Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Telomerase and cancer therapeutics

Key Points

  • Telomerase is an important drug target for cancer. It is expressed in most tumours from virtually all types of cancers and is required for long-term maintenance of telomeres, which in turn is crucial for the long-term survival of tumour cells.

  • Telomerase is a relatively specific cancer target as normal body cells express little or no telomerase for most of their lifespan and generally have longer telomeres than those in tumour cells.

  • Two major approaches to killing telomerase-positive tumour cells are in clinical trials. A direct telomerase inhibitor, GRN163L, is in trials in chronic lymphocytic leukaemia, multiple myeloma, solid tumours and non-small-cell lung cancer. Several therapeutic vaccines directed against the crucial telomerase protein TERT are in or have completed trials in leukaemia and renal, prostate, lung, skin, pancreatic and breast cancer.

  • Telomerase inhibitors can have fast-acting single-agent activity in certain cancers with short telomeres and rapid turnover, but this should not be the expectation in most patients.

  • Putative cancer stem cells are telomerase-positive and thus telomerase inhibitors, in combination with effective tumour de-bulking agents, might help meet a major unmet need: durability of response.

  • Telomerase vaccines offer the potential to stimulate the rapid killing of tumour cells by enhancing the activity of telomerase-specific cytotoxic (CD8+) and/or helper (CD4+) T cells. No significant toxicity to normal tissues has been seen in any of animal studies or clinical trials to date.

  • Potential challenges in the clinical development of telomerase-based cancer therapies include selection of the best patient population, good pharmacodynamic or biological markers to assess early activity, and optimal dose and schedule for combination therapies.

Abstract

Telomerase is an attractive cancer target as it appears to be required in essentially all tumours for immortalization of a subset of cells, including cancer stem cells. Moreover, differences in telomerase expression, telomere length and cell kinetics between normal and tumour tissues suggest that targeting telomerase would be relatively safe. Clinical trials are ongoing with a potent and specific telomerase inhibitor, GRN163L, and with several versions of telomerase therapeutic vaccines. The prospect of adding telomerase-based therapies to the growing list of new anticancer products is promising, but what are the advantages and limitations of different approaches, and which patients are the most likely to respond?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Telomerase is an RNA-dependent reverse transcriptase in which the templating RNA (telomerase RNA component (hTR)) is integral to the enzyme.
Figure 2: Five telomerase-based approaches to killing tumour cells are illustrated in order of their anticipated pharmaceutical potential.

Similar content being viewed by others

References

  1. Hanahan, J. D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  2. Harley, C. B. et al. Telomerase, cell immortality, and cancer. Cold Spring Harbor Symp. Quant. Biol. 59, 307–315 (1994).

    CAS  PubMed  Google Scholar 

  3. Hahn, W. C. et al. Inhibition of telomerase limits the growth of human cancer cells. Nature Med. 5, 1164–1170 (1999).

    CAS  PubMed  Google Scholar 

  4. Kelland, L. Targeting the limitless replicative potential of cancer: the telomerase/telomere pathway. Clin. Cancer Res. 13, 4960–4963 (2007).

    CAS  PubMed  Google Scholar 

  5. Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase enzyme with two kinds of primer specificity. Cell 51, 405–413 (1985). The discovery of the biochemical activity of telomerase is reported in a protozoan, enabling future work on the role of telomeres and telomerase in human ageing and cancer.

    Google Scholar 

  6. Greider, C. W. & Blackburn, E. H. A telomeric sequence in the RNA of tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    CAS  PubMed  Google Scholar 

  7. Liu, D., O'Connor, M. S., Qin, J. & Songyang, Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem. 279, 51338–51342 (2004).

    CAS  PubMed  Google Scholar 

  8. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005). In this and the preceding reference, the collection of telomere-binding proteins is put into an emerging structure for the chromosome tip, the 'telosome' or 'shelterin', and potential interactions with telomerase are summarized.

    CAS  PubMed  Google Scholar 

  9. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990). The association between telomere loss and replicative ageing in normal human somatic cells is first reported.

    CAS  Google Scholar 

  10. Hastie, N. D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990). The first broad survey of telomere lengths in pre-malignant and malignant tumour samples finds short telomeres in malignant cancer tissue.

    CAS  PubMed  Google Scholar 

  11. Wellinger, R. J., Ethier, K., Labrecque, P. & Zakian, V. A. Evidence for a new step in telomere maintenance. Cell 16, 3094–3105 (1996).

    Google Scholar 

  12. Jacob, N. K., Kirk, K. E. & Price, C. M. Generation of telomeric G strand overhangs involves both G and C strand cleavage. Mol. Cell 11, 1021–1032 (2003).

    CAS  PubMed  Google Scholar 

  13. Goldkorn, A. & Blackburn, E. H. Assembly of mutant-template telomerase RNA into catalytically active telomerase ribonucleoprotein that can act on telomeres is required for apoptosis and cell cycle arrest in human cancer cells. Cancer Res. 66, 5763–5771 (2006).

    CAS  PubMed  Google Scholar 

  14. Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W. & Shay, J. W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18, 173–179 (1996).

    CAS  PubMed  Google Scholar 

  15. Ulaner, G. A., Hu, J.-F., Vu, T. H., Giudice, L. C. & Hoffman, A. R. Telomerase activity in human development is regulated both by hTERT transcription and by alternate splicing of hTERT transcripts. Cancer Res. 58, 4168–4172 (1998).

    CAS  PubMed  Google Scholar 

  16. Kakuo, S., Asaoka, K. & Ide, T. Human is a unique species among primates in terms of telomere length. Biochem. Biophys. Res. Comm. 263, 308–314 (1999).

    CAS  PubMed  Google Scholar 

  17. Steinert, S., White, D., Zou, Y., Shay, J. W. & Wright, W. E. Telomere biology and cellular aging in non-human primate cells. Exp. Cell Res. 272, 146–152 (2002).

    CAS  PubMed  Google Scholar 

  18. Okuda, K. et al. Telomere length in the newborn. Pediatr. Res. 52, 377–381 (2002).

    PubMed  Google Scholar 

  19. Bodnar, A., Kim, N. W., Effros, R. B. & Chiu, C.-P. Mechanism of telomerase induction during T cell activation. Exp. Cell Res. 228, 58–64 (1996).

    CAS  PubMed  Google Scholar 

  20. Broccoli, D., Young, J. W. & de Lange, T. Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl Acad. Sci. 92, 9082–9086 (1995).

    CAS  PubMed  Google Scholar 

  21. Chiu, C. P. et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14, 239–248 (1996).

    CAS  PubMed  Google Scholar 

  22. Harley, C. B. Telomere loss: mitotic clock or genetic time bomb? Mut. Res. 256, 271–282 (1991).

    CAS  Google Scholar 

  23. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992). Critically shortened telomeres in a model of cell transformation and immortalization are shown to be linked to genetic rearrangements that are stabilized when telomerase is activated.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Greenberg, R. A. et al. Short dysfunctional telomeres impair tumorigenesis in the INK4aD2/3 cancer-prone mouse. Cell 97, 515–525 (1999).

    CAS  PubMed  Google Scholar 

  25. Hanahan, D. Benefits of bad telomeres. Nature 406, 573–574 (2000).

    CAS  PubMed  Google Scholar 

  26. Harley, C. B. Telomerase is not an oncogene. Oncogene 21, 494–502 (2002).

    CAS  PubMed  Google Scholar 

  27. Khoo, C. M., Carrasco, D. R., Bosenberg, M. W., Paik, J.-H. & DePinho, R. A. Ink4a/Arf tumor suppressor does not modulate the degenerative conditions or tumor spectrum of the telomerase-deficient mouse. Proc. Natl Acad. Sci. USA 104, 3931–3936 (2007).

    CAS  PubMed  Google Scholar 

  28. Cawthon, R. M., Smith, K. R., O'Brien, E., Sivatchenko, A. & Kerber, R. A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361, 359–395 (2003). A simple and rapid telomere length assay developed by the lead author is used in a human epidemiology study, demonstrating increased mortality risk of cancer in individuals with short telomeres.

    Google Scholar 

  29. Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. 101, 17312–17315 (2004).

    CAS  PubMed  Google Scholar 

  30. Benetos, A. et al. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension 43, 182–185 (2004).

    CAS  PubMed  Google Scholar 

  31. Vulliamy, T. et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nature Genet. 36, 447–449 (2004).

    CAS  PubMed  Google Scholar 

  32. Walne, A., Marrone, A. & Dokal, I. Dyskeratosis congenita: a disorder of defective telomere maintenance? Int. J. Hematol. 82, 184–189 (2005).

    CAS  PubMed  Google Scholar 

  33. Demissle, S. et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 5, 325–330 (2006).

    Google Scholar 

  34. Fitzpatrick, A. L. et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am. J. Epidemiol. 165, 14–21 (2007).

    PubMed  Google Scholar 

  35. Brouilette, S. W. et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet 369, 107–114 (2007).

    CAS  PubMed  Google Scholar 

  36. Armanios, M. Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356, 1370–1372 (2007).

    Google Scholar 

  37. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2014 (1994). A highly sensitive PCR assay for telomerase activity (TRAP) is reported, enabling detection of telomerase in a broad range of tumour cell lines and in certain normal cells.

    CAS  PubMed  Google Scholar 

  38. Shay, J. W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

    CAS  PubMed  Google Scholar 

  39. Keith, W. N., Bilsland, A., Hardie, M. & Evans, T. R. Drug Insight: cancer cell immortality — telomerase as a target for novel cancer gene therapies. Nat. Clin. Pract. Oncol. 1, 88–96 (2004).

    CAS  PubMed  Google Scholar 

  40. Zimmermann, S. & Martens, U. M. Telomeres and telomerase as targets for cancer therapy Cell. Mol. Life Sci. 64 906–921 (2007).

    CAS  PubMed  Google Scholar 

  41. Phatak, P. & Burger, A. M. Telomerase and its potential for therapeutic intervention. Br. J. Pharmacol. (2007).

  42. Finkel, T., S. M. & Blasco, M. A. The common biology of cancer and ageing. Nature 448, 767–774 (2007).

    CAS  PubMed  Google Scholar 

  43. Blasco, M. A. Telomere length, stem cells and aging. Nature Chem. Biol. 3, 640–649 (2007).

    CAS  Google Scholar 

  44. Greider, C. W. Telomeres, telomerase and senescence. BioEssays 12, 363–368 (1990).

    CAS  PubMed  Google Scholar 

  45. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995). The RNA component of human telomerase is cloned and characterized, enabling specific modulation of telomerase activity and facilitating the discovery of telomerase inhibitors targeting the RNA template region of telomerase.

    CAS  PubMed  Google Scholar 

  46. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997). The catalytic protein component of human telomerase (TERT) is cloned, enabling further experimental manipulation of telomerase in normal and tumour tissues, and the development of the first telomerase-based drugs (TERT vaccines) to enter clinical trials.

    CAS  PubMed  Google Scholar 

  47. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).

    CAS  PubMed  Google Scholar 

  48. Harrington, L. et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev. 11, 3109–3115 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Weinrich, S. L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nature Genet. 17, 498–502 (1997).

    CAS  PubMed  Google Scholar 

  50. Kilian, A. et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum. Mol. Genet. 6, 2011–2019 (1997).

    CAS  PubMed  Google Scholar 

  51. Nakayama, J.-I. et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nature Genet. 18, 65–68 (1998).

    CAS  PubMed  Google Scholar 

  52. Cortez-Gonzalez, X. & Zanetti, M. Telomerase immunity from bench to bedside: round one. J. Transl. Med. 5, 12 (2007).

    PubMed  PubMed Central  Google Scholar 

  53. Fakhoury, J., Nimmo, G. A. & Autexier, C. Harnessing telomerase in cancer therapeutics. Anticancer Agents Med. Chem. 7, 475–483 (2007).

    CAS  PubMed  Google Scholar 

  54. Hiyama, E. & Hiyama, K. Telomerase as tumor marker. Cancer Lett. 194, 221–233 (2003).

    CAS  PubMed  Google Scholar 

  55. Armanios, M. & Greider, C. W. Telomerase and cancer stem cells. Cold Spring Harb. Symp. Quant. Biol. 70, 205–208 (2005).

    CAS  PubMed  Google Scholar 

  56. Ho, M. M., Nq, A. V., Lam, S. & Hung., J. Y. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67, 4827–4833 (2007).

    CAS  PubMed  Google Scholar 

  57. Phatak, P. et al. Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism. Br. J. Cancer 96, 1223–1233 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Camp, E. R. et al. Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin. Cancer Res. 11, 397–405 (2005).

    CAS  PubMed  Google Scholar 

  59. Bilsland, A. E. et al. Selective ablation of human cancer cells by telomerase-specific adenoviral suicide gene therapy vectors expressing bacterial nitroreductase. Oncogene 22, 370–380 (2003). In vivo proof of concept using a prodrug suicide gene approach driven by either the hTR or the TERT promoter in a non-oncolytic adenoviral vector.

    CAS  PubMed  Google Scholar 

  60. Zhang, Q. et al. Increased safety with preserved antitumoral efficacy on hepatocellular carcinoma with dual-regulated oncolytic adenovirus. Clin. Cancer Res. 12, 6523–6531 (2006).

    CAS  PubMed  Google Scholar 

  61. Irving, J. et al. Conditionally replicative adenovirus driven by the human telomerase promoter provides broad-spectrum antitumor activity without liver toxicity. Cancer Gene Ther. 11, 174–185 (2004). In vivo proof of concept and demonstration of safety for a conditional replicative oncolytic virus driven by the TERT promoter.

    CAS  PubMed  Google Scholar 

  62. Li, S., Crothers, J., Haqq, C. M. & Blackburn, E. H. Cellular and gene expression responses involved in the rapid growth inhibition of human cancer cells by RNA interference-mediated depletion of telomerase RNA. J. Biol. Chem. 280, 23709–23717 (2005).

    CAS  PubMed  Google Scholar 

  63. Xu, L. & Blackburn, E. H. Human cancer cells harbor T-stumps, a distinct class of extremely short telomeres. Mol. Cell. 28, 315–327 (2007).

    PubMed  PubMed Central  Google Scholar 

  64. Haider, S. M., Parkinson, G. N. & Neidle, S. Structure of a G-quadruplex-ligand complex. J. Mol. Biol. 326, 117–125 (2003).

    CAS  PubMed  Google Scholar 

  65. Patel, D., Phan, A. & Kuryavyi, V. Human telomere, oncogenic promoter and 5′-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucl. Acids Res. 35, 7429–7455 (2007).

    CAS  PubMed  Google Scholar 

  66. Gowan, S. et al. A G-quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. Mol. Pharmacol. 61, 1154–1162 (2002).

    CAS  PubMed  Google Scholar 

  67. Gunaratnam, M. et al. Mechanism of acridine-based telomerase inhibition and telomere shortening. Biochem. Pharmacol. 74, 679–689 (2007).

    CAS  PubMed  Google Scholar 

  68. Salvati, E. et al. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J. Clin. Invest. 117, 3236–3247 (2007). In vivo proof of concept for a late preclinical drug candidate targeting the telomere.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Oganesian, L. & Bryan, T. Physiological relevance of telomeric G-quadruplex formation: a potential drug target. Bioessays 29, 155–165 (2007).

    CAS  PubMed  Google Scholar 

  70. Pascolo, E. et al. Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J. Biol. Chem. 277, 15566–15572 (2002).

    CAS  PubMed  Google Scholar 

  71. Ward, R. J. & Autexier, C. Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment. Mol. Pharmacol. 68, 779–786 (2005).

    CAS  PubMed  Google Scholar 

  72. Barma, D. K., Elayadi, A., Falck, J. R. & Corey, D. R. Inhibition of telomerase by BIBR 1532 and related analogues. Bioorg. Med. Chem. Lett. 13, 1333–1336 (2003).

    CAS  PubMed  Google Scholar 

  73. Piotrowska, K. et al. Optimization of the TRAP assay to evaluate specificity of telomerase inhibitors. Lab. Invest. 85, 1565–1569 (2005). Care must be taken in using the standard PCR-based TRAP assay for evaluation of telomerase inhibitors.

    CAS  PubMed  Google Scholar 

  74. Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med. 7, 1028–1034 (2001).

    CAS  PubMed  Google Scholar 

  75. Asai, A. et al. A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res. 63, 3931–3939 (2003).

    CAS  PubMed  Google Scholar 

  76. Herbert, B. et al. Lipid modification of GRN163, an N3′→P5′ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene 24, 5262–5268 (2005). GRN163L, a telomerase inhibitor now in clinical trials, is demonstrated to have significantly enhanced cellular activity compared with its non-lipidated parent compound, GRN163.

    CAS  PubMed  Google Scholar 

  77. Dikmen, Z. G. et al. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res. 65, 1–8 (2005).

    Google Scholar 

  78. Jackson, D. A. et al. Antiadhesive effects of GRN163L – an oligonucleotide N3′→P5′ thio-phosphoramidate targeting telomerase. Cancer Res. 67, 1121–1129 (2007).

    CAS  PubMed  Google Scholar 

  79. Gellert, G. C., Dikmen, Z. G., Wright, W. E., Gryaznov, S. & Shay, J. W. Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res. Treat. 1–9 (2005).

  80. Hochreiter, A. E. et al. Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin. Cancer Res. 12, 3184–3192 (2006).

    CAS  PubMed  Google Scholar 

  81. Gomez-Millan, J., Goldblatt, E. M., Gryaznov, S. M., Mendonca, M. S. & Herbert, B. S. Specific telomere dysfunction induced by GRN163L increases radiation sensitivity in breast cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 67, 897–905 (2007). A representative report illustrating the telomere length-dependent activity of GRN163L in certain tumours, and synergy of telomerase inhibition and radiation in models of breast cancer.

    CAS  PubMed  Google Scholar 

  82. Djojosubroto, M. W. et al. Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology 42, 1–12 (2005).

    Google Scholar 

  83. Ozawa, T. et al. Antitumor effects of specific telomerase inhibitor GRN163 in human glioblastoma xenografts. Neuro Oncol. 6, 218–226 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dikmen, Z. G., Wright, W. E., Shay, J. W. & Gryaznov, S. M. Telomerase targeted oligonucleotide thio-phosphoramidates in T24-luc bladder cancer cells. J. Cell Biochem. (2007).

  85. Akiyama, M. et al. Effects of oligonucleotide N3′→P5′ thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells. Cancer Res. 63, 6187–6194 (2003).

    CAS  PubMed  Google Scholar 

  86. Wang, E. S. et al. Telomerase inhibition with an oligonucleotide telomerase template antagonist: in vitro and in vivo studies in multiple myeloma and lymphoma. Blood 103, 258–266 (2004).

    CAS  PubMed  Google Scholar 

  87. Nair, N. K. et al. Induction of cytotoxic T cells responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nature Med. 6, 1011–1013 (2000).

    CAS  PubMed  Google Scholar 

  88. Vonderheide, R. et al. Equivalent induction of telomerase-specific cytotoxic T lymphocytes from tumor-bearing patients and healthy individuals. Cancer Res. 61, 8366–8370 (2001).

    CAS  PubMed  Google Scholar 

  89. Cohen, S. B. et al. Protein composition of catalytically active human telomerase from immortal cells. Science 315, 1850–1853 (2007). The first report of a substantially pure form of human telomerase and the essential protein components associated with telomerase activity in a cell-free system.

    CAS  PubMed  Google Scholar 

  90. Gannage, M. et al. Ex vivo characterization of multiepitopic tumor-specific CD8 T cells in patients with chronic myeloid leukemia: implications for vaccine development and adoptive cellular immunotherapy. J. Immunol. 174, 8210–8218 (2005).

    CAS  PubMed  Google Scholar 

  91. Filaci, G. et al. Frequency of telomerase-specific CD8+ T lymphocytes in cancer patients. Blood 107, 1505–1512 (2005).

    PubMed  Google Scholar 

  92. Nava-Parada, P. & Emens, L. A. GV-1001, an injectable telomerase peptide vaccine for the treatment of solid cancers. Curr. Opin. Mol. Ther. 9, 490–497 (2007). The immulogical and apparent clinical responses with GV1001, a telomerase peptide vaccine now in phase II and III studies, are reported.

    CAS  PubMed  Google Scholar 

  93. Brunsvig, P. F. et al. Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol. Immunother. 55, 1553–1564 (2006).

    CAS  PubMed  Google Scholar 

  94. Su, Z. et al. Enhanced induction of telomerase-specific CD4+ T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res. 62, 5041–5048 (2002).

    CAS  PubMed  Google Scholar 

  95. Dikmen, Z. et al. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res. 7866–7873 (2005).

    CAS  PubMed  Google Scholar 

  96. Vonderheide, R. H. et al. Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lymphocytes. Clin. Cancer Res. 10, 828–839 (2004).

    CAS  PubMed  Google Scholar 

  97. Su, Z. et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J. Immunol. 174, 3798–3807 (2005). Strong immunological responses and signs of apparent clinical activity associated with immune responses are reported in prostate cancer patients given autologous TERT mRNA-transfected dendritic cell vaccines.

    CAS  PubMed  Google Scholar 

  98. Mavroudis, D. et al. A phase I study of the optimized cryptic peptide TERT572Y in patients with advanced malignancies. Oncology 70, 306–314 (2006).

    CAS  PubMed  Google Scholar 

  99. Parkhurst, M. R. et al. Immunization of patients with the hTERT:540–548 peptide induces peptide-reactive T lymphocytes that do not recognize tumors endogenously expressing telomerase. Clin. Cancer Res. 10, 4688–4698 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Domchek, S. M. et al. Telomerase-specific T-cell immunity in breast cancer: effect of vaccination on tumor immunosurveillance. Cancer Res. 67, 10546–10555 (2007). Induction of TERT-specific tumour-infiltrating cytotoxic T cells is associated with apparent signs of clinical activity with a TERT peptide vaccine, and patients with induced immune responses had longer median survival than those without induced immune responses.

    CAS  Google Scholar 

  101. Ramirez, R. D., Wright, W. E., Shay, J. W. & Taylor, R. S. Implications of telomerase activity in human hair follicles. J. Invest. Dermatol. 108, 113–117 (1997).

    CAS  PubMed  Google Scholar 

  102. Danet-Desnoyers, G. A., Luongo, J. L., Bonnet, D. A., Domchek, S. M. & Vonderheide, R. H. Telomerase vaccination has no detectable effect on SCID-repopulating and colony-forming activities in the bone marrow of cancer patients. Exp. Hematol. 33, 1275–1280 (2005).

    CAS  PubMed  Google Scholar 

  103. Hultdin, M. et al. Association between telomere length and VH gene mutation status in chronic lymphocytic leukaemia: clinical and biological implications. Br. J. Cancer 88, 593–598 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Damle, R. N. et al. Telomere length and telomerase activity delineate distinctive replicative features of the B-CLL subgroups defined by immunoglobulin V gene mutations. Blood 103, 375–382 (2004).

    CAS  PubMed  Google Scholar 

  105. Counter, C. M., Hirte, H. W., Bacchetti, S. & Harley, C. B. Telomerase activity in human ovarian carcinoma. Proc. Natl Acad. Sci. USA 91, 2900–2904 (1994). The first demonstration of specific telomerase expression in human tumour biopsy samples.

    CAS  PubMed  Google Scholar 

  106. Saretzki, G., Ludwig, A., von Zglinicki, T. & Runnebaum, I. Ribozyme-mediated telomerase inhibition induces immediate cell loss but not telomere shortening in ovarian cancer cells. Cancer Gene Ther. 8, 827–834 (2001).

    CAS  PubMed  Google Scholar 

  107. Jiang, F., Bao, J., Li, P., Nicosia, S. V. & Bai, W. Induction of ovarian cancer cell apoptosis by 1,25-dihydroxyvitamin D3 through the down-regulation. J. Biol. Chem. 279, 53213–53221 (2004).

    CAS  PubMed  Google Scholar 

  108. Roth, A. et al. Short telomeres and high telomerase activity in T-cell prolymphocytic leukemia. Leukemia 21, 2456–2462 (2007).

    CAS  PubMed  Google Scholar 

  109. Wong, K.-K. et al. Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nature Genet. 26, 85–88 (2000).

    CAS  PubMed  Google Scholar 

  110. Tacken, P. J., de Vries, J. M., Torensma, R. & Figdor, C. G. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nature Rev. Immunol. 7, 790–802 (2007).

    CAS  Google Scholar 

  111. Effros, R. B. Telomerase induction in T cells: A cure for aging and disease? Exp. Gerontol. 42, 416–420 (2007).

    CAS  PubMed  Google Scholar 

  112. Goronzy, J. J. et al. Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J. Virol. 75, 12182–12187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ostergaard, M., Olesen, L. H., Hasle, H. & Hokland, K. E. WT1 gene expression: An excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukemia patients — results from a single centre study. Br. J. Haematol. 125, 590–600 (2004).

    CAS  PubMed  Google Scholar 

  114. Roth, A. et al. Telomerase levels control the lifespan of human T lymphocytes. Blood 102, 849–857 (2003).

    PubMed  Google Scholar 

  115. Vaziri, H. et al. Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc. Natl Acad. Sci. USA 91, 9857–9860 (1994).

    CAS  PubMed  Google Scholar 

  116. Engelhardt, M. et al. Telomerase activity and telomere length in pediatric patients with malignancies undergoing chemotherapy. Leukemia 12, 13–24 (1998).

    CAS  PubMed  Google Scholar 

  117. Ricca, I. et al. Marked telomere shortening in mobilized peripheral blood progenitor cells (PBPC) following two tightly spaced high-dose chemotherapy courses with G-CSF. Leukemia 19, 644–651 (2005).

    CAS  PubMed  Google Scholar 

  118. Thornley, I. et al. Early hematopoietic reconstitution after clinical stem cell transplantation: evidence for stochastic stem cell behavior and limited acceleration in telomere loss. Blood 99, 2387–2396 (2002).

    CAS  PubMed  Google Scholar 

  119. Franco, S. et al. Telomere dynamics in childhood leukemia and solid tumors: a follow-up study. Leukemia 17, 401–410 (2003).

    CAS  PubMed  Google Scholar 

  120. Harley, C. B. Telomerase therapeutics for degenerative diseases. Curr. Mol. Med. 5, 205–211 (2005).

    CAS  PubMed  Google Scholar 

  121. Zhong, Z. H. et al. Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres. J. Biol. Chem. 282, 29314–29322 (2007).

    CAS  PubMed  Google Scholar 

  122. Chang, S., Khoo, C. M., Naylor, M. L., Maser, R. S. & DePinho, R. A. Telomere-based crisis: functional differences between telomerase activation and ALT in tumor progression. Genes Dev. 17, 88–100 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Unryn, B., Cook, L. & Riabowol, K. Paternal age is positively linked to telomere length of children. Aging Cell 4, 97–101 (2005).

    CAS  PubMed  Google Scholar 

  124. Njajou, O. T. et al. Telomere length is paternally inherited and is associated with parental lifespan. Proc. Natl Acad. Sci. USA 104, 12135–12139 (2007).

    CAS  PubMed  Google Scholar 

  125. Ulaner, G. A. & Giudice, L. C. Developmental regulation of telomerase activity in human fetal tissues during gestation. Mol. Hum. Reprod. 3, 769–773 (1997).

    CAS  PubMed  Google Scholar 

  126. Xu, J. & Yang, X. Telomerase activity in bovine embryos during early development. Biol. Reprod. 63, 1124–1128 (2000).

    CAS  PubMed  Google Scholar 

  127. Schaetzlein, S. et al. Telomere length is reset during early mammalian embryogenesis. Proc. Natl Acad. Sci. USA 101, 8034–8038 (2004).

    CAS  PubMed  Google Scholar 

  128. d' Adda di Fagagna, D. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    PubMed  Google Scholar 

  129. Karlseder, J., Smogorzewska, A. & de Lange, T. Senescence induced by altered telomere state, not telomere loss. Science 295, 2446–2449 (2002).

    CAS  PubMed  Google Scholar 

  130. Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W. & Harley, C. B. Telomere end-replication problem and cell aging. J. Mol. Biol. 225, 951–960 (1992).

    CAS  PubMed  Google Scholar 

  131. Baerlocher, G. M., Vulto, I., de Jong, G. & Lansdorp, P. M. Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nature Protoc. 1, 2365–2376 (2006).

    CAS  Google Scholar 

  132. van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997).

    CAS  PubMed  Google Scholar 

  133. Teixeira, M. T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117, 323–335 (2004).

    CAS  PubMed  Google Scholar 

  134. Ouellette, M. et al. Subsenescent telomere lengths in fibroblasts immortalized by limiting amounts of telomerase. J. Biol. Chem. 275, 10072–10076 (2000).

    CAS  PubMed  Google Scholar 

  135. Liu, Y., Kha, H., Ungrin, M., Robinson, M. O. & Harrington, L. Preferential maintenance of critically short telomeres in mammalian cells heterozygous for mTert. Proc. Natl Acad. Sci. USA 99, 3597–3602 (2002).

    CAS  PubMed  Google Scholar 

  136. Hug, N. & Lingner, J. Telomere length homeostasis. Chromosoma 115, 413–425 (2006).

    CAS  PubMed  Google Scholar 

  137. Wallweber, G., Gryaznov, S., Pongracz, K. & Pruzan, R. Interaction of human telomerase with its primer substrate. Biochemistry 42, 589–600 (2003). Analysis of human telomerase primer binding and dissociation kinetics enabled characterization of the mechanism of action of template antagonist telomerase inhibitor GRN163L.

    CAS  PubMed  Google Scholar 

  138. Hemann, M., Strong, M., Hao, L. & Greider, C. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    CAS  PubMed  Google Scholar 

  139. Baird, D. M. Telomere dynamics in human cells. Biochimie 90, 116–121 (2008).

    CAS  PubMed  Google Scholar 

  140. Mitchell, J. R., Cheng, J. & Collins, K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol. Cell. Biol. 19, 567–576 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bernhardt, S. L. et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br. J. Cancer 95, 1474–1482 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Bolonaki, I. et al. Vaccination of patients with advanced non-small-cell lung cancer with an optimized cryptic human telomerase reverse transcriptase peptide. J. Clin. Oncol. 25, 2727–2734 (2007).

    CAS  PubMed  Google Scholar 

  143. Millard, F. E., Gerloni, M., Derrah, D., Farness, P. & Zanetti, M. Phase I study of transgenic B lymphocyte immunization (TLI) against telomerase in androgen-independent prostate cancer (PC). J. Clin. Oncol. 22, 2459 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Calvin B. Harley is a shareholder, employee and officer with Geron Corporation.

Related links

Related links

DATABASES

National Cancer Institute

bladder cancer

brain cancer

breast cancer

cervical cancer

liver cancer

lung cancer

lymphoma

melanoma

multiple myeloma

ovarian cancer

pancreatic cancer

prostate cancer

renal cell cancer

National Cancer Institute Drug Dictionary

 carboplatin

GRN163L

paclitaxel

FURTHER INFORMATION

Geron Corporation

Shay/Wright Laboratory

University of Utah Learn Genetics

Glossary

Replicative senescence

Cell-cycle arrest after a characteristic number of cell divisions (the 'Hayflick limit'), typically triggered by a DNA damage checkpoint associated with one or more dysfunctional telomeres.

Crisis

A cellular state characterized by massive genomic instability and a high probability of cell death due to critically short telomeres.

Cancer stem cell

An immortal cancer cell with self-renewing capacity and the ability to create or sustain a tumour cell population. For some tumour types, relatively non-stringent assays have been used to identify putative cancer stem cells.

Therapeutic window

The range of doses or window of time in which a drug is therapeutically active without being unacceptably toxic.

Suicide genes

Genes that, when actively expressed, lead to death of the cells. Expression of suicide genes is controlled by promoters (genetic regulators) that are preferentially activated in tumour cells (for example, telomerase promoters). Examples are genes that encode proteins that control replication of oncolytic viruses or enzymes that convert a prodrug into a toxic substance.

Ribonucleoprotein

An association of protein and RNA. Telomerase is an example of a ribonucleoprotein with a specific enzymatic activity.

G-quadruplex

A four-stranded nucleic acid structure stabilized by non-Watson–Crick base-pairing within stacks of four planar-orientated guanosine nucleotides. G-quadruplex structures can form within or between G-rich strands of telomeric DNA.

Major histocompatibility complex (MHC) class I and class II

The MHC genes encode proteins that process and bind antigens (peptide fragments from self or non-self proteins). The antigen-binding proteins reside on the cell surface and present antigens to the T-cell receptor on T cells. Class I MHC-encoded proteins are expressed on all nucleated cells (including tumour cells and antigen-presenting cells) and display their antigen to cytotoxic T cells by binding CD8. Class II MHC-encoded proteins are expressed on specialized antigen-presenting cells, which present their antigen to T-helper cells by binding CD4.

Human leukocyte antigen

(HLA). HLA genes are part of the major histocompatibility complex and encode the proteins that bind and present antigens to T cells.

Antigen-presenting cell

Cells such as dendritic cells, macrophages and B cells that inherently express both major histocompatibility complex class I and class II genes and present antigen to T cells.

Prostate-specific antigen velocity

The rate of increase in levels of prostate-specific antigen circulating in plasma.

Granulocyte–macrophage colony-stimulating factor

A growth factor that stimulates production and migration of granulocytes and monocytes.

Phenotypic lag

The delay between the initiation of telomere loss by telomerase inhibition and the arrest of cell proliferation owing to a dysfunctional telomere.

Alternative lengthening of telomeres

(ALT). A recombination pathway for telomere maintenance observed in some telomerase-negative cells (in vitro and in vivo).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harley, C. Telomerase and cancer therapeutics. Nat Rev Cancer 8, 167–179 (2008). https://doi.org/10.1038/nrc2275

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing