Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Beyond E-cadherin: roles of other cadherin superfamily members in cancer

Abstract

Loss of cadherin 1 (CDH1; also known as epithelial cadherin (E-cadherin)) is used for the diagnosis and prognosis of epithelial cancers. However, it should not be ignored that the superfamily of transmembrane cadherin proteins encompasses more than 100 members in humans, including other classical cadherins, numerous protocadherins and cadherin-related proteins. Elucidation of their roles in suppression versus initiation or progression of various tumour types is a young but fascinating field of molecular cancer research. These cadherins are very diverse in both structure and function, and their mutual interactions seem to influence biological responses in complex and versatile ways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of representative members of the cadherin superfamily with involvement in cancer.
Figure 2: Characteristic molecular interactions and biological activities of representative members of the cadherin superfamily within cancer cells.
Figure 3: Representative cadherin-mediated intercellular interactions that are involved in cancer.

Similar content being viewed by others

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    PubMed  Google Scholar 

  2. van Roy, F. & Berx, G. The cell–cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. 65, 3756–3788 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Jeanes, A., Gottardi, C. J. & Yap, A. S. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27, 6920–6929 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berx, G. & van Roy, F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb. Perspect. Biol. 1, a003129 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Paredes, J. et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim. Biophys. Acta 1826, 297–311 (2012).

    CAS  PubMed  Google Scholar 

  6. Hulpiau, P. & van Roy, F. Molecular evolution of the cadherin superfamily. Int. J. Biochem. Cell Biol. 41, 349–369 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Oda, H. & Takeichi, M. Evolution: structural and functional diversity of cadherin at the adherens junction. J. Cell Biol. 193, 1137–1146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hulpiau, P. & van Roy, F. New insights into the evolution of metazoan cadherins. Mol. Biol. Evol. 28, 647–657 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. De Craene, B. & Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nature Rev. Cancer 13, 97–110 (2013).

    Article  CAS  Google Scholar 

  10. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial–mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Lammens, T. et al. N-cadherin in neuroblastoma disease: expression and clinical significance. PLoS ONE 7, e31206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Williams, E. J., Furness, J., Walsh, F. S. & Doherty, P. Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13, 583–594 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Suyama, K., Shapiro, I., Guttman, M. & Hazan, R. B. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2, 301–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez-Heras, E., Howell, F. V., Williams, G. & Doherty, P. The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule. J. Biol. Chem. 281, 35208–35216 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Libusova, L., Stemmler, M. P., Hierholzer, A., Schwarz, H. & Kemler, R. N-cadherin can structurally substitute for E-cadherin during intestinal development but leads to polyp formation. Development 137, 2297–2305 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Kotb, A. M., Hierholzer, A. & Kemler, R. Replacement of E-cadherin by N-cadherin in the mammary gland leads to fibrocystic changes and tumor formation. Breast Cancer Res. 13, R104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Derksen, P. W. et al. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice. Dis. Model. Mech. 4, 347–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hulit, J. et al. N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res. 67, 3106–3116 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Qian, X. et al. N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties. Oncogene http://dx.doi.org/10.1038/onc.2013.310 (2013).

  20. Shintani, Y., Hollingsworth, M. A., Wheelock, M. J. & Johnson, K. R. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N cadherin expression. Cancer Res. 66, 11745–11753 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Williams, E., Williams, G., Gour, B. J., Blaschuk, O. W. & Doherty, P. A novel family of cyclic peptide antagonists suggests that N-cadherin specificity is determined by amino acids that flank the HAV motif. J. Biol. Chem. 275, 4007–4012 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Shintani, Y. et al. ADH-1 suppresses N-cadherin-dependent pancreatic cancer progression. Int. J. Cancer 122, 71–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Su, Y. et al. N-cadherin haploinsufficiency increases survival in a mouse model of pancreatic cancer. Oncogene 31, 4484–4489 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Augustine, C. K. et al. Targeting N-cadherin enhances antitumor activity of cytotoxic therapies in melanoma treatment. Cancer Res. 68, 3777–3784 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka, H. et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nature Med. 16, 1414–1420 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Albergaria, A. et al. P-cadherin role in normal breast development and cancer. Int. J. Dev. Biol. 55, 811–822 (2011).

    Article  PubMed  Google Scholar 

  27. Werling, A. M. et al. Homo- and heterotypic cell–cell contacts in Merkel cells and Merkel cell carcinomas: heterogeneity and indications for cadherin switching. Histopathology 58, 286–303 (2011).

    Article  PubMed  Google Scholar 

  28. Van Marck, V. et al. P-cadherin promotes cell–cell adhesion and counteracts invasion in human melanoma. Cancer Res. 65, 8774–8783 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Wheelock, M. J., Shintani, Y., Maeda, M., Fukumoto, Y. & Johnson, K. R. Cadherin switching. J. Cell Sci. 121, 727–735 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Bryan, R. T. & Tselepis, C. Cadherin switching and bladder cancer. J. Urol. 184, 423–431 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Jacobs, K., Feys, L., Vanhoecke, B., Van Marck, V. & Bracke, M. P-cadherin expression reduces melanoma growth, invasion, and responsiveness to growth factors in nude mice. Eur. J. Cancer Prev. 20, 207–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Vlahova, L. et al. P-cadherin expression in Merkel cell carcinomas is associated with prolonged recurrence-free survival. Br. J. Dermatol. 166, 1043–1052 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Van Marck, V., Stove, C., Jacobs, K., Van den Eynden, G. & Bracke, M. P-cadherin in adhesion and invasion: opposite roles in colon and bladder carcinoma. Int. J. Cancer 128, 1031–1044 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Hardy, R. G. et al. Aberrant P-cadherin expression is an early event in hyperplastic and dysplastic transformation in the colon. Gut 50, 513–519 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun, L. et al. P-cadherin promotes liver metastasis and is associated with poor prognosis in colon cancer. Am. J. Pathol. 179, 380–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ribeiro, A. S. et al. Extracellular cleavage and shedding of P-cadherin: a mechanism underlying the invasive behaviour of breast cancer cells. Oncogene 29, 392–402 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Cheung, L. W., Leung, P. C. & Wong, A. S. Cadherin switching and activation of p120 catenin signaling are mediators of gonadotropin-releasing hormone to promote tumor cell migration and invasion in ovarian cancer. Oncogene 29, 2427–2440 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Cheung, L. W. et al. P-cadherin cooperates with insulin-like growth factor-1 receptor to promote metastatic signaling of gonadotropin-releasing hormone in ovarian cancer via p120 catenin. Oncogene 30, 2964–2974 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Paredes, J. et al. Breast carcinomas that co-express E- and P-cadherin are associated with p120-catenin cytoplasmic localisation and poor patient survival. J. Clin. Pathol. 61, 856–862 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Ribeiro, A. S. et al. P-cadherin functional role is dependent on E-cadherin cellular context: a proof of concept using the breast cancer model. J. Pathol. 229, 705–718 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Thuault, S. et al. P-cadherin is a direct PAX3–FOXO1A target involved in alveolar rhabdomyosarcoma aggressiveness. Oncogene 32, 1876–1887 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Charrasse, S., Comunale, F., Gilbert, E., Delattre, O. & Gauthier-Rouviere, C. Variation in cadherins and catenins expression is linked to both proliferation and transformation of Rhabdomyosarcoma. Oncogene 23, 2420–2430 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Kucharczak, J. et al. R-Cadherin expression inhibits myogenesis and induces myoblast transformation via Rac1 GTPase. Cancer Res. 68, 6559–6568 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Agiostratidou, G. et al. Loss of retinal cadherin facilitates mammary tumor progression and metastasis. Cancer Res. 69, 5030–5038 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miotto, E. et al. Frequent aberrant methylation of the CDH4 gene-promoter in human colorectal and gastric cancer. Cancer Res. 64, 8156–8159 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Tomita, K. et al. Cadherin switching in human prostate cancer progression. Cancer Res. 60, 3650–3654 (2000).

    CAS  PubMed  Google Scholar 

  47. Chu, K. et al. Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol. Cancer Res. 6, 1259–1267 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tamura, D., Hiraga, T., Myoui, A., Yoshikawa, H. & Yoneda, T. Cadherin-11-mediated interactions with bone marrow stromal/osteoblastic cells support selective colonization of breast cancer cells in bone. Int. J. Oncol. 33, 17–24 (2008).

    CAS  PubMed  Google Scholar 

  49. Kaur, H. et al. Cadherin-11, a marker of the mesenchymal phenotype, regulates glioblastoma cell migration and survival in vivo. Mol. Cancer Res. 10, 293–304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakajima, G. et al. CDH11 expression is associated with survival in patients with osteosarcoma. Cancer Genom. Proteom. 5, 37–42 (2008).

    CAS  Google Scholar 

  51. Kashima, T. et al. Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int. J. Cancer 104, 147–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Carmona, F. J. et al. Epigenetic disruption of cadherin-11 in human cancer metastasis. J. Pathol. 228, 230–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, L. et al. The human cadherin 11 is a pro-apoptotic tumor suppressor modulating cell stemness through Wnt/β-catenin signaling and silenced in common carcinomas. Oncogene 31, 3901–3912 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Cavallaro, U., Liebner, S. & Dejana, E. Endothelial cadherins and tumor angiogenesis. Exp. Cell Res. 312, 659–667 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Lampugnani, M. G., Orsenigo, F., Gagliani, M. C., Tacchetti, C. & Dejana, E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol. 174, 593–604 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rudini, N. et al. VE-cadherin is a critical endothelial regulator of TGF-β signalling. EMBO J. 27, 993–1004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Giampietro, C. et al. Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells. Blood 119, 2159–2170 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Haidari, M. et al. Integrin α2β1 mediates tyrosine phosphorylation of vascular endothelial cadherin induced by invasive breast cancer cells. J. Biol. Chem. 287, 32981–32992 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hendrix, M. J., Seftor, E. A., Hess, A. R. & Seftor, R. E. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nature Rev. Cancer 3, 411–421 (2003).

    Article  CAS  Google Scholar 

  60. Labelle, M. et al. Vascular endothelial cadherin promotes breast cancer progression via transforming growth factor β signaling. Cancer Res. 68, 1388–1397 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Rezaei, M. et al. Interplay between neural-cadherin and vascular endothelial-cadherin in breast cancer progression. Breast Cancer Res. 14, R154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dusek, R. L. & Attardi, L. D. Desmosomes: new perpetrators in tumour suppression. Nature Rev. Cancer 11, 317–323 (2011).

    Article  CAS  Google Scholar 

  63. Brennan, D. & Mahoney, M. G. Increased expression of Dsg2 in malignant skin carcinomas: a tissue-microarray based study. Cell Adh. Migr. 3, 148–154 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Brennan, D. et al. Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. J. Cell Sci. 120, 758–771 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, Y. J. et al. DSG3 is overexpressed in head neck cancer and is a potential molecular target for inhibition of oncogenesis. Oncogene 26, 467–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Andreeva, A. V. & Kutuzov, M. A. Cadherin 13 in cancer. Genes Chromos. Cancer 49, 775–790 (2010).

    CAS  PubMed  Google Scholar 

  67. Kyriakakis, E. et al. T-cadherin is an auxiliary negative regulator of EGFR pathway activity in cutaneous squamous cell carcinoma: impact on cell motility. J. Invest. Dermatol. 132, 2275–2285 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Philippova, M. et al. T-cadherin loss promotes experimental metastasis of squamous cell carcinoma. Eur. J. Cancer 49, 2048–2058 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Thedieck, C. et al. Expression of Ksp-cadherin during kidney development and in renal cell carcinoma. Br. J. Cancer 92, 2010–2017 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cali, G. et al. CDH16/Ksp-cadherin is expressed in the developing thyroid gland and is strongly down-regulated in thyroid carcinomas. Endocrinology 153, 522–534 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, L. X. et al. Targeting cadherin-17 inactivates Wnt signaling and inhibits tumor growth in liver carcinoma. Hepatology 50, 1453–1463 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, J. et al. The predictive effect of cadherin-17 on lymph node micrometastasis in pN0 gastric cancer. Ann. Surg. Oncol. 19, 1529–1534 (2012).

    Article  PubMed  Google Scholar 

  73. Bartolome, R. A. et al. Cadherin-17 interacts with α2β1 integrin to regulate cell proliferation and adhesion in colorectal cancer cells causing liver metastasis. Oncogene http://dx.doi.org/1038/onc.2013.117 (2013).

  74. Wang, J. et al. Cadherin-17 induces tumorigenesis and lymphatic metastasis in gastric cancer through activation of NFκB signaling pathway. Cancer Biol. Ther. 14, 262–270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sano, K. et al. Protocadherins — a large family of cadherin-related molecules in central nervous system. EMBO J. 12, 2249–2256 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kahr, I., Vandepoele, K. & van Roy, F. Delta-protocadherins in health and disease. Prog. Mol. Biol. Transl Sci. 116, 169–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Hirayama, T. & Yagi, T. Clustered protocadherins and neuronal diversity. Prog. Mol. Biol. Transl Sci. 116, 145–167 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Tan, Y. P. et al. Regulation of protocadherin gene expression by multiple neuron-restrictive silencer elements scattered in the gene cluster. Nucleic Acids Res. 38, 4985–4997 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Majumder, S. REST in good times and bad: roles in tumor suppressor and oncogenic activities. Cell Cycle 5, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Huang, Z. & Bao, S. Ubiquitination and deubiquitination of REST and its roles in cancers. FEBS Lett. 586, 1602–1605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wagoner, M. P. et al. The transcription factor REST is lost in aggressive breast cancer. PLoS Genet. 6, e1000979 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Novak, P. et al. Agglomerative epigenetic aberrations are a common event in human breast cancer. Cancer Res. 68, 8616–8625 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Dallosso, A. R. et al. Frequent long-range epigenetic silencing of protocadherin gene clusters on chromosome 5q31 in Wilms' tumor. PLoS Genet. 5, e1000745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dallosso, A. R. et al. Long-range epigenetic silencing of chromosome 5q31 protocadherins is involved in early and late stages of colorectal tumorigenesis through modulation of oncogenic pathways. Oncogene 31, 4409–4419 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vincent, A. et al. Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin. Cancer Res. 17, 4341–4354 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Miyamoto, K. et al. Identification of 20 genes aberrantly methylated in human breast cancers. Int. J. Cancer 116, 407–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Waha, A. et al. Epigenetic silencing of the protocadherin family member PCDH-γ-A11 in astrocytomas. Neoplasia 7, 193–199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Neben, K. et al. Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res. 64, 3103–3111 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Imoto, I. et al. Frequent silencing of the candidate tumor suppressor PCDH20 by epigenetic mechanism in non-small-cell lung cancers. Cancer Res. 66, 4617–4626 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Yu, J. et al. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology 136, 640–651 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Haruki, S. et al. Frequent silencing of protocadherin 17, a candidate tumour suppressor for esophageal squamous cell carcinoma. Carcinogenesis 31, 1027–1036 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Narayan, G. et al. Promoter methylation-mediated inactivation of PCDH10 in acute lymphoblastic leukemia contributes to chemotherapy resistance. Genes Chromos. Cancer 50, 1043–1053 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, C. et al. Downregulation of PCDH9 predicts prognosis for patients with glioma. J. Clin. Neurosci. 19, 541–545 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Li, Z. et al. Role of PCDH10 and its hypermethylation in human gastric cancer. Biochim. Biophys. Acta 1823, 298–305 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Hu, X. et al. Protocadherin 17 acts as a tumour suppressor inducing tumour cell apoptosis and autophagy, and is frequently methylated in gastric and colorectal cancers. J. Pathol. 229, 62–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Suzuki, H. et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genet. 31, 141–149 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Leshchenko, V. V. et al. Genome-wide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma. Blood 116, 1025–1034 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Morris, M. R. et al. Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 30, 1390–1401 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. He, D. et al. Protocadherin8 is a functional tumor suppressor frequently inactivated by promoter methylation in nasopharyngeal carcinoma. Eur. J. Cancer Prev. 21, 569–575 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Narayan, G. et al. PCDH10 promoter hypermethylation is frequent in most histologic subtypes of mature lymphoid malignancies and occurs early in lymphomagenesis. Genes Chromos. Cancer 52, 1030–1041 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Narayan, G. et al. Protocadherin PCDH10, involved in tumor progression, is a frequent and early target of promoter hypermethylation in cervical cancer. Genes Chromos. Cancer 48, 983–992 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Ying, J. M. et al. Frequent epigenetic silencing of protocadherin 10 by methylation in multiple haematologic malignancies. Br. J. Haematol. 136, 829–832 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Cheung, H. H. et al. Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer. Br. J. Cancer 102, 419–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ying, J. et al. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene 25, 1070–1080 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Tang, X. et al. Protocadherin 10 is frequently downregulated by promoter methylation and functions as a tumor suppressor gene in non-small cell lung cancer. Cancer Biomark. 12, 11–19 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Bertrand, K. C. et al. PCDH10 is a candidate tumour suppressor gene in medulloblastoma. Childs Nerv. Syst. 27, 1243–1249 (2011).

    Article  PubMed  Google Scholar 

  108. Li, Y., Yang, Z. S., Song, J. J., Liu, Q. & Chen, J. B. Protocadherin-10 is involved in angiogenesis and methylation correlated with multiple myeloma. Int. J. Mol. Med. 29, 704–710 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang, Y., Liu, J., Li, X. & Li, J. C. PCDH17 gene promoter demethylation and cell cycle arrest by genistein in gastric cancer. Histol. Histopathol. 27, 217–224 (2012).

    PubMed  Google Scholar 

  110. Bamford, S. et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br. J. Cancer 91, 355–358 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  112. Yu, J. S. et al. PCDH8, the human homolog of PAPC, is a candidate tumor suppressor of breast cancer. Oncogene 27, 4657–4665 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, C. et al. Characterizing the role of PCDH9 in the regulation of glioma cell apoptosis and invasion. J. Mol. Neurosci. http://dx.doi.org/10.1007/s12031-013-0133-2 (2013).

  114. Chen, M. W. et al. The emergence of protocadherin-PC expression during the acquisition of apoptosis-resistance by prostate cancer cells. Oncogene 21, 7861–7871 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Terry, S. et al. Cross modulation between the androgen receptor axis and protocadherin-PC in mediating neuroendocrine transdifferentiation and therapeutic resistance of prostate cancer. Neoplasia 15, 761–772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Terry, S. et al. Protocadherin-PC promotes androgen-independent prostate cancer cell growth. Prostate 66, 1100–1113 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang, X. et al. A human- and male-specific protocadherin that acts through the wnt signaling pathway to induce neuroendocrine transdifferentiation of prostate cancer cells. Cancer Res. 65, 5263–5271 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, A. M. et al. Protocadherin-7 induces bone metastasis of breast cancer. Biochem. Biophys. Res. Commun. 436, 486–490 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Yasuda, S. et al. Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2β and p38 MAP kinases. Neuron 56, 456–471 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen, X. & Gumbiner, B. M. Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. J. Cell Biol. 174, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen, X., Koh, E., Yoder, M. & Gumbiner, B. M. A protocadherin–cadherin–FLRT3 complex controls cell adhesion and morphogenesis. PLoS ONE 4, e8411 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Biswas, S., Emond, M. R. & Jontes, J. D. Protocadherin-19 and N-cadherin interact to control cell movements during anterior neurulation. J. Cell Biol. 191, 1029–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nakao, S., Platek, A., Hirano, S. & Takeichi, M. Contact-dependent promotion of cell migration by the OL-protocadherin–Nap1 interaction. J. Cell Biol. 182, 395–410 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tai, K., Kubota, M., Shiono, K., Tokutsu, H. & Suzuki, S. T. Adhesion properties and retinofugal expression of chicken protocadherin-19. Brain Res. 1344, 13–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Hoshina, N. et al. Protocadherin 17 regulates presynaptic assembly in topographic corticobasal ganglia circuits. Neuron 78, 839–854 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Takenawa, T. & Suetsugu, S. The WASP–WAVE protein network: connecting the membrane to the cytoskeleton. Nature Rev. Mol. Cell. Biol. 8, 37–48 (2007).

    Article  CAS  Google Scholar 

  128. Kurisu, S. & Takenawa, T. WASP and WAVE family proteins: friends or foes in cancer invasion? Cancer Sci. 101, 2093–2104 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Brigidi, G. S. & Bamji, S. X. Cadherin–catenin adhesion complexes at the synapse. Curr. Opin. Neurobiol. 21, 208–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Morrow, E. M. et al. Identifying autism loci and genes by tracing recent shared ancestry. Science 321, 218–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tsai, N. P. et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 151, 1581–1594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bassermann, F., Eichner, R. & Pagano, M. The ubiquitin proteasome system — implications for cell cycle control and the targeted treatment of cancer. Biochim. Biophys. Acta 1843, 150–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Schaefer, A., Nethe, M. & Hordijk, P. L. Ubiquitin links to cytoskeletal dynamics, cell adhesion and migration. Biochem. J. 442, 13–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Sadeqzadeh, E., de Bock, C. E. & Thorne, R. F. Sleeping giants: emerging roles for the Fat cadherins in health and disease. Med. Res. Rev. 34, 190–221 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Morris, L. G. et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nature Genet. 45, 253–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Qi, C., Zhu, Y. T., Hu, L. & Zhu, Y. J. Identification of Fat4 as a candidate tumor suppressor gene in breast cancers. Int. J. Cancer 124, 793–798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. El-Amraoui, A. & Petit, C. Cadherin defects in inherited human diseases. Prog. Mol. Biol. Transl Sci. 116, 361–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Apostolopoulou, M. & Ligon, L. Cadherin-23 mediates heterotypic cell-cell adhesion between breast cancer epithelial cells and fibroblasts. PLoS ONE 7, e33289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hinkel, I. et al. Cdx2 controls expression of the protocadherin Mucdhl, an inhibitor of growth and beta-catenin activity in colon cancer cells. Gastroenterology 142, 875–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Rodriguez, F. J., Lewis-Tuffin, L. J. & Anastasiadis, P. Z. E-cadherin's dark side: possible role in tumor progression. Biochim. Biophys. Acta 1826, 23–31 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Oliveira, C., Pinheiro, H., Figueiredo, J., Seruca, R. & Carneiro, F. E-cadherin alterations in hereditary disorders with emphasis on hereditary diffuse gastric cancer. Prog. Mol. Biol. Transl Sci. 116, 337–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. de Tayrac, M. et al. Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression. Genes Chromos. Cancer 48, 55–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Yu, B. et al. High-resolution melting analysis of PCDH10 methylation levels in gastric, colorectal and pancreatic cancers. Neoplasma 57, 247–252 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Li, Z. et al. Epigenetic inactivation of PCDH10 in human prostate cancer cell lines. Cell Biol. Int. 35, 671–676 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Kumar, A. et al. Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc. Natl Acad. Sci. USA 108, 17087–17092 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank A. Bredan for critical reading and editing of the manuscript, and his colleagues for helpful discussions. Research in the author's laboratory is supported by the Research Foundation — Flanders (FWO-Vlaanderen), the Foundation against Cancer (StK), Belgium, the Concerted Research Actions (GOA) of Ghent University, Belgium, and by the Belgian Science Policy (Interuniversity Attraction Pools — IAP7/07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans van Roy.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

PowerPoint slides

Glossary

7D cadherins

(Seven-domain cadherins). A small cadherin family with two members (cadherin 16 (CDH16) and CDH17), each of which comprises seven extracellular cadherin repeats and a short cytoplasmic domain that is unable to bind to armadillo proteins.

Armadillo proteins

Proteins that contain tandem repeats of the armadillo domain. The first member of this family to be discovered was the Drosophila melanogaster protein armadillo — a homologue of many mammalian proteins, including β-catenin and p120-catenin, both of which bind to specific motifs in the cytoplasmic domains of classical cadherins.

Basal, suprabasal and simple epithelia

Epithelia occur as sheets of one layer thickness (simple epithelia) or as multiple layers (stratified epithelia), in which the basal layer rests on the basement membrane and is proliferative, whereas the suprabasal layers rest on the basal layer or on each other and undergo terminal differentiation.

Cell–cell adhesion mode

Adhesion can occur between cells of the same type (homotypic) or of different types (heterotypic); both binding modes can occur via molecules of the same type (homophilic) or of different types (heterophilic).

Classical cadherin

A member of a family of cadherins that comprises single-pass transmembrane proteins, which are characterized by tandem repeats of extracellular cadherin-specific domains, and by intracellular domains with two highly conserved binding sites for armadillo proteins, p120-catenin and β-catenin.

Desmosomes

Spot-like junction types, which tether the intermediate filament cytoskeleton to the plasma membrane and provide strong force-resistant mechanical properties to particular tissues such as epidermis and heart muscle. The intercellular adhesion in desmosomes is mediated by desmosomal cadherins.

Epithelial-to-mesenchymal transition

(EMT). A complex biological process in which genetic and epigenetic events lead to epithelial cells acquiring a mesenchymal gene activity signature and phenotype, which are often concomitant with increased cell migration. The process occurs in normal morphogenetic processes and in pathological situations.

GPI anchor

(Glycosylphosphatidylinositol anchor). A glycolipid that can be attached by posttranslational modification to the carboxyl terminus of particular extracellular proteins; this structure anchors those proteins to the exterior leaflet of the apical plasma membrane.

Morphogenesis

Used in this article to indicate that a particular cadherin is causally involved in processes of formation and organization of ordered tissues and organs. Morphogenesis implicates spatially and temporally regulated dynamical interactions of cells with their environment (or microenvironment), including neighbouring cells. The molecular mechanisms of cadherin-mediated morphogenesis are complex and partly unresolved.

Type I cadherins

Classical cadherins that are characterized by a relatively short ectodomain containing five extracellular cadherin repeats the elongated structure of which is stabilized by calcium ion binding; the most representative member is cadherin 1 (CDH1; also known as epithelial cadherin (E-cadherin)).

Type II cadherins

Classical cadherins that phylogenetically form a distinct branch from the type I cadherins. Compared to type I cadherins, their more deviating structure also results in more distant functions.

Vasculogenic mimicry

A mechanism of a plastic phenotypic change in aggressive cancer cells. It results in de novo formation of vascular networks by tumour cells, which thereby contribute to perfusion of rapidly growing tumours.

WAVE complex

Multiprotein complex consisting of five proteins, including a member of the Wiskott–Aldrich syndrome protein (WASP) family and NCK-associated protein 1 (NAP1). Various WAVE complexes function as scaffolds for numerous regulatory proteins that synergistically regulate the actin cytoskeleton and the plasma membrane shape and thus mediate outward cell protrusions and intracellular vesicular trafficking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Roy, F. Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nat Rev Cancer 14, 121–134 (2014). https://doi.org/10.1038/nrc3647

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3647

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer