Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The role of engineering approaches in analysing cancer invasion and metastasis

Abstract

In the past decade, novel materials, probes and tools have enabled fundamental and applied cancer researchers to take a fresh look at the complex problem of tumour invasion and metastasis. These new tools, which include imaging modalities, controlled but complex in vitro culture conditions, and the ability to model and predict complex processes in vivo, represent an integration of traditional with novel engineering approaches; and their potential effect on quantitatively understanding tumour progression and invasion looks promising.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanobiology at various lengthscales.
Figure 2: Multiscale modelling.

Similar content being viewed by others

References

  1. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1, 571–573 (1889).

    Article  Google Scholar 

  2. Mukherjee, S. The Emperor of All Maladies: A Biography of Cancer. (Scribner, 2010).

    Google Scholar 

  3. Abercrombie, M. Contact inhibition and malignancy. Nature 281, 259–262 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Abercrombie, M., Dunn, G. A. & Heath, J. P. The shape and movement of fibroblasts in culture. Soc. Gen. Physiol. Ser. 32, 57–70 (1977).

    CAS  PubMed  Google Scholar 

  5. Abercrombie, M., Heaysman, J. E. & Pegrum, S. M. The locomotion of fibroblasts in culture. II. “Ruffling”. Exp.Cell Res. 60, 437–444 (1970).

    Article  CAS  PubMed  Google Scholar 

  6. Abercrombie, M., Heaysman, J. E. & Pegrum, S. M. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp.Cell Res. 59, 393–398 (1970).

    Article  CAS  PubMed  Google Scholar 

  7. Easty, G. C., Easty, D. M. & Ambrose, E. J. Studies of cellular adhesiveness. Exp. Cell Res. 19, 539–548 (1960).

    Article  CAS  PubMed  Google Scholar 

  8. Fessler, J. H. A structural function of mucopolysaccharide in connective tissue. Biochem. J. 76, 124–132 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weiss, S. Guiding principles in cell locomotion. Exp. Cell Res. 6, 260–275 (1961).

    Article  Google Scholar 

  10. DeHaan, R. L. Migration patterns of the precardiac mesoderm in the early chick embryo. Exp.Cell Res. 29, 544–560 (1963).

    Article  CAS  PubMed  Google Scholar 

  11. Vaughan, R. B. & Trinkaus, J. P. Movements of epithelial cell sheets in vitro. J. Cell Sci. 1, 407–413 (1966).

    CAS  PubMed  Google Scholar 

  12. Beato, M., Brandle, W., Biesewig, D. & Sekeris, C. E. On the mechanism of hormone action. XVI. Transfer of (1,2-3H2)cortisol from the cytoplasm to the nucleus of rat-liver cells. Biochim.Biophys. Acta 208, 125–136 (1970).

    Article  CAS  PubMed  Google Scholar 

  13. Dye, F. J. The in vitro movement of mammalian epithelial cells. Oncology 25, 79–82 (1971).

    Article  CAS  PubMed  Google Scholar 

  14. Trinkaus, J. P., Betchaku, T. & Krulikowski, L. S. Local inhibition of ruffling during contact inhibition of cell movement. Exp.Cell Res. 64, 291–300 (1971).

    Article  CAS  PubMed  Google Scholar 

  15. Trinkaus, J. P. Modes of cell locomotion in vivo. Ciba Found. Symp. 14, 233–249 (1973).

    CAS  PubMed  Google Scholar 

  16. Zigmond, S. H. & Hirsch, J. G. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J. Exp. Med. 137, 387–410 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Easty, D. M. & Easty, G. C. Measurement of the ability of cells to infiltrate normal tissues in vitro. Br. J. Cancer 29, 36–48 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Norberg, B., Rydgren, L. & Stenstam, M. Amoeboid movement configuration. A cell configuration observed in tumour cells from 3 cases of bone marrow neoplasia. Scand. J. Haematol. 13, 294–304 (1974).

    Article  CAS  PubMed  Google Scholar 

  19. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular-matrix direct gene-expression. J. Theor. Biol. 99, 31–68 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Zaman, M. H. et al. Migration of tumour cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA 103, 10889–10894 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fraley, S. I., Feng, Y., Giri, A., Longmore, G. D. & Wirtz, D. Dimensional and temporal controls of three-dimensional cell migration by zyxin and binding partners. Nature Commun. 3, 719 (2012).

    Article  CAS  Google Scholar 

  22. Schor, S. L. Cell proliferation and migration on collagen substrata in vitro. J. Cell Sci. 41, 159–175 (1980).

    CAS  PubMed  Google Scholar 

  23. Harris, A. K. Jr. Tissue culture cells on deformable substrata: biomechanical implications. J. Biomech. Eng. 106, 19–24 (1984).

    Article  PubMed  Google Scholar 

  24. Couchman, J. R., Lenn, M. & Rees, D. A. Coupling of cytoskeleton functions for fibroblast locomotion. Eur. J. Cell Biol. 36, 182–194 (1985).

    CAS  PubMed  Google Scholar 

  25. Dunn, G. A. & Brown, A. F. A unified approach to analysing cell motility. J. Cell Sci. Suppl. 8, 81–102 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Tranquillo, R. T. & Lauffenburger, D. A. Stochastic model of leukocyte chemosensory movement. J. Math. Biol. 25, 229–262 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Felder, S. & Elson, J. F. Mechanics of fibroblast locomotion: quantitative analysis of forces and motions at the leading lamellas of fibroblasts. J. Cell Biol. 111, 2513–2526 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Stokes, C. L., Lauffenburger, D. A. & Williams, S. K. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci. 99, 419–430 (1991).

    PubMed  Google Scholar 

  29. Dickinson, R. B., McCarthy, J. B. & Tranquillo, R. T. Quantitative characterization of cell invasion in vitro: formulation and validation of a mathematical model of the collagen gel invasion assay. Ann. Biomed. Eng. 21, 679–697 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Jay, P. Y., Pasternak, C. & Elson, E. L. Studies of mechanical aspects of amoeboid locomotion. Blood Cells 19, 375–386 (1993).

    CAS  PubMed  Google Scholar 

  31. Smolle, J. & Stettner, H. Computer simulation of tumour cell invasion by a stochastic growth model. J. Theor. Biol. 160, 63–72 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Hofmann-Wellenhof, R. et al. Quantitative assessment of melanoma single-cell motility in vitro. Exp. Dermatol. 3, 219–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Radosevic, K. et al. Changes in actin organization during the cytotoxic process. Cytometry 15, 320–326 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Hofmann-Wellenhof, R. et al. Correlation of melanoma cell motility and invasion in vitro. Melanoma Res. 5, 311–319 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Oliver, T., Dembo, M. & Jacobson, K. Traction forces in locomoting cells [see comments]. Cell Motil. Cytoskeleton 31, 225–240 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Eastwood, M., Porter, R., Khan, U., McGrouther, G. & Brown, R. Quantitative analysis of collagen gel contractile forces generated by dermal fibroblasts and the relationship to cell morphology. J. Cell. Physiol. 166, 33–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. DiMilla, P. A., Barbee, K. & Lauffenburger, D. A. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 60, 15–37 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hammer, D. A. & Lauffenburger, D. A. A dynamical model for receptor-mediated cell adhesion to surfaces. Biophys. J. 52, 475–487 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tranquillo, R. T., Lauffenburger, D. A. & Zigmond, S. H. A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J. Cell Biol. 106, 303–309 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt, C. E., Chen, T. & Lauffenburger, D. A. Simulation of integrin-cytoskeletal interactions in migrating fibroblasts. Biophys. J. 67, 461–474 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lauffenburger, D. A. Making connections count. Nature 383, 390–391 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. & Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537–540 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Lauffenburger, D. A., Oehrtman, G. T., Walker, L. & Wiley, H. S. Real-time quantitative measurement of autocrine ligand binding indicates that autocrine loops are spatially localized. Proc. Natl Acad. Sci. USA. 95, 15368–15373 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jones, J. I., Doerr, M. E. & Clemmons, D. R. Cell migration: interactions among integrins, IGFs and IGFBPs. Prog. Growth Factor Res. 6, 319–327 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Akiyama, S. K. Integrins in cell adhesion and signalling. Hum. Cell 9, 181–186 (1996).

    CAS  PubMed  Google Scholar 

  46. Ruoslahti, E. Integrin signalling and matrix assembly. Tumour Biol. 17, 117–124 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Cohen, M. B., Griebling, T. L., Ahaghotu, C. A., Rokhlin, O. W. & Ross, J. S. Cellular adhesion molecules in urologic malignancies. Am. J. Clin. Pathol. 107, 56–63 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Noble, P. B. Extracellular matrix and cell migration: locomotory characteristics of MOS-11 cells within a three-dimensional hydrated collagen lattice. J. Cell Sci. 87, 241–248 (1987).

    PubMed  Google Scholar 

  49. Christensen, L. The distribution of fibronectin, laminin and tetranectin in human breast cancer with special attention to the extracellular matrix. APMIS Suppl. 26, 1–39 (1992).

    CAS  PubMed  Google Scholar 

  50. Le Querrec, A., Duval, D. & Tobelem, G. Tumour angiogenesis. Baillieres Clin. Haematol. 6, 711–730 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Opdenakker, G. On the roles of extracellular matrix remodeling by gelatinase B. Verh. K. Acad. Geneeskd. Belg. 59, 489–514 (1997).

    CAS  PubMed  Google Scholar 

  52. Halbhuber, K. J. & Konig, K. Modern laser scanning microscopy in biology, biotechnology and medicine. Ann. Anat. 185, 1–20 (2003).

    Article  PubMed  Google Scholar 

  53. Friedl, P., Noble, P. B. & Zanker, K. S. Lymphocyte locomotion in three-dimensional collagen gels. Comparison of three quantitative methods for analysing cell trajectories. J. Immunol.Methods 165, 157–165 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Friedlander, D. R. et al. Migration of brain tumour cells on extracellular matrix proteins in vitro correlates with tumour type and grade and involves αV and β1 integrins. Cancer Res. 56, 1939–1947 (1996).

    CAS  PubMed  Google Scholar 

  55. Friedl, P. & Bröcker, E.-B. Cancer Cell Interactions with the Extracellular Matrix Involved in Tissue Invasion: Motility Mechanisms Beyond the Single Cell Paradigm. (eds Heine, H. & Rimpler, M.) 7–18 (Gustav Fischer, 1997).

    Google Scholar 

  56. Friedl, P. & Brocker, E. B. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life. Sci. 57, 41–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Wolf, K. et al. Compensation mechanism in tumour cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bloom, R. J., George, J. P., Celedon, A., Sun, S. X. & Wirtz, D. Mapping local matrix remodeling induced by a migrating tumour cell using three-dimensional multiple-particle tracking. Biophys. J. 95, 4077–4088 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Khatau, S. B. et al. The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci. Rep. 2, 488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Friedl, P. & Wolf, K. Proteolytic and non-proteolytic migration in tumour cells and leukocytes. Biochem. Soc. Symp. 70, 277–285 (2003).

    Article  CAS  Google Scholar 

  61. Wolf, K. & Friedl, P. Functional imaging of pericellular proteolysis in cancer invasion. Biochimie 77, 815–820 (2005).

    Google Scholar 

  62. Harjanto, D., Maffei, J. S. & Zaman, M. H. Quantitative analysis of the effect of cancer invasiveness and collagen concentration on 3D matrix remodeling. PLoS ONE 6, e24891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harjanto, D. & Zaman, M. H. Computational study of proteolysis-driven single cell migration in a three-dimensional matrix. Ann. Biomed. Eng. 38, 1815–1825 (2010).

    Article  PubMed  Google Scholar 

  64. Harjanto, D. & Zaman, M. H. Modelling extracellular matrix reorganization in 3D environments. PLoS ONE 8, e52509 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alexander, S. & Friedl, P. Cancer invasion and resistance: interconnected processes of disease progression and therapy failure. Trends Mol. Med. 18, 13–26 (2012).

    Article  PubMed  Google Scholar 

  66. Weigelin, B., Bakker, G.-J. & Friedl, P. Intravital third harmonic generation microscopy of collective melanoma cell invasion: principles of interface guidance and microvesicle dynamics. Intravital 1, 32–43 (2012).

    Article  PubMed  Google Scholar 

  67. Entenberg, D. et al. Imaging tumour cell movement in vivo. Curr. Protoc. Cell Biol. 19, Unit 19.7 (2013).

  68. Dovas, A., Patsialou, A., Harney, A. S., Condeelis, J. & Cox, D. Imaging interactions between macrophages and tumour cells that are involved in metastasis in vivo and in vitro. J. Microsc. http://dx.doi.org/10.1111/j.1365-2818.2012.03667.x (2012).

  69. Roussos, E. T., Condeelis, J. S. & Patsialou, A. Chemotaxis in cancer. Nature Rev. Cancer 11, 573–587 (2011).

    Article  CAS  Google Scholar 

  70. Kedrin, D., Wyckoff, J., Sahai, E., Condeelis, J. & Segall, J. E. Imaging tumour cell movement in vivo. Curr. Protoc. Cell Biol. 19, Unit 19.7 (2007).

  71. Sharma, S. et al. Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells. Nanomedicine 8, 757–766 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Levental, K. R. et al. Matrix crosslinking forces tumour progression by enhancing integrin signalling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Samuel, M. S. et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumour growth. Cancer Cell 19, 776–791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gupton, S. L. & Waterman-Storer, C. M. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125, 1361–1374 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. de Rooij, J., Kerstens, A., Danuser, G., Schwartz, M. A. & Waterman-Storer, C. M. Integrin-dependent actomyosin contraction regulates epithelial cell scattering. J. Cell Biol. 171, 153–164 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Maruthamuthu, V., Sabass, B., Schwarz, U. S. & Gardel, M. L. Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc. Natl Acad. Sci. USA 108, 4708–4713 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Stricker, J., Sabass, B., Schwarz, U. S. & Gardel, M. L. Optimization of traction force microscopy for micron-sized focal adhesions. J. Phys. Condens. Matter 22, 194104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nature Mater. 10, 469–475 (2011).

    Article  CAS  Google Scholar 

  79. Welch, C. M., Elliott, H., Danuser, G. & Hahn, K. M. Imaging the coordination of multiple signalling activities in living cells. Nature Rev. Mol. Cell Biol. 12, 749–756 (2011).

    Article  CAS  Google Scholar 

  80. Fairbanks, B. D. et al. Versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 21, 5005–5010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schwartz, M. P. et al. A synthetic strategy for mimicking the extracellular matrix provides new insight about tumour cell migration. Integr. Biol. 2, 32–40 (2010).

    Article  CAS  Google Scholar 

  82. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Raeber, G. P., Lutolf, M. P. & Hubbell, J. A. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys. J. 89, 1374–1388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Na, K., Park, K. H., Kim, S. W. & Bae, Y. H. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anticancer drug release and interaction with a hepatoma cell line (HepG2). J. Control Release 69, 225–236 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Fischbach, C. et al. Engineering tumours with 3D scaffolds. Nature Methods 4, 855–860 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Ghosh, G., Yan, X., Lee, A. G., Kron, S. J. & Palecek, S. P. Quantifying the sensitivities of EGF receptor (EGFR) tyrosine kinase inhibitors in drug resistant non-small cell lung cancer (NSCLC) cells using hydrogel-based peptide array. Biosens. Bioelectron. 26, 424–431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Seo, S. H., Han, H. D., Noh, K. H., Kim, T. W. & Son, S. W. Chitosan hydrogel containing GMCSF and a cancer drug exerts synergistic antitumor effects via the induction of CD8+ T cell-mediated antitumor immunity. Clin. Exp. Metastasis 26, 179–187 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Raja, W. K., Gligorijevic, B., Wyckoff, J., Condeelis, J. S. & Castracane, J. A new chemotaxis device for cell migration studies. Integr. Biol. 2, 696–706 (2010).

    Article  CAS  Google Scholar 

  89. Steffel, J. et al. Migration and differentiation of myogenic precursors following transplantation into the developing rat brain. Stem Cells 21, 181–189 (2003).

    Article  PubMed  Google Scholar 

  90. Xu, X. et al. Recreating the tumour microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids. Biomaterials 33, 9049–9060 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Munson, J. M., Bellamkonda, R. V. & Swartz, M. A. Interstitial flow in a 3D microenvironment increases glioma invasion by a CXCR4-dependent mechanism. Cancer Res. 73, 1536–1546 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Shieh, A. C. & Swartz, M. A. Regulation of tumour invasion by interstitial fluid flow. Phys. Biol. 8, 015012 (2011).

    Article  PubMed  Google Scholar 

  93. Shields, J. D. et al. Autologous chemotaxis as a mechanism of tumour cell homing to lymphatics via interstitial flow and autocrine CCR7 signalling. Cancer Cell 11, 526–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Polacheck, W. J., Charest, J. L. & Kamm, R. D. Interstitial flow influences direction of tumour cell migration through competing mechanisms. Proc. Natl Acad. Sci. USA 108, 11115–11120 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ingram, M. et al. Three-dimensional growth patterns of various human tumour cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell. Dev. Biol. Anim. 33, 459–466 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Frye, C., Patrick, C. W. Jr. Three-dimensional adipose tissue model using low shear bioreactors. In Vitro Cell. Dev. Biol. Anim. 42, 109–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Schumann, D., Ekaputra, A. K., Lam, C. X. & Hutmacher, D. W. Biomaterials/scaffolds. Design of bioactive, multiphasic PCL/collagen type I and type II-PCL-TCP/collagen composite scaffolds for functional tissue engineering of osteochondral repair tissue by using electrospinning and FDM techniques. Methods Mol. Med. 140, 101–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Lopez, J. I., Mouw, J. K. & Weaver, V. M. Biomechanical regulation of cell orientation and fate. Oncogene 27, 6981–6993 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yates, C. et al. Novel three-dimensional organotypic liver bioreactor to directly visualize early events in metastatic progression. Adv. Cancer Res. 97, 225–246 (2007).

    Article  PubMed  Google Scholar 

  100. Krishnan, V. et al. Dynamic interaction between breast cancer cells and osteoblastic tissue: comparison of two- and three-dimensional cultures. J. Cell. Physiol. 226, 2150–2158 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Dhurjati, R., Krishnan, V., Shuman, L. A., Mastro, A. M. & Vogler, E. A. Metastatic breast cancer cells colonize and degrade three-dimensional osteoblastic tissue in vitro. Clin. Exp. Metastasis 25, 741–752 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nature Rev. Mol. Cell Biol. 7, 211–224 (2006).

    Article  CAS  Google Scholar 

  103. Tran, T. H., Nguyen, C. T., Kim, D. P., Lee, Y. K. & Huh, K. M. Microfluidic approach for highly efficient synthesis of heparin-based bioconjugates for drug delivery. Lab Chip 12, 589–594 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Yu, Z. T. et al. Integrated microfluidic devices for combinatorial cell-based assays. Biomed. Microdevices 11, 547–555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. El-Ali, J., Sorger, P. K. & Jensen, K. F. Cells on chips. Nature 442, 403–411 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Jeon, J. S., Zervantonakis, I. K., Chung, S., Kamm, R. D. & Charest, J. L. In vitro model of tumour cell extravasation. PLoS ONE 8, e56910 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Funamoto, K. et al. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Lab Chip 12, 4855–4863 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Loessner, D. et al. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31, 8494–8506 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Reichert, J. C., Quent, V. M., Burke, L. J., Stansfield, S. H. Clements, J. A. & Hutmacher, D. W. Mineralized human primary osteoblast matrices as a model system to analyse interactions of prostate cancer cells with the bone microenvironment. Biomaterials 31, 7928–7936 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Even-Ram, S. & Yamada, K. M. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17, 524–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Yamada, K. M. & Cukierman, E. Modelling tissue morphogenesis and cancer in 3D. Cell 130, 601–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nature Rev. Cancer 11, 512–522 (2011).

    Article  CAS  Google Scholar 

  113. Makale, M. Cellular mechanobiology and cancer metastasis. Birth Defects Res. C Embryo Today 81, 329–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Carey, S. P., D'Alfonso, T. M., Shin, S. J. & Reinhart-King, C. A. Mechanobiology of tumour invasion: engineering meets oncology. Crit. Rev. Oncol. Haematol. 83, 170–183 (2012).

    Article  Google Scholar 

  115. Ulrich, T. A., Jain, A., Tanner, K., MacKay, J. L. & Kumar, S. Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. Biomaterials 31, 1875–1884 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Anderson, A. R., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumour morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nature Rev. Cancer 9, 108–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Tseng, Y., Kole, T. P. & Wirtz, D. Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys. J. 83, 3162–3176 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kole, T. P., Tseng, Y. & Wirtz, D. Intracellular microrheology as a tool for the measurement of the local mechanical properties of live cells. Methods Cell Biol. 78, 45–64 (2004).

    Article  PubMed  Google Scholar 

  120. Kole, T. P., Tseng, Y., Jiang, I., Katz, J. L. & Wirtz, D. Intracellular mechanics of migrating fibroblasts. Mol. Biol. Cell 16, 328–338 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Trepat, X. et al. Physical forces during collective cell migration. Nature Physics 5, 426–430 (2009).

    Article  CAS  Google Scholar 

  122. Baker, E. L., Lu, J., Yu, D., Bonnecaze, R. T. & Zaman, M. H. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys J. 99, 2048–2057 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baker, E. L., Bonnecaze, R. T. & Zaman, M. H. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys. J. 97, 1013–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Remmerbach, T. W. et al. Oral cancer diagnosis by mechanical phenotyping. Cancer Res. 69, 1728–1732 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Goguen, B. N., Hoffman, B. D., Sellers, J. R., Schwartz, M. A. & Imperiali, B. Light-triggered myosin activation for probing dynamic cellular processes. Angew. Chem. Int. Ed Engl. 50, 5667–5670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nieto, N. & Lutolf, M. P. Extracellular matrix bioengineering and systems biology approaches in liver disease. Syst. Synth. Biol. 5, 11–20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Ryan, J. J. et al. A systems biology approach to invasive behaviour: comparing cancer metastasis and suburban sprawl development. BMC Res. Notes 3, 36 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kreeger, P. K. & Lauffenburger, D. A. Cancer systems biology: a network modelling perspective. Carcinogenesis 31, 2–8 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. da Silva, V. B. et al. Molecular dynamics, density functional, ADMET predictions, virtual screening, and molecular interaction field studies for identification and evaluation of novel potential CDK2 inhibitors in cancer therapy. J. Phys. Chem. A 112, 8902–8910 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Gough, C. A., Gojobori, T. & Imanishi, T. Cancer-related mutations in BRCA1-BRCT cause long-range structural changes in protein-protein binding sites: a molecular dynamics study. Proteins 66, 69–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Zhao, Y., Lou, I. C. & Conolly, R. B. Computational modelling of signalling pathways mediating cell cycle checkpoint control and apoptotic responses to ionizing radiation-induced DNA damage. Dose Response 10, 251–273 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Huang, S. S. & Fraenkel, E. Integrating proteomic, transcriptional, and interactome data reveals hidden components of signalling and regulatory networks. Sci. Signal. 2, ra40 (2009).

    PubMed  PubMed Central  Google Scholar 

  136. Blair, R. H., Trichler, D. L. & Gaille, D. P. Mathematical and statistical modelling in cancer systems biology. Front. Physiol. 3, 227 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Materi, W. & Wishart, D. S. Computational systems biology in cancer: modelling methods and applications. Gene Regul. Syst. Bio. 1, 91–110 (2007).

    PubMed  PubMed Central  Google Scholar 

  138. Adams, L. G. et al. Multi-comparative systems biology analysis reveals time course biosignatures of in vivo bovine pathway responses to B.melitensis, S.enterica Typhimurium and M.avium paratuberculosis. BMC Proc. 5, S6 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Heiser, L. M. et al. Integrated analysis of breast cancer cell lines reveals unique signalling pathways. Genome Biol. 10, R31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ergun, A., Lawrence, C. A., Kohanski, M. A., Brennan, T. A. & Collins, J. J. A network biology approach to prostate cancer. Mol. Syst. Biol. 3, 82 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chakrabarti, A., Verbridge, S., Stroock, A. D., Fischbach, C. & Varner, J. D. Multiscale models of breast cancer progression. Ann. Biomed. Eng. 40, 2488–2500 (2012).

    Article  PubMed  Google Scholar 

  142. Suarez, C., Maglietti, F., Colonna, M., Breitburd, K. & Marshall, G. Mathematical modelling of human glioma growth based on brain topological structures: study of two clinical cases. PLoS ONE 7, e39616 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Andasari, V., Gerisch, A., Lolas, G., South, A. P. & Chaplain, M. A. Mathematical modelling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol. 63, 141–171 (2011).

    Article  PubMed  Google Scholar 

  144. Sanga, S. et al. Predictive oncology: a review of multidisciplinary, multiscale in silico modelling linking phenotype, morphology and growth. Neuroimage 37, S120–S134 (2007).

    Article  PubMed  Google Scholar 

  145. Sakamoto, Y., Prudhomme, S. & Zaman, M. H. Modelling of adhesion, protrusion, and contraction coordination for cell migration simulations. J. Math. Biol. http://dx.doi.org/10.1007/s00285-012-0634-6 (2012).

  146. Zaman, M. H., Kamm, R. D., Matsudaira, P. & Lauffenburger, D. A. Computational model for cell migration in three-dimensional matrices. Biophys. J. 89, 1389–1397 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lepzelter, D., Bates, O. & Zaman, M. Integrin clustering in two and three dimensions. Langmuir 28, 5379–5386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sakamoto, Y., Prudhomme, S. & Zaman, M. H. Viscoelastic gel-strip model for the simulation of migrating cells. Ann. Biomed. Eng. 39, 2735–2749 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Zaman, M. H. A multiscale probabilisitic framework to model early steps in tumour metastasis. Mol. Cell Biomech. 4, 133–141 (2007).

    PubMed  Google Scholar 

  150. Zaman, M. H., Matsudaira, P. & Lauffenburger, D. A. Understanding effects of matrix protease and matrix organization on directional persistence and translational speed in three-dimensional cell migration. Ann. Biomed. Eng. 35, 91–100 (2007).

    Article  PubMed  Google Scholar 

  151. Anderson, A. R. et al. Microenvironmental independence associated with tumour progression. Cancer Res. 69, 8797–8806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ramis-Conde, I., Chaplain, M. A., Anderson, A. R. & Drasdo, D. Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys. Biol. 6, 16008 (2009).

    Article  Google Scholar 

  153. McDougall, S. R., Anderson, A. R., Chaplain, M. A. & Sherratt, J. A. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Chaplain, M. A. & Anderson, A. R. Mathematical modelling, simulation and prediction of tumour-induced angiogenesis. Invasion Metastasis 16, 222–234 (1996).

    CAS  PubMed  Google Scholar 

  155. Macklin, P., Edgerton, M. E., Thompson, A. M. & Cristini, V. Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): from microscopic measurements to macroscopic predictions of clinical progression. J. Theor. Biol. 301, 122–140 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Edgerton, M. E. et al. A novel, patient-specific mathematical pathology approach for assessment of surgical volume: application to ductal carcinoma in situ of the breast. Anal. Cell Pathol. 34, 247–263 (2011).

    Article  Google Scholar 

  157. Pham, K., Frieboes, H. B., Cristini, V. & Lowengrub, J. Predictions of tumour morphological stability and evaluation against experimental observations. J. R. Soc. Interface 8, 16–29 (2011).

    Article  PubMed  Google Scholar 

  158. Frieboes, H. B. et al. Three-dimensional multispecies nonlinear tumour growth-II: tumour invasion and angiogenesis. J. Theor. Biol. 264, 1254–1278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mukherjee, A. & Majumder, D. Mathematical modelling for the assessment of the effect of drug application delays in metronomic chemotherapy of cancer due to physiological constraints. Biosystems 91, 108–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Frieboes, H. B. et al. Prediction of drug response in breast cancer using integrative experimental/computational modelling. Cancer Res. 69, 4484–4492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cristini, V. et al. Morphologic instability and cancer invasion. Clin. Cancer Res. 11, 6772–6779 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Jemal, A., Center, M. M., DeSantis, C. & Ward, E. M. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol. Biomarkers Prev. 19, 1893–1907 (2010).

    Article  PubMed  Google Scholar 

  163. Are, C. et al. A review of global cancer burden: trends, challenges, strategies, and a role for surgeons. J. Surg. Oncol. 107, 221–226 (2013).

    Article  PubMed  Google Scholar 

  164. Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127, 2893–2917 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  166. Coughlin, S. S. & Ekwueme, D. U. Breast cancer as a global health concern. Cancer Epidemiol. 33, 315–318 (2009).

    Article  PubMed  Google Scholar 

  167. Coleman, M. P. et al. Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol. 9, 730–756 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge US National Institutes of Health (NIH) Grant 1U01CA177799-01 and National Science Foundation Grant 1206635 for generous support. Also, feedback from M. Schwartz on key references is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad H. Zaman.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Continuum biomechanics

The branch of mechanical and biomedical engineering that deals with the mechanical behaviour of biological materials and biological fluids as a continuum rather than as a collection of discrete particles. The assumptions of continuum biomechanics break down when the length-scale approaches the micron and submicron levels.

Microfluidic systems

These small 'plumbing' systems deal with the accurate control and manipulation of fluids that are confined to micron-sized environments. This enables the supply of nutrients, oxygen and the flow of media to be precisely controlled.

Quantum mechanics

A branch of physics that deals with the physical behaviour of matter and its interaction with energy at the microscopic (atomic and subatomic) scale.

Self-assembling peptides

The class of peptides that undergo spontaneous assembly into organized nanoscale structures. These systems have found applications in biosensing, nanotechnology and other molecular recognition processes.

Statistical mechanics

A branch of physics that applies a framework based on probability theory to mathematically understand the microscopic properties of large numbers of individual atoms and molecules and connect them to the macroscopic bulk properties of materials that can be observed in everyday life.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaman, M. The role of engineering approaches in analysing cancer invasion and metastasis. Nat Rev Cancer 13, 596–603 (2013). https://doi.org/10.1038/nrc3564

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3564

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer