Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Phospholipase signalling networks in cancer

Abstract

Phospholipases (PLC, PLD and PLA) are essential mediators of intracellular and intercellular signalling. They can function as phospholipid-hydrolysing enzymes that can generate many bioactive lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid and arachidonic acid. Lipid mediators generated by phospholipases regulate multiple cellular processes that can promote tumorigenesis, including proliferation, migration, invasion and angiogenesis. Although many individual phospholipases have been extensively studied, how phospholipases regulate diverse cancer-associated cellular processes and the interplay between different phospholipases have yet to be fully elucidated. A thorough understanding of the cancer-associated signalling networks of phospholipases is necessary to determine whether these enzymes can be targeted therapeutically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of phospholipases.
Figure 2: Overview of phospholipase pathways and networks.
Figure 3: The role of phospholipases in tumorigenesis.

Similar content being viewed by others

References

  1. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nature Rev. Mol. Cell Biol. 9, 112–124 (2008).

    CAS  Google Scholar 

  2. Boesze-Battaglia, K. & Schimmel, R. Cell membrane lipid composition and distribution: implications for cell function and lessons learned from photoreceptors and platelets. J. Exp. Biol. 200, 2927–2936 (1997).

    CAS  PubMed  Google Scholar 

  3. Eyster, K. M. The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist. Adv. Physiol. Educ. 31, 5–16 (2007).

    PubMed  Google Scholar 

  4. Fisher, A. B. & Jain, M. Phospholipases: Degradation of Phospholipids in Membranes and Emulsions (Wiley, 2009).

    Google Scholar 

  5. Spiegel, S., Foster, D. & Kolesnick, R. Signal transduction through lipid second messengers. Curr. Opin. Cell Biol. 8, 159–167 (1996).

    CAS  PubMed  Google Scholar 

  6. Wymann, M. P. & Schneiter, R. Lipid signalling in disease. Nature Rev. Mol. Cell Biol. 9, 162–176 (2008).

    CAS  Google Scholar 

  7. De Maria, L., Vind, J., Oxenboll, K. M., Svendsen, A. & Patkar, S. Phospholipases and their industrial applications. Appl. Microbiol. Biotechnol. 74, 290–300 (2007).

    CAS  PubMed  Google Scholar 

  8. Ramrakhiani, L. & Chand, S. Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity. Appl. Biochem. Biotechnol. 164, 991–1022 (2011).

    CAS  PubMed  Google Scholar 

  9. Aoki, J., Inoue, A., Makide, K., Saiki, N. & Arai, H. Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family. Biochimie 89, 197–204 (2007).

    CAS  PubMed  Google Scholar 

  10. Murakami, M. et al. Recent progress in phospholipase A2 research: from cells to animals to humans. Prog. Lipid Res. 50, 152–192 (2011).

    CAS  PubMed  Google Scholar 

  11. Suh, P.-G. et al. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep. 41, 415–434 (2008).

    CAS  Google Scholar 

  12. Wang, X., Devaiah, S. P., Zhang, W. & Welti, R. Signaling functions of phosphatidic acid. Prog. Lipid Res. 45, 250–278 (2006).

    CAS  PubMed  Google Scholar 

  13. Hirabayashi, T., Murayama, T. & Shimizu, T. Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol. Pharm. Bull. 27, 1168–1173 (2004).

    CAS  PubMed  Google Scholar 

  14. Wang, T. et al. Selective interaction of the C2 domains of phospholipase C-β1 and -β2 with activated Gαq subunits: an alternative function for C2-signaling modules. Proc. Natl Acad. Sci. USA 96, 7843–7846 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, T., Dowal, L., El-Maghrabi, M. R., Rebecchi, M. & Scarlata, S. The pleckstrin homology domain of phospholipase C-β2 links the binding of gβγ to activation of the catalytic core. J. Biol. Chem. 275, 7466–7469 (2000).

    CAS  PubMed  Google Scholar 

  16. Falasca, M. et al. Activation of phospholipase C γ by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J. 17, 414–422 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hodgkin, M. N. et al. Phospholipase D regulation and localisation is dependent upon a phosphatidylinositol 4,5-biphosphate-specific PH domain. Curr. Biol. 10, 43–46 (2000).

    CAS  PubMed  Google Scholar 

  18. Sugars, J. M., Cellek, S., Manifava, M., Coadwell, J. & Ktistakis, N. T. Hierarchy of membrane-targeting signals of phospholipase D1 involving lipid modification of a pleckstrin homology domain. J. Biol. Chem. 277, 29152–29161 (2002).

    CAS  PubMed  Google Scholar 

  19. Sung, T. C., Zhang, Y., Morris, A. J. & Frohman, M. A. Structural analysis of human phospholipase D1. J. Biol. Chem. 274, 3659–3666 (1999).

    CAS  PubMed  Google Scholar 

  20. Sung, T. C., Altshuller, Y. M., Morris, A. J. & Frohman, M. A. Molecular analysis of mammalian phospholipase D2. J. Biol. Chem. 274, 494–502 (1999).

    CAS  PubMed  Google Scholar 

  21. Du, G. et al. Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J. Cell Biol. 162, 305–315 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stahelin, R. V. et al. Mechanism of membrane binding of the phospholipase D1 PX domain. J. Biol. Chem. 279, 54918–54926 (2004).

    CAS  PubMed  Google Scholar 

  23. Lee, J. S. et al. Phosphatidylinositol (3,4,5)-trisphosphate specifically interacts with the phox homology domain of phospholipase D1 and stimulates its activity. J. Cell Sci. 118, 4405–4413 (2005).

    CAS  PubMed  Google Scholar 

  24. Lee, C. S. et al. The phox homology domain of phospholipase D activates dynamin GTPase activity and accelerates EGFR endocytosis. Nature Cell Biol. 8, 477–484 (2006).

    CAS  PubMed  Google Scholar 

  25. Jeon, H. et al. Phospholipase D2 induces stress fiber formation through mediating nucleotide exchange for RhoA. Cell. Signal. 23, 1320–1326 (2011).

    CAS  PubMed  Google Scholar 

  26. Gomez-Cambronero, J. The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (And a surprise discovery: PLD2 is a GEF). Cell. Signal. 23, 1885–1895 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Oude Weernink, P. A., Lopez de Jesus, M. & Schmidt, M. Phospholipase D signaling: orchestration by PIP2 and small GTPases. Naunyn-Schmiedeberg' Arch. Pharmacol. 374, 399–411 (2007).

    CAS  Google Scholar 

  28. Cho, C. H. et al. Localization of VEGFR-2 and PLD2 in endothelial caveolae is involved in VEGF-induced phosphorylation of MEK and ERK. Am. J. Physiol. Heart Circ. Physiol. 286, H1881–H1888 (2004).

    CAS  PubMed  Google Scholar 

  29. Alberghina, M. Phospholipase A2: new lessons from endothelial cells. Microvasc. Res. 80, 280–285 (2010).

    CAS  PubMed  Google Scholar 

  30. Rhee, S. G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, C. S. et al. The roles of phospholipase D in EGFR signaling. Biochim. Biophys. Acta 1791, 862–868 (2009).

    CAS  PubMed  Google Scholar 

  32. Wells, A. & Grandis, J. R. Phospholipase C-γ1 in tumor progression. Clin. Exp. Metastasis 20, 285–290 (2003).

    CAS  PubMed  Google Scholar 

  33. Ji, Q. S. et al. Essential role of the tyrosine kinase substrate phospholipase C-γ1 in mammalian growth and development. Proc. Natl Acad. Sci. USA 94, 2999–3003 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, M. J. et al. Direct interaction of SOS1 Ras exchange protein with the SH3 domain of phospholipase C-γ1. Biochemistry 39, 8674–8682 (2000).

    CAS  PubMed  Google Scholar 

  35. Kelley, G. G., Reks, S. E., Ondrako, J. M. & Smrcka, A. V. Phospholipase Cɛ: a novel Ras effector. EMBO J. 20, 743–754 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bunney, T. D. et al. Structural and mechanistic insights into ras association domains of phospholipase C epsilon. Mol. Cell 21, 495–507 (2006).

    CAS  PubMed  Google Scholar 

  37. Lopez, I., Mak, E. C., Ding, J., Hamm, H. E. & Lomasney, J. W. A novel bifunctional phospholipase c that is regulated by Gα 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J. Biol. Chem. 276, 2758–2765 (2001).

    CAS  PubMed  Google Scholar 

  38. Bai, Y. et al. Crucial role of phospholipase Cepsilon in chemical carcinogen-induced skin tumor development. Cancer Res. 64, 8808–8810 (2004).

    CAS  PubMed  Google Scholar 

  39. Ise, K. et al. Targeted deletion of the H-ras gene decreases tumor formation in mouse skin carcinogenesis. Oncogene 19, 2951–2956 (2000).

    CAS  PubMed  Google Scholar 

  40. Xiao, W. et al. Tumor suppression by phospholipase C-β3 via SHP-1-mediated dephosphorylation of Stat5. Cancer Cell 16, 161–171 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Follo, M. Y. et al. Phosphoinositide-phospholipase C β1 mono-allelic deletion is associated with myelodysplastic syndromes evolution into acute myeloid leukemia. J. Clin. Oncol. 27, 782–790 (2009).

    PubMed  Google Scholar 

  42. Fu, L. et al. Characterization of a novel tumor-suppressor gene PLC δ 1 at 3p22 in esophageal squamous cell carcinoma. Cancer Res. 67, 10720–10726 (2007).

    CAS  PubMed  Google Scholar 

  43. Nakamura, Y. et al. Phospholipase Cδ1 is required for skin stem cell lineage commitment. EMBO J. 22, 2981–2991 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Song, J., Jiang, Y. W. & Foster, D. A. Epidermal growth factor induces the production of biologically distinguishable diglyceride species from phosphatidylinositol and phosphatidylcholine via the independent activation of type C and type D phospholipases. Cell Growth Differ. 5, 79–85 (1994).

    CAS  PubMed  Google Scholar 

  45. Plevin, R., Cook, S. J., Palmer, S. & Wakelam, M. J. Multiple sources of sn-1,2-diacylglycerol in platelet-derived-growth-factor-stimulated Swiss 3T3 fibroblasts. Evidence for activation of phosphoinositidase C and phosphatidylcholine-specific phospholipase D. Biochem. J. 279, 559–565 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Motoike, T., Bieger, S., Wiegandt, H. & Unsicker, K. Induction of phosphatidic acid by fibroblast growth factor in cultured baby hamster kidney fibroblasts. FEBS Lett. 332, 164–168 (1993).

    CAS  PubMed  Google Scholar 

  47. Carnero, A., Cuadrado, A., del Peso, L. & Lacal, J. C. Activation of type D phospholipase by serum stimulation and ras-induced transformation in NIH3T3 cells. Oncogene 9, 1387–1395 (1994).

    CAS  PubMed  Google Scholar 

  48. Frankel, P. et al. Ral and Rho-dependent activation of phospholipase D in v-Raf-transformed cells. Biochem. Biophys. Res. Commun. 255, 502–507 (1999).

    CAS  PubMed  Google Scholar 

  49. Song, J. G., Pfeffer, L. M. & Foster, D. A. v-Src increases diacylglycerol levels via a type D phospholipase-mediated hydrolysis of phosphatidylcholine. Mol. Cell. Biol. 11, 4903–4908 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu, Z. et al. Phospholipase D and RalA cooperate with the epidermal growth factor receptor to transform 3Y1 rat fibroblasts. Mol. Cell. Biol. 20, 462–467 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Joseph, T. et al. Transformation of cells overexpressing a tyrosine kinase by phospholipase D1 and D2. Biochem. Biophys. Res. Commun. 289, 1019–1024 (2001).

    CAS  PubMed  Google Scholar 

  52. Rizzo, M. A. et al. Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent raf-1 translocation to the plasma membrane and the activation of the mitogen-activated protein kinase pathway. J. Biol. Chem. 274, 1131–1139 (1999).

    CAS  PubMed  Google Scholar 

  53. Zhao, C., Du, G., Skowronek, K., Frohman, M. A. & Bar-Sagi, D. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nature Cell Biol. 9, 706–712 (2007).

    CAS  PubMed  Google Scholar 

  54. Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. & Chen, J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942–1945 (2001).

    CAS  PubMed  Google Scholar 

  55. Toschi, A. et al. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol. Cell. Biol. 29, 1411–1420 (2009).

    CAS  PubMed  Google Scholar 

  56. Mamane, Y., Petroulakis, E., LeBacquer, O. & Sonenberg, N. mTOR, translation initiation and cancer. Oncogene 25, 6416–6422 (2006).

    CAS  PubMed  Google Scholar 

  57. Saito, M. et al. Expression of phospholipase D2 in human colorectal carcinoma. Oncol. Rep. 18, 1329–1334 (2007).

    CAS  PubMed  Google Scholar 

  58. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    CAS  PubMed  Google Scholar 

  59. Buczynski, M. W., Dumlao, D. S. & Dennis, E. A. Thematic review series: proteomics. An integrated omics analysis of eicosanoid biology. J. Lipid Res. 50, 1015–1038 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875 (2001).

    CAS  PubMed  Google Scholar 

  61. Hong, K. H., Bonventre, J. C., O'Leary, E., Bonventre, J. V. & Lander, E. S. Deletion of cytosolic phospholipase A2 suppresses ApcMin-induced tumorigenesis. Proc. Natl Acad. Sci. USA 98, 3935–3939 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Oshima, M. et al. Suppression of intestinal polyposis in Apc δ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    CAS  PubMed  Google Scholar 

  63. Meyer, A. M. et al. Decreased lung tumorigenesis in mice genetically deficient in cytosolic phospholipase A2. Carcinogenesis 25, 1517–1524 (2004).

    CAS  PubMed  Google Scholar 

  64. MacPhee, M. et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell 81, 957–966 (1995).

    CAS  PubMed  Google Scholar 

  65. Papanikolaou, A., Wang, Q. S., Mulherkar, R., Bolt, A. & Rosenberg, D. W. Expression analysis of the group IIA secretory phospholipase A2 in mice with differential susceptibility to azoxymethane-induced colon tumorigenesis. Carcinogenesis 21, 133–138 (2000).

    CAS  PubMed  Google Scholar 

  66. Mills, G. B. & Moolenaar, W. H. The emerging role of lysophosphatidic acid in cancer. Nature Rev. Cancer 3, 582–591 (2003).

    CAS  Google Scholar 

  67. Wang, D. & Dubois, R. N. Prostaglandins and cancer. Gut 55, 115–122 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu, Y., Fang, X. J., Casey, G. & Mills, G. B. Lysophospholipids activate ovarian and breast cancer cells. Biochem. J. 309, 933–940 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fang, X. et al. Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann. NY Acad. Sci. 905, 188–208 (2000).

    CAS  PubMed  Google Scholar 

  70. Sasagawa, T., Okita, M., Murakami, J., Kato, T. & Watanabe, A. Abnormal serum lysophospholipids in multiple myeloma patients. Lipids 34, 17–21 (1999).

    CAS  PubMed  Google Scholar 

  71. Goetzl, E. J. et al. Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded G protein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res. 59, 5370–5375 (1999).

    CAS  PubMed  Google Scholar 

  72. Pustilnik, T. B. et al. Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin. Cancer Res. 5, 3704–3710 (1999).

    CAS  PubMed  Google Scholar 

  73. Schulte, K. M., Beyer, A., Kohrer, K., Oberhauser, S. & Roher, H. D. Lysophosphatidic acid, a novel lipid growth factor for human thyroid cells: over-expression of the high-affinity receptor edg4 in differentiated thyroid cancer. Int. J. Cancer 92, 249–256 (2001).

    CAS  PubMed  Google Scholar 

  74. Van Leeuwen, F. N. et al. Rac activation by lysophosphatidic acid LPA1 receptors through the guanine nucleotide exchange factor Tiam1. J. Biol. Chem. 278, 400–406 (2003).

    CAS  PubMed  Google Scholar 

  75. Karmali, R. A. Eicosanoids and cancer. Prog. Clin. Biol. Res. 222, 687–697 (1986).

    CAS  PubMed  Google Scholar 

  76. Wang, D. & Dubois, R. N. Eicosanoids and cancer. Nature Rev. Cancer 10, 181–193 (2010).

    CAS  Google Scholar 

  77. Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nature Immunol. 12, 715–723 (2011).

    CAS  Google Scholar 

  78. Aggarwal, B. B. et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann. NY Acad. Sci. 1171, 59–76 (2009).

    CAS  PubMed  Google Scholar 

  79. Ozanne, B. W., Spence, H. J., McGarry, L. C. & Hennigan, R. F. Transcription factors control invasion: AP-1 the first among equals. Oncogene 26, 1–10 (2007).

    CAS  PubMed  Google Scholar 

  80. Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Rad. Biol. Med. 49, 1603–1616 (2010).

    CAS  PubMed  Google Scholar 

  81. Mouneimne, G. et al. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166, 697–708 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, W., Eddy, R. & Condeelis, J. The cofilin pathway in breast cancer invasion and metastasis. Nature Rev. Cancer 7, 429–440 (2007).

    CAS  Google Scholar 

  83. Jones, N. P. & Katan, M. Role of phospholipase Cγ1 in cell spreading requires association with a β-Pix/GIT1-containing complex, leading to activation of Cdc42 and Rac1. Mol. Cell. Biol. 27, 5790–5805 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sala, G. et al. Phospholipase Cγ1 is required for metastasis development and progression. Cancer Res. 68, 10187–10196 (2008).

    CAS  PubMed  Google Scholar 

  85. Thomas, S. M. et al. Epidermal growth factor receptor-stimulated activation of phospholipase Cγ-1 promotes invasion of head and neck squamous cell carcinoma. Cancer Res. 63, 5629–5635 (2003).

    CAS  PubMed  Google Scholar 

  86. Bertagnolo, V. et al. Phospholipase C-β 2 promotes mitosis and migration of human breast cancer-derived cells. Carcinogenesis 28, 1638–1645 (2007).

    CAS  PubMed  Google Scholar 

  87. Bertagnolo, V. et al. PLC-β2 is highly expressed in breast cancer and is associated with a poor outcome: a study on tissue microarrays. Int. J. Oncol. 28, 863–872 (2006).

    CAS  PubMed  Google Scholar 

  88. Shen, Y., Zheng, Y. & Foster, D. A. Phospholipase D2 stimulates cell protrusion in v-Src-transformed cells. Biochem. Biophys. Res. Commun. 293, 201–206 (2002).

    CAS  PubMed  Google Scholar 

  89. Chae, Y. C. et al. Phospholipase D activity regulates integrin-mediated cell spreading and migration by inducing GTP-Rac translocation to the plasma membrane. Mol. Biol. Cell 19, 3111–3123 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521–532 (1999).

    CAS  PubMed  Google Scholar 

  91. Kang, D. W. et al. Phorbol ester up-regulates phospholipase D1 but not phospholipase D2 expression through a PKC/Ras/ERK/NFκB-dependent pathway and enhances matrix metalloproteinase-9 secretion in colon cancer cells. J. Biol. Chem. 283, 4094–4104 (2008).

    CAS  PubMed  Google Scholar 

  92. Park, M. H., Ahn, B. H., Hong, Y. K. & Min do, S. Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-κB/Sp1-mediated signaling pathways. Carcinogenesis 30, 356–365 (2009).

    CAS  PubMed  Google Scholar 

  93. Zheng, Y. et al. Phospholipase D couples survival and migration signals in stress response of human cancer cells. J. Biol. Chem. 281, 15862–15868 (2006).

    CAS  PubMed  Google Scholar 

  94. Knoepp, S. M. et al. Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Mol. Pharmacol. 74, 574–584 (2008).

    CAS  PubMed  Google Scholar 

  95. Shibuya, M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J. Biochem. Mol. Biol. 39, 469–478 (2006).

    CAS  PubMed  Google Scholar 

  96. Lawson, N. D., Mugford, J. W., Diamond, B. A. & Weinstein, B. M. phospholipase Cγ-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev. 17, 1346–1351 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Liao, H. J. et al. Absence of erythrogenesis and vasculogenesis in Plcg1-deficient mice. J. Biol. Chem. 277, 9335–9341 (2002).

    CAS  PubMed  Google Scholar 

  98. Takahashi, T., Yamaguchi, S., Chida, K. & Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768–2778 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N. & Shibuya, M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl Acad. Sci. USA 102, 1076–1081 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    CAS  PubMed  Google Scholar 

  101. Bhattacharya, R. et al. Distinct role of PLCβ3 in VEGF-mediated directional migration and vascular sprouting. J. Cell Sci. 122, 1025–1034 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Nakamura, Y. et al. Phospholipase C-δ1 and -δ3 are essential in the trophoblast for placental development. Mol. Cell. Biol. 25, 10979–10988 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zeng, X. X. et al. Phospholipase D1 is required for angiogenesis of intersegmental blood vessels in zebrafish. Dev. Biol. 328, 363–376 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kono, M. et al. The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J. Biol. Chem. 279, 29367–29373 (2004).

    CAS  PubMed  Google Scholar 

  105. Delon, C. et al. Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J. Biol. Chem. 279, 44763–44774 (2004).

    CAS  PubMed  Google Scholar 

  106. Seymour, L. W. et al. Vascular endothelial growth factor stimulates protein kinase C-dependent phospholipase D activity in endothelial cells . Lab. Invest. 75, 427–437 (1996).

    CAS  PubMed  Google Scholar 

  107. Cheng, T., Cao, W., Wen, R., Steinberg, R. H. & LaVail, M. M. Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Muller cells. Invest. Ophthalmol. Vis. Sci. 39, 581–591 (1998).

    CAS  PubMed  Google Scholar 

  108. Wang, D. et al. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J. Exp. Med. 203, 941–951 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Herbert, S. P., Ponnambalam, S. & Walker, J. H. Cytosolic phospholipase A2-α mediates endothelial cell proliferation and is inactivated by association with the Golgi apparatus. Mol. Biol. Cell 16, 3800–3809 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Herbert, S. P., Odell, A. F., Ponnambalam, S. & Walker, J. H. Activation of cytosolic phospholipase A2−α as a novel mechanism regulating endothelial cell cycle progression and angiogenesis. J. Biol. Chem. 284, 5784–5796 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yazlovitskaya, E. M., Linkous, A. G., Thotala, D. K., Cuneo, K. C. & Hallahan, D. E. Cytosolic phospholipase A2 regulates viability of irradiated vascular endothelium. Cell Death Differ. 15, 1641–1653 (2008).

    CAS  PubMed  Google Scholar 

  112. Tosato, G., Segarra, M. & Salvucci, O. Cytosolic phospholipase A2α and cancer: a role in tumor angiogenesis. J. Natl Cancer Inst. 102, 1377–1379 (2010).

    CAS  PubMed  Google Scholar 

  113. Linkous, A. G., Yazlovitskaya, E. M. & Hallahan, D. E. Cytosolic phospholipase A2 and lysophospholipids in tumor angiogenesis. J. Natl Cancer Inst. 102, 1398–1412 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Akiba, S. & Sato, T. Cellular function of calcium-independent phospholipase A2. Biol. Pharm. Bull. 27, 1174–1178 (2004).

    CAS  PubMed  Google Scholar 

  115. Ong, W. Y., Farooqui, T. & Farooqui, A. A. Involvement of cytosolic phospholipase A2, calcium independent phospholipase A2 and plasmalogen selective phospholipase A2 in neurodegenerative and neuropsychiatric conditions. Curr. Med. Chem. 17, 2746–2763 (2010).

    CAS  PubMed  Google Scholar 

  116. Samoha, S. & Arber, N. Cyclooxygenase-2 inhibition prevents colorectal cancer: from the bench to the bed side. Oncology 69, 33–37 (2005).

    CAS  PubMed  Google Scholar 

  117. Chakraborti, A. K., Garg, S. K., Kumar, R., Motiwala, H. F. & Jadhavar, P. S. Progress in COX-2 inhibitors: a journey so far. Curr. Med. Chem. 17, 1563–1593 (2010).

    CAS  PubMed  Google Scholar 

  118. Fraser, H. et al. Varespladib (A-002), a secretory phospholipase A2 inhibitor, reduces atherosclerosis and aneurysm formation in ApoE−/− mice. J. Cardiovasc. Pharmacol. 53, 60–65 (2009).

    CAS  PubMed  Google Scholar 

  119. Su, W. et al. 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Mol. Pharmacol. 75, 437–446 (2009).

    CAS  PubMed  Google Scholar 

  120. Scott, S. A. et al. Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nature Chem. Biol. 5, 108–117 (2009).

    CAS  Google Scholar 

  121. Fukami, K., Inanobe, S., Kanemaru, K. & Nakamura, Y. Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Prog. Lipid Res. 49, 429–437 (2010).

    CAS  PubMed  Google Scholar 

  122. Jin, T. G. et al. Role of the CDC25 homology domain of phospholipase Cepsilon in amplification of Rap1-dependent signaling. J. Biol. Chem. 276, 30301–30307 (2001).

    CAS  PubMed  Google Scholar 

  123. Jenkins, G. M. & Frohman, M. A. Phospholipase D: a lipid centric review. Cell. Mol. Life Sci. 62, 2305–2316 (2005).

    CAS  PubMed  Google Scholar 

  124. Pedersen, K. M., Finsen, B., Celis, J. E. & Jensen, N. A. Expression of a novel murine phospholipase D homolog coincides with late neuronal development in the forebrain. J. Biol. Chem. 273, 31494–31504 (1998).

    CAS  PubMed  Google Scholar 

  125. Yoshikawa, F. et al. Phospholipase D family member 4, a transmembrane glycoprotein with no phospholipase D activity, expression in spleen and early postnatal microglia. PLoS ONE 5, e13932 (2010).

    PubMed  PubMed Central  Google Scholar 

  126. Choi, S. Y. et al. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nature Cell Biol. 8, 1255–1262 (2006).

    CAS  PubMed  Google Scholar 

  127. Otani, Y. et al. PLD4 is involved in phagocytosis of microglia: expression and localization changes of PLD4 are correlated with activation state of microglia. PLoS ONE 6, e27544 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kim, Y. et al. Phosphorylation and activation of phospholipase D1 by protein kinase C in vivo: determination of multiple phosphorylation sites. Biochemistry 38, 10344–10351 (1999).

    CAS  PubMed  Google Scholar 

  129. Hammond, S. M. et al. Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-α. J. Biol. Chem. 272, 3860–3868 (1997).

    CAS  PubMed  Google Scholar 

  130. Aoki, J., Inoue, A. & Okudaira, S. Two pathways for lysophosphatidic acid production. Biochim. Biophys. Acta 1781, 513–518 (2008).

    CAS  PubMed  Google Scholar 

  131. Cormier, R. T. et al. The Mom1AKR intestinal tumor resistance region consists of Pla2g2a and a locus distal to D4Mit64. Oncogene 19, 3182–3192 (2000).

    CAS  PubMed  Google Scholar 

  132. Ilsley, J. N. et al. Cytoplasmic phospholipase A2 deletion enhances colon tumorigenesis. Cancer Res. 65, 2636–2643 (2005).

    CAS  PubMed  Google Scholar 

  133. McHowat, J. et al. Platelet-activating factor and metastasis: calcium-independent phospholipase A2β deficiency protects against breast cancer metastasis to the lung. Am. J. Physiol. Cell Physiol. 300, C825–C832 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Li, H. et al. Group VIA phospholipase A2 in both host and tumor cells is involved in ovarian cancer development. FASEB J. 24, 4103–4116 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Shepard, C. R., Kassis, J., Whaley, D. L., Kim, H. G. & Wells, A. PLC γ contributes to metastasis of in situ-occurring mammary and prostate tumors. Oncogene 26, 3020–3026 (2007).

    CAS  PubMed  Google Scholar 

  136. Wen, R. et al. Essential role of phospholipase C γ 2 in early B-cell development and Myc-mediated lymphomagenesis. Mol. Cell. Biol. 26, 9364–9376 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Oka, M. et al. Enhancement of ultraviolet B-induced skin tumor development in phospholipase Cepsilon-knockout mice is associated with decreased cell death. Carcinogenesis 31, 1897–1902 (2010).

    CAS  PubMed  Google Scholar 

  138. Yoshida, N. et al. Broad, ectopic expression of the sperm protein PLCZ1 induces parthenogenesis and ovarian tumours in mice. Development 134, 3941–3952 (2007).

    CAS  PubMed  Google Scholar 

  139. Murata, K. et al. Expression of group-II phospholipase A2 in malignant and non-malignant human gastric mucosa. Br. J. Cancer 68, 103–111 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yamashita, S., Yamashita, J. & Ogawa, M. Overexpression of group II phospholipase A2 in human breast cancer tissues is closely associated with their malignant potency. Br. J. Cancer 69, 1166–1170 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Buhmeida, A. et al. PLA2 (group IIA phospholipase A2) as a prognostic determinant in stage II colorectal carcinoma. Ann. Oncol. 20, 1230–1235 (2009).

    CAS  PubMed  Google Scholar 

  142. Ganesan, K. et al. Inhibition of gastric cancer invasion and metastasis by PLA2G2A, a novel β-catenin/TCF target gene. Cancer Res. 68, 4277–4286 (2008).

    CAS  PubMed  Google Scholar 

  143. Jiang, J. et al. Expression of group IIA secretory phospholipase A2 is elevated in prostatic intraepithelial neoplasia and adenocarcinoma. Am. J. Pathol. 160, 667–671 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Graff, J. R. et al. Expression of group IIa secretory phospholipase A2 increases with prostate tumor grade. Clin. Cancer Res. 7, 3857–3861 (2001).

    CAS  PubMed  Google Scholar 

  145. Dong, M. et al. Cytoplasmic phospholipase A2 levels correlate with apoptosis in human colon tumorigenesis. Clin. Cancer Res. 11, 2265–2271 (2005).

    CAS  PubMed  Google Scholar 

  146. Tews, B. et al. Identification of novel oligodendroglioma-associated candidate tumor suppressor genes in 1p36 and 19q13 using microarray-based expression profiling. Int. J. Cancer 119, 792–800 (2006).

    CAS  PubMed  Google Scholar 

  147. Noh, D. Y. et al. Elevated content of phospholipase C-γ 1 in colorectal cancer tissues. Cancer 73, 36–41 (1994).

    CAS  PubMed  Google Scholar 

  148. Arteaga, C. L. et al. Elevated content of the tyrosine kinase substrate phospholipase C-γ 1 in primary human breast carcinomas. Proc. Natl Acad. Sci. USA 88, 10435–10439 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Noh, D. Y. et al. Expression of phospholipase C-γ 1 and its transcriptional regulators in breast cancer tissues. Anticancer Res. 18, 2643–2648 (1998).

    CAS  PubMed  Google Scholar 

  150. Hu, X. T. et al. Phospholipase C δ 1 is a novel 3p22.3 tumor suppressor involved in cytoskeleton organization, with its epigenetic silencing correlated with high-stage gastric cancer. Oncogene 28, 2466–2475 (2009).

    CAS  PubMed  Google Scholar 

  151. Noh, D. Y. et al. Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Lett. 161, 207–214 (2000).

    CAS  PubMed  Google Scholar 

  152. Zhao, Y. et al. Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochem. Biophys. Res. Commun. 278, 140–143 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S.-H. Lee, K. Choi, S. K. Jang and H. M. Kwon for many useful discussions and suggestions for this article. They apologize to colleagues whose work could not be cited owing to space limitations. This work was supported by the grants (NRF-M1AXA002-2010-0029764, No.2010-0029434 and No.2012R1A2A1A03010110) of National Research Foundation and the grant (1210041-1) of National Cancer Center in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Ryu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Sung Ho Ryu's homepage

Supplementary information

Supplementary information Table S1

Phenotypes of phospholipase transgenic and knockout mice (XLSX 20 kb)

Supplementary information S2

Network analysis of phospholipases in cancer (PDF 161 kb)

Supplementary information S3

GOBP and GOCC of phospholipases and PLNs. (PDF 152 kb)

Supplementary information Table S4

Interactors and interactions of phospholipases and lipid meidators. (a) Interactors (XLS 238 kb)

Supplementary information S5

Expression profiles of phospholipases in cancer. (PDF 146 kb)

Supplementary information S6

Correlation of expression profiles across cancer types between phospholipases and PLNs. (PDF 341 kb)

Supplementary information S7

A hypothetical network delineating the relationships between phospholipases and their associated processes. (PDF 1149 kb)

Glossary

ApcMin mice

Mice that carry the multiple intestinal neoplasia (Min) point mutation at one Apc allele and that develop intestinal adenomas spontaneously. Commonly used model of human familial adenomatous polyposis and human sporadic colorectal cancer.

C2 domain

A structural domain that is involved in membrane targeting. The C2-like domain of calpain is superficially similar to the C2 domain of other enzymes.

Caveolae

Cholesterol-rich membrane microdomains that are stabilized by the caveolin proteins.

EF-hand domain

A structural domain responsible for calcium binding, found in calcium-binding proteins.

Intersegmental vessel

(ISV). A vessel that carries blood from the dorsal aorta between somites to the dorsal side of the neural tube.

Matrigel

The trade name for a gelatinous protein mixture that is secreted by mouse tumour cells. It resembles the complex extracellular environment found in many tissues and is commonly used as a three-dimensional matrix substrate for cell culture-based in vitro migration and invasion assays.

Phox homology (PX) domain

A phosphoinositide-binding domain that was found in the p40phox and p47phox domains of NADPH oxidase.

Pleckstrin homology (PH) domains

Sequences of approximately 100 amino acids that are present in many signalling molecules and that commonly bind to phospholipids and proteins.

Signal sequence

A short peptide chain that targets a protein to a specific location (for example, the extracellular region, mitochondria and nucleus).

sn-1 and sn-2 positions

To designate the configuration of glycerol derivatives, the carbon atoms of glycerol are numbered stereospecifically. Most fatty acids at the sn-1 position are saturated (palmitate or stearate), and the sn-2 acyl chain is a saturated fatty acid (oleic acids, linoleic acid, and arachidonic acid).

SH2 domain

SRC homology 2 domain. A protein–protein interaction domain capable of binding tyrosine phosphorylated sites.

SH3 domain

SRC homology 3 domain. A protein–protein interaction domain capable of binding proline-rich motifs.

Stress fibre

A contractile actin filament bundle that contains myosin II, which serves both as an F-actin bundling protein and as a force generator.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., Lee, C., Jang, JH. et al. Phospholipase signalling networks in cancer. Nat Rev Cancer 12, 782–792 (2012). https://doi.org/10.1038/nrc3379

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3379

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer