. Medical treatment with either antiplatelet or anticoagulation therapy is recommended. At the current time, closure of the PFO by percutaneous interventional techniques does not appear to reduce the risk of stroke compared to conventional medical treatment, as shown by three large clinical trials. Considerable controversy remains regarding the optimal treatment strategy for patients with both cryptogenic stroke and PFO. This Primer discusses the epidemiology, mechanisms, pathophysiology, diagnosis, screening, management and effects on quality of life of PFO.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic diagram of the blood circulation before and after birth.
Figure 2: Embryonic development of the atrial septum.
Figure 3: Anatomy of a PFO.
Figure 4: Structures of the right atrium associated with a PFO.
Figure 5: Diagnosis of a PFO by transoesophageal echocardiography.
Figure 6: PFO detection by transthoracic echocardiography with contrast injection.
Figure 7: PFO detection by transcranial Doppler (with contrast injection).
Figure 8: Catheter-based PFO closure with use of a double-disc occluder.

References

  1. 1

    Cohnheim, J. Vorlesungen Uber Allgemenie Pathologie Vol. 1 134 (August Hirschwald, 1877). This is the first description of a paradoxical embolus.

    Google Scholar 

  2. 2

    Litten, M. Pathologisch-anatomisch Beobachtungen I, Ueber einen Fall von infiltriertem Leberkrebs, nebst epikritischen Bemerkungen. II. Ueber embolische Muskelveranderung und die Resorption todter Muskelfasern. Virchwos Arch. 80, 269–295 (1880).

    Article  Google Scholar 

  3. 3

    Lippmann, H. & Rafferty, T. Patent foramen ovale and paradoxical embolization: a historical perspective. Yale J. Biol. Med. 66, 11–17 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Kronik, G. & Mosslacher, H. Positive contrast echocardiography in patients with patent foramen ovale and normal right heart hemodynamics. Am. J. Cardiol. 49, 1806–1809 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Di Tullio, M. et al. Comparison of diagnostic techniques for the detection of a patent foramen ovale in stroke patients. Stroke 24, 1020–1024 (1993). This article outlines the major methods for PFO detection and compares their relative efficacy.

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Schneider, B. et al. Diagnosis of patent foramen ovale by transesophageal echocardiography and correlation with autopsy findings. Am. J. Cardiol. 77, 1202–1209 (1996). This is the first study that establishes transoesophageal echocardiography as the gold noninvasive standard for diagnosis of a PFO.

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Karnik, R. et al. Detection of patent foramen ovale by transcranial contrast Doppler ultrasound. Am. J. Cardiol. 69, 560–562 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Rigatelli, G. and Ronco, F. Patent foramen ovale: a comprehensive review for pulmonologists. Curr. Opin. Pulm. Med. 16, 442–447 (2010).

    Article  PubMed  Google Scholar 

  9. 9

    Billinger, M. et al. Patent foramen ovale closure in recreational divers: effect on decompression illness and ischaemic brain lesions during long-term follow-up. Heart 97, 1932–1937 (2011).

    Article  PubMed  Google Scholar 

  10. 10

    Torti, S. R. et al. Risk of decompression illness among 230 divers in relation to the presence and size of patent foramen ovale. Eur. Heart J. 25, 1014–1020 (2004).

    Article  PubMed  Google Scholar 

  11. 11

    Wohrle, J. et al. Prevalence of myocardial scar in patients with cryptogenic cerebral ischemic events and patent foramen ovale. JACC Cardiovasc. Imaging 3, 833–839 (2010).

    Article  PubMed  Google Scholar 

  12. 12

    Neisius, U. et al. Myocardial infarction associated with patent foramen ovale and paradoxical embolism: a case series. Int. J. Cardiol. 18, 34–37 (2015).

    Article  Google Scholar 

  13. 13

    Lau, E. M. et al. Patent foramen ovale and obstructive sleep apnea: a new association? Sleep Med. Rev. 14, 391–395 (2010).

    Article  PubMed  Google Scholar 

  14. 14

    Sevgi, E. B. et al. Paradoxical air microembolism induces cerebral bioelectrical abnormalities and occasionally headache in patent foramen ovale patients with migraine. J. Am. Heart Assoc. 1, e001735 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Rundek, T. et al. Patent foramen ovale and migraine: a cross-sectional study from the Northern Manhattan Study (NOMAS). Circulation 118, 1419–1424 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Lip, P. Z. & Lip, G. Y. Patent foramen ovale and migraine attacks: a systematic review. Am. J. Med. 127, 411–420 (2014).

    Article  PubMed  Google Scholar 

  17. 17

    Dowson, A. et al. Migraine Intervention With STARFlex Technology (MIST) trial: a prospective, multicenter, double-blind, sham-controlled trial to evaluate the effectiveness of patent foramen ovale closure with STARFlex septal repair implant to resolve refractory migraine headache. Circulation 117, 1397–1404 (2008).

    Article  PubMed  Google Scholar 

  18. 18

    Konstantinides, S. et al. Patent foramen ovale is an important predictor of adverse outcome in patients with major pulmonary embolism. Circulation 97, 1946–1951 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    van Vonderen, J. J. et al. Measuring physiological changes during the transition to life after birth. Neonatology 105, 230–242 (2014).

    Article  PubMed  Google Scholar 

  20. 20

    Schneider, D. J. & Moore, J. W. Patent ductus arteriosus. Circulation 114, 1873–1882 (2006).

    Article  PubMed  Google Scholar 

  21. 21

    Clark, E. B. Pathogenetic mechanisms of congenital cardiovascular malformations revisited. Semin. Perinatol. 20, 465–472 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Penther, P. Patent foramen ovale: an anatomical study. Apropos of 500 consecutive autopsies. Arch. Mal. Coeur. Vaiss. 87, 15–21 (1994).

    CAS  PubMed  Google Scholar 

  23. 23

    Schroeckenstein, R. F., Wasenda, G. J. & Edwards, J. E. Valvular competent patent foramen ovale in adults. Minn. Med. 55, 11–13 (1972).

    CAS  PubMed  Google Scholar 

  24. 24

    Hagen, P. T., Scholz, D. G. & Edwards, W. D. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo. Clin. Proc. 59, 17–20 (1984). This is the first study to evaluate the incidence of PFOs by autopsy and shows how common PFOs are.

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Meissner, I. et al. Patent foramen ovale: innocent or guilty? Evidence from a prospective population-based study. J. Am. Coll. Cardiol. 47, 440–445 (2006). This study shows the prevalence of PFOs on the basis of echocardiographic evaluation.

    Article  PubMed  Google Scholar 

  26. 26

    Di Tullio, M. R. Patent foramen ovale: echocardiographic detection and clinical relevance in stroke. J. Am. Soc. Echocardiogr. 23, 144–155 (2010).

    Article  PubMed  Google Scholar 

  27. 27

    Siu, S. C. & Silversides, C. K. Bicuspid aortic valve disease. J. Am. Coll. Cardiol. 55, 2789–2800 (2010).

    Article  PubMed  Google Scholar 

  28. 28

    Rodriguez, C. J. et al. Race-ethnic differences in patent foramen ovale, atrial septal aneurysm, and right atrial anatomy among ischemic stroke patients. Stroke 34, 2097–2102 (2003).

    Article  PubMed  Google Scholar 

  29. 29

    Hara, H. et al. Patent foramen ovale: current pathology, pathophysiology, and clinical status. J. Am. Coll. Cardiol. 46, 1768–1776 (2005).

    Article  PubMed  Google Scholar 

  30. 30

    Calvert, P. A. et al. Patent foramen ovale: anatomy, outcomes, and closure. Nat. Rev. Cardiol. 8, 148–160 (2011).

    Article  PubMed  Google Scholar 

  31. 31

    Schneider, B. et al. Chiari's network: normal anatomic variant or risk factor for arterial embolic events? J. Am. Coll. Cardiol. 26, 203–210 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Schuchlenz, H. W. et al. Persisting eustachian valve in adults: relation to patent foramen ovale and cerebrovascular events. J. Am. Soc. Echocardiogr. 17, 231–233 (2004).

    Article  PubMed  Google Scholar 

  33. 33

    Mugge, A. et al. Atrial septal aneurysm in adult patients. a multicenter study using transthoracic and transesophageal echocardiography. Circulation 91, 2785–2792 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Meier, B. et al. Secondary stroke prevention: patent foramen ovale, aortic plaque, and carotid stenosis. Eur. Heart J. 33, 705–713 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Akhondi, A. et al. The association of patent foramen ovale morphology and stroke size in patients with paradoxical embolism. Circ. Cardiovasc. Interv. 3, 506–510 (2010).

    Article  PubMed  Google Scholar 

  36. 36

    Steiner, M. M. et al. Patent foramen ovale size and embolic brain imaging findings among patients with ischemic stroke. Stroke 29, 944–948 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Homma, S. et al. Characteristics of patent foramen ovale associated with cryptogenic stroke. A biplane transesophageal echocardiographic study. Stroke 25, 582–586 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Goel, S. S. et al. Morphology of the patent foramen ovale in asymptomatic versus symptomatic (stroke or transient ischemic attack) patients. Am. J. Cardiol. 103, 124–129 (2009).

    Article  PubMed  Google Scholar 

  39. 39

    Telman, G. et al. Size of PFO and amount of microembolic signals in patients with ischaemic stroke or TIA. Eur. J. Neurol. 15, 969–972 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Rigatelli, G. et al. Permanent right-to-left shunt is the key factor in managing patent foramen ovale. J. Am. Coll. Cardiol. 58, 2257–2261 (2011).

    Article  PubMed  Google Scholar 

  41. 41

    Rigatelli, G. et al. ICE-classification of interatrial septum anatomy in patients with R→L shunt. JACC Cardiovasc. Imaging 7, 205–206 (2014).

    Article  PubMed  Google Scholar 

  42. 42

    Anzola, G. P. et al. Transcranial Doppler and risk of recurrence in patients with stroke and patent foramen ovale. Eur. J. Neurol. 10, 129–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Serena, J. et al. Recurrent stroke and massive right-to-left shunt: results from the prospective Spanish multicenter (CODICIA) study. Stroke 39, 3131–3136 (2008).

    Article  PubMed  Google Scholar 

  44. 44

    Homma, S. et al. Effect of medical treatment in stroke patients with patent foramen ovale: patent foramen ovale in Cryptogenic Stroke Study. Circulation 105, 2625–2631 (2002). This study evaluates patients with cryptogenic stroke and PFO who had been treated with either warfarin or aspirin. This study shows no benefit of warfarin therapy compared with aspirin therapy in patients with cryptogenic stroke and a PFO and also shows that the PFO size or the concomitant presence of ASA do not increase the risk of recurrent stroke.

    Article  PubMed  Google Scholar 

  45. 45

    Thaler, D. E. et al. Recurrent stroke predictors differ in medically treated patients with pathogenic versus other PFOs. Neurology 83, 221–226 (2014). This paper establishs the RoPE score, which is useful to help to determine the likelihood that the PFO is involved in a stroke in individual stroke patients.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Ho, S. Y., McCarthy, K. P. & Rigby, M. L. Morphological features pertinent to interventional closure of patent oval foramen. J. Interv. Cardiol. 16, 33–38 (2003).

    Article  PubMed  Google Scholar 

  47. 47

    Presbitero, P. et al. Anatomical patterns of patent foramen ovale (PFO): do they matter for percutaneous closure? Minerva Cardioangiol. 57, 275–284 (2009).

    CAS  PubMed  Google Scholar 

  48. 48

    Burger, A. J., Jadhav, P. & Kamalesh, M. Low incidence of cerebrovascular events in patients with incidental atrial septal aneurysm. Echocardiography 14, 589–596 (1997).

    Article  PubMed  Google Scholar 

  49. 49

    Hanley, P. C. et al. Diagnosis and classification of atrial septal aneurysm by two-dimensional echocardiography: report of 80 consecutive cases. J. Am. Coll. Cardiol. 6, 1370–1382 (1985).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Katayama, H. et al. Incidence of atrial septal aneurysm: echocardiographic and pathologic analysis. J. Cardiol. 20, 411–421 (1990).

    CAS  PubMed  Google Scholar 

  51. 51

    Serafini, O. et al. Prevalence of structural abnormalities of the atrial septum and their association with recent ischemic stroke or transient ischemic attack: echocardiographic evaluation in 18631 patients. Ital. Heart J. Suppl. 4, 39–45 (2003).

    PubMed  Google Scholar 

  52. 52

    Cabanes, L. et al. Atrial septal aneurysm and patent foramen ovale as risk factors for cryptogenic stroke in patients less than 55 years of age. A study using transesophageal echocardiography. Stroke 24, 1865–1873 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Homma, S. et al. Atrial anatomy in non-cardioembolic stroke patients: effect of medical therapy. J. Am. Coll. Cardiol. 42, 1066–1072 (2003).

    Article  PubMed  Google Scholar 

  54. 54

    Rigatelli, G. et al. Embolic implications of combined risk factors in patients with patent foramen ovale (the CARPE criteria): consideration for primary prevention closure? J. Interv. Cardiol. 22, 398–403 (2009).

    Article  PubMed  Google Scholar 

  55. 55

    Homma, S. & Di Tullio, M. R. Patent foramen ovale and stroke. J Cardiol. 56, 134–141 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Powell, E. D. & Mullaney, J. M. The Chiari network and the valve of the inferior vena cava. Br. Heart J. 2, 579–584 (1960).

    Article  Google Scholar 

  57. 57

    Kato, Y. et al. Prominent persisting Eustachian valve initiates spontaneous right-to-left shunt and paradoxical embolism in a patient with patent foramen ovale. Neurol. Sci. 32, 925–926 (2011).

    Article  PubMed  Google Scholar 

  58. 58

    Hernandez-Enriquez, M. & Freixa, X. Current indications for percutaneous closure of patent foramen ovale. Rev. Esp. Cardiol. 67, 603–607 (2014).

    Article  PubMed  Google Scholar 

  59. 59

    Dao, C. N. & Tobis, J. M. PFO and paradoxical embolism producing events other than stroke. Catheter Cardiovasc. Interv. 77, 903–909 (2011).

    Article  PubMed  Google Scholar 

  60. 60

    Cramer, S. C. et al. Clinically occult pelvic-vein thrombosis in cryptogenic stroke. Lancet 351, 1927–1928 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Cramer, S. C. et al. Increased pelvic vein thrombi in cryptogenic stroke: results of the Paradoxical Emboli from Large Veins in Ischemic Stroke (PELVIS) study. Stroke 35, 46–50 (2004).

    Article  PubMed  Google Scholar 

  62. 62

    Gautier, J. C. et al. Paradoxical cerebral embolism with a patent foramen ovale cerebrovascular diseases. Cerebrovasc. Dis. 1, 193–202 (1991).

    Article  Google Scholar 

  63. 63

    Lethen, H. et al. Frequency of deep vein thrombosis in patients with patent foramen ovale and ischemic stroke or transient ischemic attack. Am. J. Cardiol. 80, 1066–1069 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Liberman, A. L. et al. Diagnostic yield of pelvic magnetic resonance venography in patients with cryptogenic stroke and patent foramen ovale. Stroke 45, 2324–2329 (2014).

    Article  PubMed  Google Scholar 

  65. 65

    Favaretto, E. et al. G1691A factor V and G20210A FII mutations, acute ischemic stroke of unknown cause, and patent foramen ovale. Thromb. Res. 130, 720–724 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Karttunen, V. et al. Factor V Leiden and prothrombin gene mutation may predispose to paradoxical embolism in subjects with patent foramen ovale. Blood Coagul. Fibrinolysis 14, 261–268 (2003).

    CAS  PubMed  Google Scholar 

  67. 67

    Lantz, M., Sjostrand, C. & Kostulas, K. Ischemic stroke and patent foramen ovale: risk factors and genetic profile. J. Stroke Cerebrovasc Dis. 22, 841–845 (2013).

    Article  PubMed  Google Scholar 

  68. 68

    Pezzini, A. et al. Inherited thrombophilic disorders in young adults with ischemic stroke and patent foramen ovale. Stroke 34, 28–33 (2003).

    Article  PubMed  Google Scholar 

  69. 69

    Pezzini, A. et al. Do common prothrombotic mutations influence the risk of cerebral ischaemia in patients with patent foramen ovale? Systematic review and meta-analysis. Thromb. Haemost. 101, 813–817 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Botto, N. et al. Prothrombotic mutations as risk factors for cryptogenic ischemic cerebrovascular events in young subjects with patent foramen ovale. Stroke 38, 2070–2073 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    Rajamani, K. et al. Patent foramen ovale, cardiac valve thickening, and antiphospholipid antibodies as risk factors for subsequent vascular events: the PICSS-APASS study. Stroke 40, 2337–2342 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    Meacham, R. R. et al. Impending paradoxical embolism. Arch. Intern. Med. 158, 438–448 (1998).

    Article  PubMed  Google Scholar 

  73. 73

    Rundek, T. PFO in stroke: a direct association or coincidence? Eur. J. Neurol. 15, 887–888 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Di Tullio, M. R. et al. Patent foramen ovale and the risk of ischemic stroke in a multiethnic population. J. Am. Coll. Cardiol. 49, 797–802 (2007). This study prospectively evaluates a large population of asymptomatic individuals (both with and without a PFO as well as an ASA) and shows that the presence of a PFO and/or an ASA is not associated with the development of stroke in the general population.

    Article  PubMed  Google Scholar 

  75. 75

    Di Tullio, M. R. et al. Patent foramen ovale, subclinical cerebrovascular disease, and ischemic stroke in a population-based cohort. J. Am. Coll. Cardiol. 62, 35–41 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Kent, D. M., Thaler, D. E. & RoPE study Investigators. The Risk of Paradoxical Embolism (RoPE) Study: developing risk models for application to ongoing randomized trials of percutaneous patent foramen ovale closure for cryptogenic stroke. Trials 12, 185 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Lopez, M. F. et al. Heart–brain signaling in patent foramen ovale-related stroke: differential plasma proteomic expression patterns revealed with a 2-pass liquid chromatography-tandem mass spectrometry discovery workflow. J. Investig. Med. 60, 1122–1130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Ning, M. M. et al. Pharmaco-proteomics opportunities for individualizing neurovascular treatment. Neurol. Res. 35, 448–456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Lopez, M. F. et al. Proteomic signatures of serum albumin-bound proteins from stroke patients with and without endovascular closure of PFO are significantly different and suggest a novel mechanism for cholesterol efflux. Clin. Proteomics 12, 2 (2015). This paper suggests a novel mechanism by which PFO closure may affect atherosclerotic processes, mainly through the promotion of cholesterol efflux and a reduction in lipid oxidation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Buttignoni, S. C. et al. Agitated saline versus polygelatine for the echocardiographic assessment of patent foramen ovale. J. Am. Soc. Echocardiogr. 17, 1059–1065 (2004).

    Article  PubMed  Google Scholar 

  81. 81

    Johansson, M. C. et al. Sensitivity for detection of patent foramen ovale increased with increasing number of contrast injections: a descriptive study with contrast transesophageal echocardiography. J. Am. Soc. Echocardiogr. 21, 419–424 (2008).

    Article  PubMed  Google Scholar 

  82. 82

    Romero, J. R. et al. Cerebral ischemic events associated with ‘bubble study’ for identification of right to left shunts. Stroke 40, 2343–2348 (2009).

    Article  PubMed  Google Scholar 

  83. 83

    Van, H. et al. Sensitivity of transcranial Doppler versus intracardiac echocardiography in the detection of right-to-left shunt. JACC Cardiovasc. Imaging 3, 343–348 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84

    Di Tullio, M. et al. Transcranial Doppler with contrast injection for the detection of patent foramen ovale in stroke patients. Int. J. Card Imaging 9, 1–5 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Teague, S. M. & Sharma, M. K. Detection of paradoxical cerebral echo contrast embolization by transcranial Doppler ultrasound. Stroke 22, 740–745 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Clarke, N. R. et al. Transthoracic echocardiography using second harmonic imaging with Valsalva manoeuvre for the detection of right to left shunts. Eur. J. Echocardiogr. 5, 176–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Daniels, C. et al. Second harmonic transthoracic echocardiography: the new reference screening method for the detection of patent foramen ovale. Eur. J. Echocardiogr 5, 449–452 (2004).

    Article  PubMed  Google Scholar 

  88. 88

    Job, F. P. et al. Comparison of transcranial contrast Doppler sonography and transesophageal contrast echocardiography for the detection of patent foramen ovale in young stroke patients. Am. J. Cardiol. 74, 381–384 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Klotzsch, C., Janssen, G. & Berlit, P. Transesophageal echocardiography and contrast-TCD in the detection of a patent foramen ovale: experiences with 111 patients. Neurology 44, 1603–1606 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Mojadidi, M. K. et al. Accuracy of transcranial Doppler for the diagnosis of intracardiac right-to-left shunt: a bivariate meta-analysis of prospective studies. JACC Cardiovasc. Imaging 7, 236–250 (2014).

    Article  PubMed  Google Scholar 

  91. 91

    Droste, D. W. et al. Right-to-left-shunts detected by transesophageal echocardiography and transcranial Doppler sonography. Cerebrovasc. Dis. 17, 191–196 (2004).

    Article  PubMed  Google Scholar 

  92. 92

    Zoghbi, W. A. Patent foramen ovale: going beyond the bubbles. JACC Cardiovasc. Imaging 7, 251–253 (2014).

    Article  PubMed  Google Scholar 

  93. 93

    Horner, S. et al. Simultaneous bilateral contrast transcranial doppler monitoring in patients with intracardiac and intrapulmonary shunts. J. Neurol. Sci. 150, 49–57 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Morris, J. G., Duffis, E. J. & Fisher, M. Cardiac workup of ischemic stroke: can we improve our diagnostic yield? Stroke 40, 2893–2898 (2009).

    Article  PubMed  Google Scholar 

  95. 95

    Latchaw, R. E. et al. Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association. Stroke 40, 3646–3678 (2009).

    Article  PubMed  Google Scholar 

  96. 96

    Kent, D. M. et al. An index to identify stroke-related versus incidental patent foramen ovale in cryptogenic stroke. Neurology 81, 619–625 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97

    Thaler, D. E. et al. Determinants of antithrombotic choice for patent foramen ovale in cryptogenic stroke. Neurology 83, 1954–1957 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Kasper, W. et al. Patent foramen ovale in patients with haemodynamically significant pulmonary embolism. Lancet 340, 561–564 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Lapostolle, F. et al. Stroke associated with pulmonary embolism after air travel. Neurology 60, 1983–1985 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Bansal, R. C. et al. Severe hypoxemia due to shunting through a patent foramen ovale: a correctable complication of right ventricular infarction. J. Am. Coll. Cardiol. 5, 188–192 (1985).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Stollberger, C. et al. The prevalence of deep venous thrombosis in patients with suspected paradoxical embolism. Ann. Intern. Med. 119, 461–465 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Anzola, G. P. et al. Potential source of cerebral embolism in migraine with aura: a transcranial Doppler study. Neurology 52, 1622–1625 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Del Sette, M. et al. Migraine with aura and right-to-left shunt on transcranial Doppler: a case-control study. Cerebrovasc. Dis. 8, 327–330 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. 104

    Davis, D. et al. Patent foramen ovale, ischemic stroke and migraine: systematic review and stratified meta-analysis of association studies. Neuroepidemiology 40, 56–67 (2013).

    Article  PubMed  Google Scholar 

  105. 105

    U.S National Library of Science. PRIMA PFO Migraine Trial. ClinicalTrials.gov[online], (2013).

  106. 106

    U.S National Library of Science. Premium Migraine Trial. ClinicalTrials.gov[online], (2019).

  107. 107

    Kernan, W. N. et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45, 2160–2236 (2014). These are the 2014 guidelines from the AHA and the American Stroke Association (and affirmed by the American Academy of Neurology) that include recommendations on the management of cryptogenic stroke and a PFO.

    Article  PubMed  Google Scholar 

  108. 108

    Messe, S. R. et al. Practice parameter: recurrent stroke with patent foramen ovale and atrial septal aneurysm: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 62, 1042–1050 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Carroll, J. D. et al. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N. Engl. J. Med. 368, 1092–1100 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Meier, B. et al. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N. Engl. J. Med. 368, 1083–1091 (2013). The PC Trial was a randomized trial comparing use of Amplatzer PFO Occluder in patients with a PFO and cryptogenic stroke versus medical therapy and showed no increased benefit of PFO closure compared with medical therapy.

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Delaney, J. W., Li, J. S. & Rhodes, J. F. Major complications associated with transcatheter atrial septal occluder implantation: a review of the medical literature and the manufacturer and user facility device experience (MAUDE) database. Congenit. Heart Dis. 2, 256–264 (2007).

    Article  PubMed  Google Scholar 

  112. 112

    Hornung, M. et al. Long-term results of a randomized trial comparing three different devices for percutaneous closure of a patent foramen ovale. Eur. Heart J. 34, 3362–3369 (2013).

    Article  PubMed  Google Scholar 

  113. 113

    Sievert, H. et al. Initial clinical experience with the Coherex FlatStent and FlatStent EF PFO closure system for in-tunnel PFO closure: results of the Coherex-EU study. Catheter Cardiovasc. Interv. 83, 1135–1143 (2014).

    Article  PubMed  Google Scholar 

  114. 114

    Zimmermann, W. J. et al. Patent foramen ovale closure with the SeptRx device initial experience with the first “In-Tunnel” device. JACC Cardiovasc. Interv. 3, 963–967 (2010).

    Article  PubMed  Google Scholar 

  115. 115

    Sievert, H. et al. Transcatheter closure of patent foramen ovale without an implant: initial clinical experience. Circulation 116, 1701–1706 (2007).

    Article  PubMed  Google Scholar 

  116. 116

    Dearani, J. A. et al. Surgical patent foramen ovale closure for prevention of paradoxical embolism-related cerebrovascular ischemic events. Circulation 100 (Suppl. 2), 171–175 (1999).

    Google Scholar 

  117. 117

    Homma, S. et al. Surgical closure of patent foramen ovale in cryptogenic stroke patients. Stroke 28, 2376–2381 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Homma, S. & Sacco, R. L. Patent foramen ovale and stroke. Circulation 112, 1063–1072 (2005).

    Article  PubMed  Google Scholar 

  119. 119

    Jaff, M. R. et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation 123, 1788–1830 (2011).

    Article  Google Scholar 

  120. 120

    Shariat, A. et al. Comparison of medical treatments in cryptogenic stroke patients with patent foramen ovale: a randomized clinical trial. J. Res. Med. Sci. 18, 94–98 (2013).

    PubMed  PubMed Central  Google Scholar 

  121. 121

    Almekhlafi, M. A. et al. Recurrent cerebral ischemia in medically treated patent foramen ovale: a meta-analysis. Neurology 73, 89–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Kent, D. M. et al. Anticoagulant versus antiplatelet therapy in patients with cryptogenic stroke and patent foramen ovale: an individual participant data meta-analysis. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehv252 (2015). This is a pooled study of 2,400 patients with cryptogenic stroke and a PFO, which showed no benefit of anticoagulation compared with antiplatelet therapy.

  123. 123

    U.S National Library of Science. Dabigatran etexilate for secondary stroke prevention in patients with embolic stroke of undetermined source (RE-SPECT ESUS). ClinicalTrials.gov[online], (2017).

  124. 124

    Furlan, A. J. et al. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N. Engl. J. Med. 366, 991–999 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    Udell, J. A. et al. Patent foramen ovale closure versus medical therapy for stroke prevention: meta-analysis of randomized trials and review of heterogeneity in meta-analyses. Can. J. Cardiol. 30, 1216–1224 (2014).

    Article  PubMed  Google Scholar 

  126. 126

    Rengifo-Moreno, P. et al. Patent foramen ovale transcatheter closure versus medical therapy on recurrent vascular events: a systematic review and meta-analysis of randomized controlled trials. Eur. Heart J. 34, 3342–3352 (2013).

    Article  PubMed  Google Scholar 

  127. 127

    Khan, A. R. et al. Device closure of patent foramen ovale versus medical therapy in cryptogenic stroke: a systematic review and meta-analysis. JACC Cardiovasc. Interv. 6, 1316–1323 (2013). The RESPECT trial was a randomized trial comparing use of Amplatzer PFO Occluder in patients with a PFO and cryptogenic stroke versus medical therapy. The intention-to-treat analysis showed no difference in stroke recurrence, although the as-treated group showed stroke reduction in the PFO closure group.

    Article  PubMed  Google Scholar 

  128. 128

    Stortecky, S. et al. Percutaneous closure of patent foramen ovale in patients with cryptogenic embolism: a network meta-analysis. Eur. Heart J. 36, 120–128 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Opotowsky, A. R. et al. Trends in the use of percutaneous closure of patent foramen ovale and atrial septal defect in adults, 1998–2004. JAMA 299, 521–522 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. 130

    Stackhouse, K. A. et al. Off-label closure during CLOSURE study. J. Invasive Cardiol. 24, 608–611 (2012).

    PubMed  Google Scholar 

  131. 131

    Wilson, I. B. and Cleary, P. D. Linking clinical variables with health-related quality of life. A conceptual model of patient outcomes. JAMA 273, 59–65 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. 132

    Braun, M. et al. Transcatheter closure of patent foramen ovale (PFO) in patients with paradoxical embolism. Periprocedural safety and mid-term follow-up results of three different device occluder systems. Eur. Heart J. 25, 424–430 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Cohen, M. et al. Comparison of psychological symptoms in post-cryptogenic cerebral-vascular accident (CVA) and/or transient ischemic attack (TIA) patients who have undergone foramen ovale closure, and in post-CVA patients. Arch. Gerontol. Geriatr. 52, e152–e155 (2011).

    Article  PubMed  Google Scholar 

  134. 134

    Cohen, M., Daniela, M. & Lorber, A. Patent foramen ovale closure in post-CVA/TIA patients: psychological distress, quality of life and optimism. Int. J. Clin. Pract. 64, 182–187 (2010). This study was the first to compare the psychological effects of cryptogenic stroke in patients with a PFO who had undergone PFO closure and showed that these patients had similar levels of quality of life, anxiety and depression compared with age-matched control individuals.

    Article  CAS  PubMed  Google Scholar 

  135. 135

    Di Tullio, M. et al. Patent foramen ovale as a risk factor for cryptogenic stroke. Ann. Intern. Med. 117, 461–465 (1992).

    Article  CAS  PubMed  Google Scholar 

  136. 136

    Lechat, P. et al. Prevalence of patent foramen ovale in patients with stroke. N. Engl. J. Med. 318, 1148–1152 (1988).

    Article  CAS  PubMed  Google Scholar 

  137. 137

    Webster, M. W. et al. Patent foramen ovale in young stroke patients. Lancet 2, 11–12 (1988).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Hansen, A. & Kuecherer, H. Caught in the act: entrapped embolus through a patent foramen ovale. Eur. J. Echocardiogr. 9, 692–693 (2008).

    Article  PubMed  Google Scholar 

  139. 139

    Ibebuogu, U. N. et al. A thrombus in transit through a patent foramen ovale. JAAPA 27, 32–35 (2014).

    Article  PubMed  Google Scholar 

  140. 140

    Kim, J. H. & Kim, Y. J. Thrombus in transit within a patent foramen ovale: gone with the cough! J. Cardiovasc. Ultrasound 19, 196–198 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  141. 141

    Nemoto, A. et al. Successful surgical treatment for a thrombus straddling a patent foramen ovale: a case report. J. Cardiothorac. Surg. 8, 138 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. 142

    Krumsdorf, U. et al. Catheter closure of atrial septal defects and patent foramen ovale in patients with an atrial septal aneurysm using different devices. J. Interv. Cardiol. 14, 49–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Luani, B. et al. Efficacy of different devices for transcatheter closure of patent foramen ovale assessed by serial transoesophageal echocardiography and rates of recurrent cerebrovascular events in a long-term follow-up. EuroIntervention 11, 85–91 (2015).

    Article  PubMed  Google Scholar 

  144. 144

    Whitlock, R. P. et al. Antithrombotic and thrombolytic therapy for valvular disease: antithrombotic therapy and prevention of thrombosis, 9th ed: american college of chest physicians evidence-based clinical practice guidelines. Chest 141, e576S–e600S (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    U.S National Library of Science. Secondary Stroke Prevention In Patients With Patent Foramen Ovale: International PFO Consortium. ClinicalTrials.gov[online], (2014).

  146. 146

    U.S National Library of Science. Effectiveness And Safety Of Transcatheter Patent Foramen Ovale Closure For Migraine. ClinicalTrials.gov[online], (2015).

  147. 147

    U.S National Library of Science. Patent Foramen Ovale Closure Or Anticoagulants Versus Antiplatelet Therapy To Prevent Stroke Recurrence. ClinicalTrials.gov[online], (2016).

  148. 148

    U.S National Library of Science. CardioVascular Research Foundation, Device Closure Versus Medical Therapy For Cryptogenic Stroke Patients With High-Risk Patent Foramen Ovale (DEFENSE-PFO). ClinicalTrials.gov[online], (2017).

  149. 149

    U.S National Library of Science. GORE® HELEX® Septal Occluder GORE® Septal Occluder for Patent Foramen Ovale (PFO) Closure in Stroke Patients — The Gore REDUCE Clinical Study. ClinicalTrials.gov[online], (2017).

  150. 150

    U.S National Library of Science. Patients With Patent Foramen Ovale And Endocardial Device Leads On Apixaban For Prevention Of Paradoxical Emboli. ClinicalTrials.gov[online], (2019).

  151. 151

    Krishnan, S. C. & Salazar, M. Septal pouch in the left atrium: a new anatomical entity with potential for embolic complications. JACC Cardiovasc. Interv. 3, 98–104 (2010).

    Article  PubMed  Google Scholar 

  152. 152

    Tugcu, A. et al. Septal pouch in the left atrium and risk of ischemic stroke. JACC Cardiovasc. Imaging 3, 1276–1283 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  153. 153

    Elmariah, S. et al. Predictors of recurrent events in patients with cryptogenic stroke and patent foramen ovale within the CLOSURE I (Evaluation of the STARFlex septal closure system in patients with a stroke and/or transient ischemic attack due to presumed paradoxical embolism through a patent foramen ovale) trial. JACC Cardiovasc. Interv. 7, 913–920 (2014).

    Article  PubMed  Google Scholar 

  154. 154

    Favilla, C. G. et al. Predictors of finding occult atrial fibrillation after cryptogenic stroke. Stroke 46, 1210–1215 (2015).

    Article  PubMed  Google Scholar 

  155. 155

    Christensen, L. M. et al. Paroxysmal atrial fibrillation occurs often in cryptogenic ischaemic stroke. Final results from the SURPRISE study. Eur. J. Neurol. 21, 884–889 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. 156

    Gladstone, D. J. et al. Atrial premature beats predict atrial fibrillation in cryptogenic stroke: results from the EMBRACE trial. Stroke 46, 936–941 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  157. 157

    Sanna, T. et al. Cryptogenic stroke and underlying atrial fibrillation. N. Engl. J. Med. 370, 2478–2486 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. 158

    Hart, R. G. & Halperin, J. L. Atrial fibrillation and stroke: concepts and controversies. Stroke 32, 803–808 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. 159

    Berthet, K. et al. Significant association of atrial vulnerability with atrial septal abnormalities in young patients with ischemic stroke of unknown cause. Stroke 31, 398–403 (2000). This study shows that the presence of an ASA and a PFO is associated with atrial susceptibility to atrial fibrillation using an electrophysiologal study.

    Article  CAS  PubMed  Google Scholar 

  160. 160

    Schernthaner, C. et al. High incidence of echocardiographic abnormalities of the interatrial septum in patients undergoing ablation for atrial fibrillation. Echocardiography 30, 402–406 (2013).

    Article  PubMed  Google Scholar 

  161. 161

    Yaghi, S. et al. Left atrial enlargement and stroke recurrence: the Northern Manhattan Stroke Study. Stroke 46, 1488–1493 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. 162

    Djaiani, G. et al. The association of patent foramen ovale and atrial fibrillation after coronary artery bypass graft surgery. Anesth. Analg. 98, 585–589 (2004).

    Article  PubMed  Google Scholar 

  163. 163

    Tamura, H. et al. Elevated plasma brain natriuretic peptide levels predict left atrial appendage dysfunction in patients with acute ischemic stroke. J. Cardiol. 60, 126–132 (2012).

    Article  PubMed  Google Scholar 

  164. 164

    Rodriguez-Yanez, M. et al. High pro-BNP levels predict the occurrence of atrial fibrillation after cryptogenic stroke. Neurology 81, 444–447 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. 165

    Mohr, J. P. et al. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N. Engl. J. Med. 345, 1444–1451 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. 166

    Connolly, S. J. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361, 1139–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. 167

    Giugliano, R. P. et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 369, 2093–2104 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. 168

    Granger, C. B. et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 365, 981–992 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. 169

    Patel, M. R. et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 365, 883–891 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. 170

    Marelli, A. J. et al. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115, 163–172 (2007).

    Article  Google Scholar 

  171. 171

    Toso, V. et al. Post-stroke depression: research methodology of a large multicentre observational study (DESTRO). Neurol. Sci. 25, 138–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. 172

    Turner-Stokes, L. & Hassan, N. Depression after stroke: a review of the evidence base to inform the development of an integrated care pathway. Part 1: diagnosis, frequency and impact. Clin. Rehabil. 16, 231–247 (2002).

    Article  PubMed  Google Scholar 

  173. 173

    Silver, M. D. & Dorsey, J. S. Aneurysms of the septum primum in adults. Arch. Pathol. Lab Med. 102, 62–65 (1978).

    CAS  PubMed  Google Scholar 

  174. 174

    U.S National Library of Science. Patent foramen ovale closure with the AMPLATZER PFO OCCLUDER in patients with recurrent cryptogenic stroke due to presumed paradoxical embolism through a patent foramen ovale who have failed conventional drug therapy. ClinicalTrials.gov[online], (2015).

Download references

Author information

Affiliations

Authors

Contributions

Introduction (S.H.); Epidemiology (T.R.); Mechanisms/pathophysiology (T.R. and R.L.S.); Diagnosis, screening and prevention (M.R.D.T.); Management (H.S., J.F. and S.R.M.); Quality of life (K.D.); Outlook (S.H.); overview of Primer (S.H. and Y-P.S).

Corresponding author

Correspondence to Shunichi Homma.

Ethics declarations

Competing interests

S.H. has served on the data safety and monitoring board for the RESPECT trial with St. Jude Medical and as an ad hoc consultant with Daiichi Sankyo and Bristol-Meyers Squibb Pfizer. S.R.M. is the local principal investigator for the Gore Helex Reduce trial, for which he has received salary support (modest, that is, <$5,000 per year). He has also received travel support from the American Academy of Neurology (AAN) to attend the Guideline Development Subcommittee meetings. H.S. has received study honoraria, travel expenses and consulting fees (<€25,000) from Abbott, Aptus Endosystems, Atrium, Biosense Webster, Boston Scientific, Carag, Cardiac Dimensions, CardioKinetix, CardioMEMS, Cardiox, Celonova, CGuard, Coherex Medical, Comed B.V., Contego Medical, Covidien, CSI, CVRx, ev3, FlowCardia, Gardia Medical, Gore, GTIMD Catheter Solutions, Guided Delivery Systems, Hemoteq, InSeal Medical, InspireMD, Kona Medical, Lumen Biomedical, Lifetech Scientific, Lutonix, Maya Medical, Medtronic, Occlutech, pfm Medical, Record, ResMed, SentreHeart, Spectranetics, Svelte Medical Systems, Tendyne, TriReme Medical, Trivascular, Valtech, Vascular Dynamics, Venus Medical, Veryan Medical and Vessix Vascular. He also owns stock options (<€25,000) from Cardiokinetix, Access Closure, Coherex Medical and SMT Medical. R.L.S. was a past consultant to Boehringer Ingelheim for the design and implementation of a secondary stroke prevention trial with dabigatran versus aspirin. The other authors have no relevant financial relationships with industry to disclose.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Homma, S., Messé, S., Rundek, T. et al. Patent foramen ovale. Nat Rev Dis Primers 2, 15086 (2016). https://doi.org/10.1038/nrdp.2015.86

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing