Review Article | Published:

Circulating tumour cells and cell-free DNA as tools for managing breast cancer

Nature Reviews Clinical Oncology volume 10, pages 377389 (2013) | Download Citation

Abstract

Circulating blood biomarkers promise to become non-invasive real-time surrogates for tumour tissue-based biomarkers. Circulating biomarkers have been investigated as tools for breast cancer diagnosis, the dissection of breast cancer biology and its genetic and clinical heterogeneity, prognostication, prediction and monitoring of therapeutic response and resistance. Circulating tumour cells and cell-free plasma DNA have been analysed in retrospective studies, and the assessment of these biomarkers is being incorporated into clinical trials. As the scope of breast cancer intratumour genetic heterogeneity unravels, the development of robust and standardized methods for the assessment of circulating biomarkers will be essential for the realization of the potentials of personalized medicine. In this Review, we discuss the current status of blood-born biomarkers as surrogates for tissue-based biomarkers, and their burgeoning impact on the management of patients with breast cancer.

Key points

  • Circulating blood biomarkers represent promising non-invasive real-time surrogates for tumour tissue-based biomarkers

  • In breast cancer, circulating biomarkers have been investigated as tools for diagnosis, prognostication, prediction, monitoring of therapeutic response, and resistance

  • Circulating tumour cells and cell-free plasma DNA have been analysed in retrospective studies, and the assessment of these biomarkers is being incorporated into clinical trials

  • Longitudinal analyses of circulating biomarkers are likely to constitute useful tools to address intratumour genetic heterogeneity and therapeutic resistance in both the adjuvant and metastatic breast cancer settings

  • The current challenges include the need for standardization methods for the assessment and interpretation of circulating biomarkers, and the determination of their clinical utility for patients with breast cancer

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59, 110–118 (2013).

  2. 2.

    , , , & Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192, 373–382 (2011).

  3. 3.

    & Gene-expression signatures in breast cancer. N. Engl. J. Med. 360, 790–800 (2009).

  4. 4.

    & Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 378, 1812–1823 (2011).

  5. 5.

    Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  6. 6.

    et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

  7. 7.

    et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011).

  8. 8.

    et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

  9. 9.

    , , & Challenges translating breast cancer gene signatures into the clinic. Nat. Rev. Clin. Oncol. 9, 58–64 (2011).

  10. 10.

    et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 20, 68–80 (2010).

  11. 11.

    et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

  12. 12.

    et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

  13. 13.

    et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400–404 (2012).

  14. 14.

    et al. Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin. Cancer Res. 16, 2634–2645 (2010).

  15. 15.

    et al. Prognostic relevance of circulating tumor cells in the peripheral blood of primary breast cancer patients [abstract]. Cancer Res. 70 (Suppl. 2), S6–S5 (2010).

  16. 16.

    et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

  17. 17.

    et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol. 25, 5287–5312 (2007).

  18. 18.

    NCCN Clinical Practice Guidelines in Oncology. Breast Cancer , (2013).

  19. 19.

    , & Comparison of circulating CA15–13 and carcinoembryonic antigen levels in patients with breast cancer. J. Clin. Oncol. 4, 1542–1550 (1986).

  20. 20.

    , & CA 15–13: uses and limitation as a biomarker for breast cancer. Clin. Chim. Acta 411, 1869–1874 (2010).

  21. 21.

    Serum tumor markers in breast cancer: are they of clinical value? Clin. Chem. 52, 345–351 (2006).

  22. 22.

    & Serum HER2 testing in patients with HER2-positive breast cancer: the death knell tolls. Lancet Oncol. 12, 286–295 (2011).

  23. 23.

    et al. Utility of serum HER2 extracellular domnnain assessment in clinical decision making: pooled analysis of four trials of trastuzumab in metastatic breast cancer. J. Clin. Oncol. 27, 1685–1693 (2009).

  24. 24.

    et al. Serum levels of HER2/neu extracellular domain (ECD) in clinical studies with lapatinib in HER2/neu-positive metastatic breast cancer (MBC) [abstract]. Proc. Breast Cancer Symposium 111 a105 (2007).

  25. 25.

    , & Molecular mechanisms of metastasis in breast cancer--clinical applications. Nat. Rev. Clin. Oncol. 7, 693–701 (2010).

  26. 26.

    et al. Considerations in the development of circulating tumor cell technology for clinical use. J. Transl. Med. 10, 138 (2012).

  27. 27.

    et al. Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J. Clin. Oncol. 27, 2177–2184 (2009).

  28. 28.

    & Molecular assays for the detection and characterization of CTCs. Recent Results Cancer Res. 195, 111–123 (2012).

  29. 29.

    et al. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J. Natl Cancer Inst. 88, 1456–1466 (1996).

  30. 30.

    et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12, 4218–4224 (2006).

  31. 31.

    et al. Multi-center study evaluating circulating tumor cells as a surrogate for response to treatment and overall survival in metastatic breast cancer. Breast Cancer 17, 199–204 (2010).

  32. 32.

    et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 13, 688–695 (2012).

  33. 33.

    et al. Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin. Cancer Res. 18, 5701–5710 (2012).

  34. 34.

    , , & Circulating tumor cells as pharmacodynamic biomarker in early clinical oncological trials. Cancer Treat. Rev. 37, 579–589 (2011).

  35. 35.

    et al. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer. Breast Cancer Res. 14, R133 (2012).

  36. 36.

    et al. Circulating tumor cell detection and transcriptomic profiles in early breast cancer patients. Ann. Oncol. 22, 1458–1459 (2011).

  37. 37.

    et al. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin. Cancer Res. 14, 7004–7010 (2008).

  38. 38.

    et al. Single circulating tumor cell detection and overall survival in nonmetastatic breast cancer. Ann. Oncol. 21, 729–733 (2010).

  39. 39.

    et al. Prognostic impact of circulating tumor cells assessed with the CellSearch AssayTM and AdnaTest BreastTM in metastatic breast cancer patients: the DETECT study. Breast Cancer Res. 14, R118 (2012).

  40. 40.

    US National Library of Medicine. ClinicalTrials.gov , (2011).

  41. 41.

    et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004).

  42. 42.

    et al. Hematogenous and lymphatic tumor cell dissemination may be detected in patients diagnosed with ductal carcinoma in situ of the breast. Breast Cancer Res. Treat. 131, 801–808 (2012).

  43. 43.

    , & Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11, 426–437 (2011).

  44. 44.

    et al. Loss of heterozygosity at tumor suppressor genes detectable on fractionated circulating cell-free tumor DNA as indicator of breast cancer progression. Clin. Cancer Res. 18, 5719–5730 (2012).

  45. 45.

    et al. Detection of HER2 amplification in circulating free DNA in patients with breast cancer. Br. J. Cancer 104, 1342–1348 (2011).

  46. 46.

    et al. Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res. 22, 220–231 (2012).

  47. 47.

    , , & Detection of phosphoinositide-3-kinase, catalytic, and alpha polypeptide (PIK3CA) mutations in matched tissue and plasma samples from with metastatic breast cancer [abstract]. J. Clin. Oncol. 28 (Suppl.), a10502 (2010).

  48. 48.

    et al. Tumor DNA in plasma at diagnosis of breast cancer patients is a valuable predictor of disease-free survival. Clin. Cancer Res. 8, 3761–3766 (2002).

  49. 49.

    et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

  50. 50.

    et al. Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res. Treat. 120, 461–467 (2010).

  51. 51.

    et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin. Cancer Res. 18, 3462–3469 (2012).

  52. 52.

    et al. Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res. 65, 1141–1145 (2005).

  53. 53.

    et al. Extracellular DNA in breast cancer: cell-surface-bound, tumor-derived extracellular DNA in blood of patients with breast cancer and nonmalignant tumors. Ann. NY Acad. Sci. 1022, 217–220 (2004).

  54. 54.

    et al. Clinical significance of promoter hypermethylation of DNA repair genes in tumor and serum DNA in invasive ductal breast carcinoma patients. Life Sci. 87, 83–91 (2010).

  55. 55.

    et al. Cell-free and cell-bound circulating DNA in breast tumours: DNA quantification and analysis of tumour-related gene methylation. Br. J. Cancer 94, 1492–1495 (2006).

  56. 56.

    et al. Prediction of breast tumor progression by integrity of free circulating DNA in serum. J. Clin. Oncol. 24, 4270–4276 (2006).

  57. 57.

    et al. Effect of adjuvant chemotherapy on integrity of free serum DNA in patients with breast cancer. Ann. NY Acad. Sci. 1137, 175–179 (2008).

  58. 58.

    et al. Comparative evaluation of cell-free tumor DNA in blood and disseminated tumor cells in bone marrow of patients with primary breast cancer. Breast Cancer Res. 11, R71 (2009).

  59. 59.

    et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

  60. 60.

    et al. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J. Pathol. 220, 562–573 (2010).

  61. 61.

    et al. Intratumoral heterogeneity of HER2/neu expression and its consequences for the management of advanced breast cancer. Ann. Oncol. 19, 595–597 (2008).

  62. 62.

    et al. Genomic characterisation of invasive breast cancers with heterogeneous HER2 gene amplification [abstract]. Cancer Res. 72 (Suppl. 3), PD05-08 (2012).

  63. 63.

    et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J. Clin. Oncol. 30, 593–599 (2012).

  64. 64.

    et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J. Clin. Oncol. 30, 587–592 (2012).

  65. 65.

    et al. Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer 49, 1062–1069 (2010).

  66. 66.

    et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2, 20ra14 (2010).

  67. 67.

    et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4, 136ra68 (2012).

  68. 68.

    et al. Array CGH and DNA sequencing to personalize therapy for metastatic breast cancer: A prospective National trial (UNICANCER SAFIR-01) [abstract]. Ann. Oncol. 23 (Suppl. 9), LBA13_PR (2012).

  69. 69.

    , , & CTCs in primary breast cancer (I). Recent Results Cancer Res. 195, 179–185 (2012).

  70. 70.

    , , & Hormone receptor status, erbB2 expression and cancer stem cell characteristics of circulating tumor cells in breast cancer patients. Histol. Histopathol. 27, 855–864 (2012).

  71. 71.

    et al. Multiple biomarker expression on circulating tumor cells in comparison to tumor tissues from primary and metastatic sites in patients with locally advanced/inflammatory, and stage IV breast cancer, using a novel detection technology. Breast Cancer Res. Treat. 128, 155–163 (2011).

  72. 72.

    et al. Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells. Breast Cancer Res. 11, R59 (2009).

  73. 73.

    et al. HER2 status predicts the presence of circulating tumor cells in patients with operable breast cancer. Breast Cancer Res. Treat. 113, 501–507 (2009).

  74. 74.

    et al. Biomarkers characterization of circulating tumour cells in breast cancer patients. Breast Cancer Res. 14, R71 (2012).

  75. 75.

    et al. Comparison of estrogen and progesterone receptor status of circulating tumor cells and the primary tumor in metastatic breast cancer patients. Gynecol. Oncol. 122, 356–360 (2011).

  76. 76.

    et al. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Ann. Oncol. 23, 618–624 (2012).

  77. 77.

    et al. The prognostic impact of circulating tumor cells in subtypes of metastatic breast cancer. Breast Cancer Res. Treat. 137, 503–510 (2013).

  78. 78.

    , , & Estrogen and HER-2 receptor discordance between primary breast cancer and metastasis. Oncologist 15, 1164–1168 (2010).

  79. 79.

    et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 7, e33788 (2012).

  80. 80.

    et al. The influence of removal of primary tumor on incidence and phenotype of circulating tumor cells in primary breast cancer. Breast Cancer Res. Treat. 132, 121–129 (2012).

  81. 81.

    et al. Development of circulating tumor cell-endocrine therapy index in metastatic breast cancer patients [abstract]. Cancer Res. 71 (Suppl. 3), P4-07-16 (2011).

  82. 82.

    US National Library of Medicine. ClinicalTrials.gov , (2013).

  83. 83.

    et al. Trastuzumab clears HER2/neu-positive isolated tumor cells from bone marrow in primary breast cancer patients. Arch. Gynecol. Obstet. 285, 485–492 (2012).

  84. 84.

    et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res. Treat. 124, 403–412 (2010).

  85. 85.

    et al. HER-2 gene amplification can be acquired as breast cancer progresses. Proc. Natl Acad. Sci. USA 101, 9393–9398 (2004).

  86. 86.

    et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J. Clin. Oncol. 25, 118–145 (2007).

  87. 87.

    et al. Unbiased quantitative assessment of Her-2 expression of circulating tumor cells in patients with metastatic and non-metastatic breast cancer. Ann. Oncol. 24, 1231–1238 (2013).

  88. 88.

    et al. HER2-positive circulating tumor cells in breast cancer. PLoS ONE 6, e15624 (2011).

  89. 89.

    et al. Trastuzumab decreases the incidence of clinical relapses in patients with early breast cancer presenting chemotherapy-resistant CK-19mRNA-positive circulating tumor cells: results of a randomized phase II study. Ann. Oncol. 23, 1744–1750 (2012).

  90. 90.

    et al. Determination of HER2 status using both serum HER2 levels and circulating tumor cells in patients with recurrent breast cancer whose primary tumor was HER2 negative or of unknown HER2 status. Breast Cancer Res. 9, R74 (2007).

  91. 91.

    et al. Correlation of HER2 status between primary tumors and corresponding circulating tumor cells in advanced breast cancer patients. Breast Cancer Res. Treat. 118, 523–530 (2009).

  92. 92.

    et al. Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Res. Treat. 115, 581–590 (2009).

  93. 93.

    et al. Improving the yield of circulating tumour cells facilitates molecular characterisation and recognition of discordant HER2 amplification in breast cancer. Br. J. Cancer 102, 1495–1502 (2010).

  94. 94.

    et al. mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin. Cancer Res. 17, 3600–3618 (2011).

  95. 95.

    et al. Final results of a multicenter phase II clinical trial evaluating the activity of single-agent lapatinib in patients with HER2-negative metastatic breast cancer and HER2-positive circulating tumor cells. A proof-of-concept study. Breast Cancer Res. Treat. 134, 283–289 (2012).

  96. 96.

    & Genetic heterogeneity and cancer drug resistance. Lancet Oncol. 13, e178–185 (2012).

  97. 97.

    et al. DETECT III - A multicenter, randomized, phase III study to compare standard therapy alone versus standard therapy plus lapatinib in patients with initially HER2-negative metastatic breast cancer and HER2-positive circulating tumor cells [abstract]. Cancer Res. 72 (Suppl. 3), OT1-1-10 (2012).

  98. 98.

    et al. Clinical application of circulating tumor cells in breast cancer: overview of the current interventional trials. Cancer Metastasis Rev. .

  99. 99.

    et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18, 160–170 (2010).

  100. 100.

    , & Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J. Clin. Oncol. 29, 4452–4461 (2011).

  101. 101.

    & Advances in first-line treatment for patients with HER-2+ metastatic breast cancer. Oncologist 17, 631–644 (2012).

  102. 102.

    , & Treatment of triple-negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization? Ann. Oncol. 21 (Suppl. 7), vii30–vii35 (2010).

  103. 103.

    et al. JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Cancer Cell 22, 796–811 (2012).

  104. 104.

    et al. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat. Rev. Clin. Oncol. 9, 16–32 (2011).

  105. 105.

    et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117–127 (2004).

  106. 106.

    et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

  107. 107.

    et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 68, 8022–8030 (2008).

  108. 108.

    , & PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs. Oncogene 30, 3222–3233 (2011).

  109. 109.

    et al. PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol. Cancer Ther. 10, 1093–1101 (2011).

  110. 110.

    & The implications of clonal genome evolution for cancer medicine. N. Engl. J. Med. 368, 842–851 (2013).

  111. 111.

    et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).

  112. 112.

    et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

  113. 113.

    et al. Identification of a mutation in the extracellular domain of the Epidermal Growth Factor Receptor conferring cetuximab resistance in colorectal cancer. Nat. Med. 18, 221–223 (2012).

  114. 114.

    et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

  115. 115.

    et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353–360 (2012).

  116. 116.

    & Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J. Clin. Oncol. 26, 2813–2820 (2008).

  117. 117.

    et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

  118. 118.

    et al. Circulating tumor cells and biomarkers: implications for personalized targeted treatments for metastatic breast cancer. Breast J. 16, 327–330 (2010).

  119. 119.

    et al. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 11, R46 (2009).

  120. 120.

    & Biologic challenges in the detection of circulating tumor cells. Cancer Res. 73, 8–11 (2013).

  121. 121.

    et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

  122. 122.

    et al. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res. 68, 5878–5887 (2008).

  123. 123.

    , , & Next generation sequencing of serum circulating nucleic acids from patients with invasive ductal breast cancer reveals differences to healthy and nonmalignant controls. Mol. Cancer Res. 8, 335–342 (2010).

Download references

Acknowledgements

The authors acknowledge Fundación Rafael del Pino for research support.

Author information

Affiliations

  1. Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Paseo Vall d'Hebron 119–129, 08035 Barcelona, Spain

    • Leticia De Mattos-Arruda
    • , Javier Cortes
    • , Ana Vivancos
    • , Josep Tabernero
    •  & Joan Seoane
  2.  Translational Research Unit, Department of Medical Oncology “Sandro Pitigliani”, Istituto Toscano Tumori, Piazza Ospedale 5, 59100 Prato, Italy

    • Libero Santarpia
  3.  Department of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA

    • Jorge S. Reis-Filho

Authors

  1. Search for Leticia De Mattos-Arruda in:

  2. Search for Javier Cortes in:

  3. Search for Libero Santarpia in:

  4. Search for Ana Vivancos in:

  5. Search for Josep Tabernero in:

  6. Search for Jorge S. Reis-Filho in:

  7. Search for Joan Seoane in:

Contributions

L. De Mattos-Arruda, L. Santarpia, J. S. Reis-Filho and J. Seoane researched data for the article. L. De Mattos-Arruda, J. Cortes, L. Santarpia, J. Tabernero, J. S. Reis-Filho and J. Seoane made a substantial contribution to discussion of content and wrote the manuscript. All authors reviewed and edited the article before submission.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Leticia De Mattos-Arruda.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nrclinonc.2013.80

Further reading