Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New concepts in the design of drug-eluting coronary stents

Abstract

Drug-eluting stents (DES) have revolutionized the practice of interventional cardiology over the past decade. Although their efficacy has never been called into question, concerns have been raised regarding their safety, particularly with respect to very late stent thrombosis. These valid concerns have prompted extensive research into improving stent safety, with particular interest in modifying the permanent polymer used on first-generation DES. Subsequently, various new types of coronary stent have been developed, including DES with biocompatible polymers, DES with biodegradable polymers, polymer-free DES, and completely bioresorbable scaffolds. Some of these new DES are already available in clinical practice, and others are currently undergoing clinical evaluation. Improvements in stent performance have made detecting statistically robust and clinically relevant differences between contemporary devices difficult. The wide array of available stents enables the choice of device to be tailored to the individual patient.

Key Points

  • Long-term safety concerns with first-generation drug-eluting stents (DES) were the major driver for modifications to the stent platform, stent polymer, and the eluted antiproliferative drug

  • Second-generation DES have been shown to be both safer and at least as efficacious as first-generation devices

  • Biodegradable polymer stents have been shown to be a safe and efficacious alternative to conventional durable polymer DES

  • Bioresorbable vascular scaffolds are an emerging technology, which hold promise to improve the safety of coronary stents

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal evolution in the incidence of stent thrombosis according to adjunct phamacotherapy, stent type, (bare-metal or drug-eluting), and percutaneous coronary intervention technique.
Figure 2
Figure 3: Mechanism of action of the macrocylic lactones (biolimus A9, everolimus, myolimus, novolimus, sirolimus, and zotarolimus), which inhibit mTOR resulting in cell cycle arrest, and paclitaxel, which inhibits smooth muscle cell proliferation through the stabilization of microtubules, thereby preventing cell division.
Figure 4: Temporal change in concentration of BA9 and PLA polymers on the BioMatrix Flex® stent (Biosenors Europe S.A., Morges, Switzerland).
Figure 5: Rates of TLR and late lumen loss at 12-month and 24-month follow-up in the ISAR-TEST 3 trial.77,78
Figure 6: Metabolism of PLLA, and bioabsoprtion curves for bioabsorbable materials.

Similar content being viewed by others

References

  1. Morice, M. C. et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 346, 1773–1780 (2002).

    CAS  PubMed  Google Scholar 

  2. Jeremias, A. & Kirtane, A. Balancing efficacy and safety of drug-eluting stents in patients undergoing percutaneous coronary intervention. Ann. Intern. Med. 148, 234–238 (2008).

    PubMed  Google Scholar 

  3. Camenzind, E., Steg, P. G. & Wijns, W. Stent thrombosis late after implantation of first-generation drug-eluting stents: a cause for concern. Circulation 115, 1440–1455 (2007).

    PubMed  Google Scholar 

  4. Nordmann, A. J., Briel, M. & Bucher, H. C. Mortality in randomized controlled trials comparing drug-eluting vs. bare metal stents in coronary artery disease: a meta-analysis. Eur. Heart J. 27, 2784–2814 (2006).

    CAS  PubMed  Google Scholar 

  5. Lagerqvist, B. et al. Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. N. Engl. J. Med. 356, 1009–1019 (2007).

    CAS  PubMed  Google Scholar 

  6. Pfisterer, M. et al. Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents. J. Am. Coll. Cardiol. 48, 2584–2591 (2006).

    CAS  PubMed  Google Scholar 

  7. Farb, A. & Boam, A. B. Stent thrombosis redux—the FDA perspective. N. Engl. J. Med. 356, 984–987 (2007).

    CAS  PubMed  Google Scholar 

  8. Daemen, J. et al. ESC forum on drug-eluting stents. European Heart House, Nice, 27–28 September 2007. Eur. Heart J. 30, 152–161 (2009).

    PubMed  Google Scholar 

  9. Serruys, P. W. et al. Arterial Revascularisation Therapies Study Part II—Sirolimus-eluting stents for the treatment of patients with multivessel de novo coronary artery lesions. EuroIntervention 1, 147–156 (2005).

    PubMed  Google Scholar 

  10. Grube, E. et al. TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation 107, 38–42 (2003).

    CAS  PubMed  Google Scholar 

  11. Serruys, P. W. et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 360, 961–972 (2009).

    CAS  PubMed  Google Scholar 

  12. Sabaté, M. et al. Randomized comparison of sirolimus-eluting stent versus standard stent for percutaneous coronary revascularization in diabetic patients: the diabetes and sirolimus-eluting stent (DIABETES) trial. Circulation 112, 2175–2183 (2005).

    PubMed  Google Scholar 

  13. Kirtane, A. J. et al. Paclitaxel-eluting coronary stents in patients with diabetes mellitus: pooled analysis from 5 randomized trials. J. Am. Coll. Cardiol. 51, 708–715 (2008).

    CAS  PubMed  Google Scholar 

  14. Spaulding, C. et al. Sirolimus-eluting versus uncoated stents in acute myocardial infarction. N. Engl. J. Med. 355, 1093–1104 (2006).

    CAS  PubMed  Google Scholar 

  15. Laarman, G. J. et al. Paclitaxel-eluting versus uncoated stents in primary percutaneous coronary intervention. N. Engl. J. Med. 355, 1105–1113 (2006).

    CAS  PubMed  Google Scholar 

  16. Garg, S. & Serruys, P. W. Coronary stents: current status. J. Am. Coll. Cardiol. 56, S1–S42 (2010).

    CAS  PubMed  Google Scholar 

  17. Garg, S. & Serruys, P. W. Coronary stents: looking forward. J. Am. Coll. Cardiol. 56, S43–S78 (2010).

    CAS  PubMed  Google Scholar 

  18. Garg, S., Raber, L., Serruys, P. W. & Windecker, S. in Percutaneous Interventional Cardiovascular Medicine Part III Ch. 3 (Eds Eeckhout, E., Serruys, P. W., Wijns, W., Vahanian, A., van Sambeek, M.) 51–144 (Europa Edition Publishing, Paris, 2012).

    Google Scholar 

  19. Stettler, C. et al. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370, 937–948 (2007).

    CAS  PubMed  Google Scholar 

  20. Garg, S. & Serruys, P. W. Benefits of and safety concerns associated with drug-eluting coronary stents. Expert Rev. Cardiovasc. Ther. 8, 449–470 (2010).

    CAS  PubMed  Google Scholar 

  21. Kastrati, A. et al. Meta-analysis of randomized trials on drug-eluting stents vs. bare-metal stents in patients with acute myocardial infarction. Eur. Heart J. 28, 2706–2713 (2007).

    PubMed  Google Scholar 

  22. Daemen, J. et al. A pooled safety analysis of data comparing paclitaxel-eluting stents with bare-metal stents. EuroIntervention 3, 392–399 (2007).

    PubMed  Google Scholar 

  23. Spaulding, C., Daemen, J., Boersma, E., Cutlip, D. E. & Serruys, P. W. A pooled analysis of data comparing sirolimus-eluting stents with bare-metal stents. N. Engl. J. Med. 356, 989–997 (2007).

    CAS  PubMed  Google Scholar 

  24. Mauri, L. et al. Stent thrombosis in randomized clinical trials of drug-eluting stents. N. Engl. J. Med. 356, 1020–1029 (2007).

    CAS  PubMed  Google Scholar 

  25. Stone, G. W. et al. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N. Engl. J. Med. 356, 998–1008 (2007).

    CAS  PubMed  Google Scholar 

  26. Kirtane, A. J. et al. Safety and efficacy of drug-eluting and bare metal stents: comprehensive meta-analysis of randomized trials and observational studies. Circulation 119, 3198–3206 (2009).

    CAS  PubMed  Google Scholar 

  27. Pinto Slottow, T. L. et al. Observations and outcomes of definite and probable drug-eluting stent thrombosis seen at a single hospital in a four-year period. Am. J. Cardiol. 102, 298–303 (2008).

    CAS  PubMed  Google Scholar 

  28. James, S. K., Wallentin, L. & Lagerqvist, B. for the Swedish Coronary Angiography and Angioplasty Registry (SCAAR) study group. The SCAAR-scare in perspective. EuroIntervention 5, 501–504 (2009).

    PubMed  Google Scholar 

  29. Wenaweser, P. et al. Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J. Am. Coll. Cardiol. 52, 1134–1140 (2008).

    CAS  PubMed  Google Scholar 

  30. Serruys, P. W. et al. Angiographic follow-up after placement of a self-expanding coronary-artery stent. N. Engl. J. Med. 324, 13–17 (1991).

    CAS  PubMed  Google Scholar 

  31. Serruys, P. W. et al. 5-year clinical outcomes of the ARTS II (Arterial Revascularization Therapies Study II) of the sirolimus-eluting stent in the treatment of patients with multivessel de novo coronary artery lesions. J. Am. Coll. Cardiol. 55, 1093–1101 (2010).

    PubMed  Google Scholar 

  32. Holmes, D. R. Jr. et al. Stent thrombosis. J. Am. Coll. Cardiol. 56, 1357–1365 (2010).

    PubMed  Google Scholar 

  33. van Werkum, J. W. et al. Predictors of coronary stent thrombosis: the Dutch Stent Thrombosis Registry. J. Am. Coll. Cardiol. 53, 1399–1409 (2009).

    PubMed  Google Scholar 

  34. Joner, M. et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 48, 193–202 (2006).

    PubMed  Google Scholar 

  35. Nakazawa, G. et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J. Am. Coll. Cardiol. 57, 1314–1322 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hara, M. et al. Difference of neointimal formational pattern and incidence of thrombus formation among 3 kinds of stents: an angioscopic study. JACC Cardiovasc. Interv. 3, 215–220 (2010).

    PubMed  Google Scholar 

  37. Kimura, T. et al. Three-year follow-up after implantation of metallic coronary-artery stents. N. Engl. J. Med. 334, 561–566 (1996).

    CAS  PubMed  Google Scholar 

  38. Raber, L. et al. Five-year clinical and angiographic outcomes of a randomized comparison of sirolimus-eluting and paclitaxel-eluting stents: results of the Sirolimus-Eluting Versus Paclitaxel-Eluting Stents for Coronary Revascularization LATE trial. Circulation 123, 2819–2828 (2011).

    PubMed  Google Scholar 

  39. US Department of Health & Human Services. FDA. Approval document for Cypher sirolimus eluting stent [online], (2004).

  40. Brodie, B. R. et al. Outcomes and complications with off-label use of drug-eluting stents: results from the STENT (Strategic Transcatheter Evaluation of New Therapies) group. JACC Cardiovasc. Interv. 1, 405–414 (2008).

    PubMed  Google Scholar 

  41. Serruys, P. W. FDA panel, 7 and 8 December 2006—The impact on our practice and research. EuroIntervention 2, 405–407 (2007).

    PubMed  Google Scholar 

  42. Schomig, A. et al. A meta-analysis of 16 randomized trials of sirolimus-eluting stents versus paclitaxel-eluting stents in patients with coronary artery disease. J. Am. Coll. Cardiol. 50, 1373–1380 (2007).

    PubMed  Google Scholar 

  43. de Waha, A. et al. Everolimus-eluting versus sirolimus-eluting stents: a meta-analysis of randomized trials. Circ. Cardiovasc. Interv. 4, 371–377 (2011).

    PubMed  Google Scholar 

  44. Fan, J. et al. Efficacy and safety of zotarolimus-eluting stents compared with sirolimus-eluting stents in patients undergoing percutaneous coronary interventions—a meta-analysis of randomized controlled trials. Int. J. Cardiol. http://dx.doi.org/10.1016/j.ijcard.2012.05.105.

  45. Joner, M. et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. J. Am. Coll. Cardiol. 52, 333–342 (2008).

    CAS  PubMed  Google Scholar 

  46. Cook, S. et al. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation 120, 391–399 (2009).

    PubMed  Google Scholar 

  47. Serruys, P. W. et al. Comparison of zotarolimus-eluting and everolimus-eluting coronary stents. N. Engl. J. Med. 363, 136–146 (2010).

    CAS  PubMed  Google Scholar 

  48. Kedhi, E. et al. Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): a randomised trial. Lancet 375, 201–209 (2010).

    CAS  PubMed  Google Scholar 

  49. Stone, G. W. et al. Differential clinical responses to everolimus-eluting and paclitaxel-eluting coronary stents in patients with and without diabetes mellitus. Circulation 124, 893–900 (2011).

    CAS  PubMed  Google Scholar 

  50. Alazzoni, A., Al-Saleh, A. & Jolly, S. S. Everolimus-eluting versus paclitaxel-eluting stents in percutaneous coronary intervention: meta-analysis of randomized trials. Thrombosis 2012, 126369 (2012).

    PubMed  PubMed Central  Google Scholar 

  51. Cassese, S. et al. Two zotarolimus-eluting stent generations: a meta-analysis of 12 randomised trials versus other limus-eluting stents and an adjusted indirect comparison. Heart 98, 1632–1640 (2012).

    CAS  PubMed  Google Scholar 

  52. Meredith, I. T. et al. Five-year clinical follow-up after implantation of the Endeavor zotarolimus-eluting stent: ENDEAVOR I, first-in-human study. Catheter. Cardiovasc. Interv. 74, 989–995 (2009).

    PubMed  Google Scholar 

  53. Wiemer, M. et al. Five-year long-term clinical follow-up of the XIENCE V everolimus eluting coronary stent system in the treatment of patients with de novo coronary artery lesions: The SPIRIT FIRST trial. Catheter. Cardiovasc. Interv. 75, 997–1003 (2010).

    PubMed  Google Scholar 

  54. Leon, M. B. et al. A randomised comparison of the ENDEAVOR zotarolimus-eluting stent versus the TAXUS Paclitaxel-eluting stent in de novo native coronary lesions: 12-month outcomes from the ENDEAVOR IV trial. J. Am. Coll. Cardiol. 55, 543–554 (2010).

    CAS  PubMed  Google Scholar 

  55. Kandzari, D. E. et al. Comparison of zotarolimus-eluting and sirolimus-eluting stents in patients with native coronary artery disease: a randomized controlled trial. J. Am. Coll. Cardiol. 48, 2440–2447 (2006).

    CAS  PubMed  Google Scholar 

  56. Leon, M. B. et al. Improved late clinical safety with zotarolimus-eluting stents compared with paclitaxel-eluting stents in patients with de novo coronary lesions: 3-year follow-up from the ENDEAVOR IV (Randomized Comparison of Zotarolimus- and Paclitaxel-Eluting Stents in Patients With Coronary Artery Disease) trial. JACC Cardiovasc. Interv. 3, 1043–1050 (2010).

    PubMed  Google Scholar 

  57. Camenzind, E. et al. Stent thrombosis and major clinical events at 3 years after zotarolimus-eluting or sirolimus-eluting coronary stent implantation: a randomised, multicentre, open-label, controlled trial. Lancet 380, 1396–1405 (2012).

    CAS  PubMed  Google Scholar 

  58. von Birgelen, C. et al. A randomized controlled trial in second-generation zotarolimus-eluting Resolute stents versus everolimus-eluting Xience V stents in real-world patients: the TWENTE trial. J. Am. Coll. Cardiol. 59, 1350–1361 (2012).

    CAS  PubMed  Google Scholar 

  59. Ahn, J. M. et al. Comparison of Resolute zotarolimus-eluting stents and sirolimus-eluting stents in patients with de novo long coronary artery lesions: a randomized LONG-DES IV trial. Circ. Cardiovasc. Interv. 5, 633–640 (2012).

    CAS  PubMed  Google Scholar 

  60. Palmerini, T. et al. Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Lancet 379, 1393–1402 (2012).

    CAS  PubMed  Google Scholar 

  61. Kolandaivelu, K. et al. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation 123, 1400–1409 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bangalore, S. et al. Short- and long-term outcomes with drug-eluting and bare-metal coronary stents: a mixed-treatment comparison analysis of 117, 762 patient-years of follow-up from randomized trials. Circulation 125, 2873–2891 (2012).

    CAS  PubMed  Google Scholar 

  63. Palmerini, T. et al. Stent thrombosis with everolimus-eluting stents: meta-analysis of comparative randomized controlled trials. Circ. Cardiovasc. Interv. 5, 357–364 (2012).

    CAS  PubMed  Google Scholar 

  64. Waksman, R. & Pakala, R. Coating bioabsorption and chronic bare metal scaffolding versus fully bioabsorbable stent. EuroIntervention 5 (Suppl. F), F36–F42 (2009).

    PubMed  Google Scholar 

  65. Windecker, S. et al. Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularisation (LEADERS): a randomised non-inferiority trial. Lancet 372, 1163–1173 (2008).

    CAS  PubMed  Google Scholar 

  66. Serruys, P. W. Five-year outcomes from the LEADERS trial. Presented at 24th Transcatheter Cardiovascular Therapeutics 2012.

  67. Stefanini, G. G. et al. Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials. Eur. Heart J. 33, 1214–1222 (2012).

    CAS  PubMed  Google Scholar 

  68. Barlis, P. et al. An optical coherence tomography study of a biodegradable vs. durable polymer-coated limus-eluting stent: a LEADERS trial sub-study. Eur. Heart J. 31, 165–176 (2010).

    CAS  PubMed  Google Scholar 

  69. Gutierréz-Chico, J. L. et al. Long-term tissue coverage of a biodegradable polylactide polymer-coated biolimus-eluting stent: comparative sequential assessment with optical coherence tomography until complete resorption of the polymer. Am. Heart J. 162, 922–931 (2011).

    PubMed  Google Scholar 

  70. Smits, P. Primary endpoint results from the COMPARE II trial: a large scale, multicentre, prospective randomised comparison between the everolimus-eluting stent with a durable polymer and the biolimus-eluting stent with an abluminal biodegradable polymer in a real-life setting. Presented at EuroPCR 2012.

  71. Park, S. J. et al. A paclitaxel-eluting stent for the prevention of coronary restenosis. N. Engl. J. Med. 348, 1537–1545 (2003).

    CAS  PubMed  Google Scholar 

  72. Tada, N. et al. Polymer-free biolimus a9-coated stent demonstrates more sustained intimal inhibition, improved healing, and reduced inflammation compared with a polymer-coated sirolimus-eluting cypher stent in a porcine model. Circ. Cardiovasc. Interv. 3, 174–183 (2010).

    CAS  PubMed  Google Scholar 

  73. Grube, E. Biofreedom: polymer-free drug-eluting stent—preclinical results and first-in-man trial status. Presented at EuroPCR 2009.

  74. Costa, J. R. Jr. et al. Preliminary results of the hydroxyapatite nonpolymer-based sirolimus-eluting stent for the treatment of single de novo coronary lesions a first-in-human analysis of a third-generation drug-eluting stent system. JACC Cardiovasc. Interv. 1, 545–551 (2008).

    PubMed  Google Scholar 

  75. Mehilli, J. et al. Randomized trial of a nonpolymer-based rapamycin-eluting stent versus a polymer-based paclitaxel-eluting stent for the reduction of late lumen loss. Circulation 113, 273–279 (2006).

    CAS  PubMed  Google Scholar 

  76. Carrié, D. et al. A multicenter randomized trial comparing amphilimus- with paclitaxel-eluting stents in de novo native coronary artery lesions. J. Am. Coll. Cardiol. 59, 1371–1376 (2012).

    PubMed  Google Scholar 

  77. Mehilli, J. et al. Randomized trial of three rapamycin-eluting stents with different coating strategies for the reduction of coronary restenosis. Eur. Heart J. 29, 1975–1982 (2008).

    CAS  PubMed  Google Scholar 

  78. Byrne, R. A. et al. Randomised trial of three rapamycin-eluting stents with different coating strategies for the reduction of coronary restenosis: 2-year follow-up results. Heart 95, 1489–1494 (2009).

    CAS  PubMed  Google Scholar 

  79. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  80. Massberg, S. et al. Polymer-free sirolimus- and probucol-eluting versus new generation zotarolimus-eluting stents in coronary artery disease: the intracoronary stenting and angiographic results: Test Efficacy of Sirolimus- and Probucol-Eluting Versus Zotarolimus-Eluting Stents (ISAR-TEST 5) trial. Circulation 124, 624–632 (2011).

    CAS  PubMed  Google Scholar 

  81. Wilcox, J. Progress with a hollow-curve rapamycin filled stent (Medtronic). Presented at 24th Transcather Cardiovascular Therapeutics 2012.

  82. Seth, A. Nanoparticle based stents—FOCUS np (Envision Scientific) program update. Presented at 24th Transcather Cardiovascular Therapeutics 2012.

  83. Cannon, L. Two-year outcomes from the PERSEUS randomised trial of the paclitaxel-eluting platinum chromium stent versus palitaxel-eluting stainless steel. Presented at 23rd Transcatheter Cardiovascular Therapeutics 2011.

  84. Stone, G. Two-year results of the PLATINUM Randomized Trial Comparing Platinum Chromium PROMUS Element and Cobalt Chromium PROMUS/XIENCE V Everolimus-eluting stents in de novo coronary artery lesions. Presented at the ACC Scientific Sessions 2012.

  85. Verheye, S. et al. 9-month clinical, angiographic, and intravascular ultrasound results of a prospective evaluation of the Axxess self-expanding biolimus A9-eluting stent in coronary bifurcation lesions: the DIVERGE (Drug-Eluting Stent Intervention for Treating Side Branches Effectively) study. J. Am. Coll. Cardiol. 53, 1031–1039 (2009).

    PubMed  Google Scholar 

  86. Chamié, D. et al. Serial angiography and intravascular ultrasound: results of the SISC Registry (Stents In Small Coronaries). JACC Cardiovasc. Interv. 3, 191–202 (2010).

    PubMed  Google Scholar 

  87. Serruys, P. W., Garcia-Garcia, H. M. & Onuma, Y. From metallic cages to transient bioresorbable scaffolds: change in paradigm of coronary revascularization in the upcoming decade? Eur. Heart J. 33, 16b–25b (2012).

    Google Scholar 

  88. Colombo, A. & Karvouni, E. Biodegradable stents: “fulfilling the mission and stepping away”. Circulation 102, 371–373 (2000).

    CAS  PubMed  Google Scholar 

  89. Erbel, R. et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369, 1869–1875 (2007).

    CAS  PubMed  Google Scholar 

  90. Tanimoto, S. et al. Late stent recoil of the bioabsorbable everolimus-eluting coronary stent and its relationship with plaque morphology. J. Am. Coll. Cardiol. 52, 1616–1620 (2008).

    CAS  PubMed  Google Scholar 

  91. Grube, E. Bioabsorbable stent. The Boston Scientific and REVA technology. Presented at EuroPCR 2009.

  92. Ormiston, J. A. et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 371, 899–907 (2008).

    CAS  PubMed  Google Scholar 

  93. Serruys, P. W. et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373, 897–910 (2009).

    CAS  PubMed  Google Scholar 

  94. Serruys, P. W. et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation 122, 2301–2312 (2010).

    CAS  PubMed  Google Scholar 

  95. Ormiston, J. A. et al. First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study. Circ. Cardiovasc. Interv. 5, 620–632 (2012).

    CAS  PubMed  Google Scholar 

  96. Serruys, P. W. et al. A randomised comparison of an everolimus-eluting coronary stent with a paclitaxel-eluting coronary stent: the SPIRIT II trial. EuroIntervention 2, 286–294 (2006).

    PubMed  Google Scholar 

  97. Serruys, P. W. et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. J. Am. Coll. Cardiol. 58, 1578–1588 (2011).

    CAS  PubMed  Google Scholar 

  98. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  99. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  100. Diletti, R. et al. ABSORB II randomized controlled trial: a clinical evaluation to compare the safety, efficacy, and performance of the Absorb everolimus-eluting bioresorbable vascular scaffold system against the XIENCE everolimus-eluting coronary stent system in the treatment of subjects with ischemic heart disease caused by de novo native coronary artery lesions: rationale and study design. Am. Heart J. 164, 654–663 (2012).

    CAS  PubMed  Google Scholar 

  101. Serruys, P. W. et al. in Percutaneous Interventional Cardiovascular Medicine Part III, Ch. 4 (Eds Eeckhout, E., Serruys, P. W., Wijns, W., Vahanian, A. & van Sambeek, M.) 145–177 (Europa Edition Publishing, Paris, 2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, wrote the manuscript, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Patrick W. Serruys.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, S., Bourantas, C. & Serruys, P. New concepts in the design of drug-eluting coronary stents. Nat Rev Cardiol 10, 248–260 (2013). https://doi.org/10.1038/nrcardio.2013.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing