Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Establishing anaerobic hydrocarbon-degrading enrichment cultures of microorganisms under strictly anoxic conditions

Abstract

Traditionally, the description of microorganisms starts with their isolation from an environmental sample. Many environmentally relevant anaerobic microorganisms grow very slowly, and often they rely on syntrophic interactions with other microorganisms. This impedes their isolation and characterization by classic microbiological techniques. We developed and applied an approach for the successive enrichment of syntrophic hydrocarbon-degrading microorganisms from environmental samples. We collected samples from microbial mat-covered hydrothermally heated hydrocarbon-rich sediments of the Guaymas Basin and mixed them with synthetic mineral medium to obtain sediment slurries. Supplementation with defined substrates (i.e., methane or butane), incubation at specific temperatures, and a regular maintenance procedure that included the measurement of metabolic products and stepwise dilutions enabled us to establish highly active, virtually sediment-free enrichment cultures of actively hydrocarbon-degrading communities in a 6-months to several-years' effort. Using methane as sole electron donor shifted the originally highly diverse microbial communities toward defined mixed cultures dominated by syntrophic consortia consisting of anaerobic methane-oxidizing archaea (ANME) and different sulfate-reducing bacteria. Cultivation with butane at 50 °C yielded consortia of archaea belonging to Candidatus Syntrophoarchaeum and Candidatus Desulfofervidus auxilii partner bacteria. This protocol also describes sampling for further molecular characterization of enrichment cultures by fluorescence in situ hybridization (FISH), and transcriptomics and metabolite analyses, which can provide insights into the functioning of hydrocarbon metabolism in archaea and resolve important mechanisms that enable electron transfer to their sulfate-reducing partner bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Setups for the production of anaerobic medium (Step 1).
Figure 2
Figure 3: Setup for the temperature-controlled fixation of cell material for transcriptome analysis (Step 23C(ii–vi)).
Figure 4: The culture medium in serum bottles.
Figure 5: Appearance of enrichment cultures during cultivation.

Similar content being viewed by others

References

  1. Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Edwards, T. & McBride, B. New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol. 29, 540–545 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gieg, L.M., Davidova, I.A., Duncan, K.E. & Suflita, J.M. Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ. Microbiol. 12, 3074–3086 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Strous, M., Heijnen, J., Kuenen, J.G. & Jetten, M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol. 50, 589–596 (1998).

    Article  CAS  Google Scholar 

  5. Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H.E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Winogradsky, S. Sur les organismes de la nitrification. Comptes Rendus Acad. Sci. 110, 1013–1016 (1890).

    Google Scholar 

  7. Beijerinck, M.W. Anhaufungsversuche mit Ureumbakterien. Centralblatt f. Bakteriologie II 7, 33–61 (1901).

    Google Scholar 

  8. Harder, W., Kuenen, J. & Matin, A. Microbial selection in continuous culture. J. Appl. Micobiol. 43, 1–24 (1977).

    CAS  Google Scholar 

  9. Johnsen, A.R., Wick, L.Y. & Harms, H. Principles of microbial PAH-degradation in soil. Environ. Pollut. 133, 71–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Wittebolle, L., Vervaeren, H., Verstraete, W. & Boon, N. Quantifying community dynamics of nitrifiers in functionally stable reactors. Appl. Environ. Microbiol. 74, 286–293 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Whittenbury, R., Phillips, K. & Wilkinson, J. Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiology 61, 205–218 (1970).

    CAS  Google Scholar 

  12. Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999).

    Article  CAS  Google Scholar 

  13. Reeburgh, W.S. & Heggie, D.T. Microbial methane consumption reactions and their effect on methane distributions in freshwater and marine environments. Limnol. Oceanogr. 22, 1–9 (1977).

    Article  CAS  Google Scholar 

  14. Welhan, J.A. & Lupton, J.E. Light hydrocarbon gases in Guaymas Basin hydrothermal fluids: thermogenic versus abiogenic origin. AAPG Bull. 71, 215–223 (1987).

    CAS  Google Scholar 

  15. Proskurowski, G. et al. Abiogenic hydrocarbon production at lost city hydrothermal field. Science 319, 604–607 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Boetius, A. & Wenzhofer, F. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat. Geosci. 6, 725–734 (2013).

    Article  CAS  Google Scholar 

  17. Rueter, P. et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372, 455–458 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Laso-Pérez, R. et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539, 396–401 (2016).

    Article  PubMed  CAS  Google Scholar 

  20. Rabus, R., Fukui, M., Wilkes, H. & Widdle, F. Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl. Environ. Microbiol. 62, 3605–3613 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zengler, K., Richnow, H.H., Rossello-Mora, R., Michaelis, W. & Widdel, F. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401, 266–269 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Meckenstock, R.U., Annweiler, E., Michaelis, W., Richnow, H.H. & Schink, B. Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl. Environ. Microbiol. 66, 2743–2747 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, L.-Y. et al. Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. Int. Biodeterior. Biodegrad. 65, 444–450 (2011).

    Article  CAS  Google Scholar 

  24. Schink, B. Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol. Ecol. 1, 69–77 (1985).

    Article  Google Scholar 

  25. Rios-Hernandez, L.A., Gieg, L.M. & Suflita, J.M. Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer. Appl. Environ. Microbiol. 69, 434–443 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raghoebarsing, A.A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. McGlynn, S.E., Chadwick, G.L., Kempes, C.P. & Orphan, V.J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Jaekel, U. et al. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J. 7, 885–895 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Jaekel, U., Vogt, C., Fischer, A., Richnow, H.-H. & Musat, F. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria. Environ. Microbiol. 16, 130–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Kniemeyer, O. et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449, 898–901 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Widdel, F. in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K.N.) 3787–3798 (Springer, 2010).

  32. Musat, F. & Widdel, F. Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype. Environ. Microbiol. 10, 10–19 (2008).

    CAS  PubMed  Google Scholar 

  33. Tan, B. et al. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples. ISME J. 9, 2028–2045 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jaekel, U., Zedelius, J., Wilkes, H. & Musat, F. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments. Front. Microbiol. 6, 116 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kleindienst, S. et al. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J. 8, 2029–2044 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krukenberg, V. et al. Candidatus desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium of the HotSeep-1 cluster involved in the thermophilic anaerobic oxidation of methane. Environ. Microbiol. 18, 3073–3091 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Wegener, G., Krukenberg, V., Ruff, S.E., Kellermann, M.Y. & Knittel, K. Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane. Front. Microbiol. 7, 46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gieg, L.M., Duncan, K.E. & Suflita, J.M. Bioenergy production via microbial conversion of residual oil to natural gas. Appl. Environ. Microbiol. 74, 3022–3029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Holler, T. et al. Substantial 13C/12C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro. Environ. Microbiol. Rep. 1, 370–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Meulepas, R.J. et al. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors. Biotechnol. Bioeng. 104, 458–470 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Simoneit, B.R.T., Kawka, O.E. & Brault, M. Origin of gases and condensates in the Guaymas Basin hydrothermal system (Gulf of California). Chem. Geol. 71, 169–182 (1988).

    Article  CAS  Google Scholar 

  42. Teske, A. et al. The Guaymas Basin hiking guide to hydrothermal mounds, chimneys, and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation. Front. Microbiol. 7, 75 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cruse, A.M. & Seewald, J.S. Low-molecular weight hydrocarbons in vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge. Geochim. Cosmochim. Acta 74, 6126–6140 (2010).

    Article  CAS  Google Scholar 

  44. Riedel, C., Schmidt, M., Botz, R. & Theilen, F. The Grimsey hydrothermal field offshore North Iceland: crustal structure, faulting and related gas venting. Earth Planet. Sci. Lett. 193, 409–421 (2001).

    Article  CAS  Google Scholar 

  45. Jaeschke, A. et al. Biosignatures in chimney structures and sediment from the Loki's Castle low-temperature hydrothermal vent field at the Arctic Mid-Ocean Ridge. Extremophiles 18, 545–560 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Baker, E.T. & German, C.R. On the global distribution of hydrothermal vent fields. in Mid-Ocean Ridges (eds. German, C.R., Lin, J. & Parson, L.M.) 245–266 (Wiley, 2004).

  47. Nauhaus, K., Boetius, A., Krüger, M. & Widdel, F. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediments from a marine gas hydrate area. Environ. Microbiol. 4, 296–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Wegener, G. et al. Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea). Biogeosciences 5, 1127–1144 (2008).

    Article  CAS  Google Scholar 

  49. Ruff, E.S. et al. Methane seep in shallow-water permeable sediment harbors high diversity of anaerobic methanotrophic communities, Elba, Italy. Front. Microbiol. 7, 374 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Holler, T. et al. Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J. 5, 1946–1956 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Girguis, P.R., Cozen, A.E. & DeLong, E.F. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl. Environ. Microbiol. 71, 3725–3733 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jagersma, G.C. et al. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment. Environ. Microbiol. 11, 3223–3232 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Aoki, M. et al. A long-term cultivation of an anaerobic methane-oxidizing microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor. PLoS One 9, e105356 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Orcutt, B.N. et al. Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep Sea Res. Part II Top. Stud. Oceanogr. 57, 2008–2021 (2010).

    Article  CAS  Google Scholar 

  55. Sikkema, J., De Bont, J. & Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201–222 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McAuliffe, C. Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons1. J. Phys. Chem. 70, 1267–1275 (1966).

    Article  CAS  Google Scholar 

  57. Edwards, E.A. & Grbic´-Galic´, D. Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl. Environ. Microbiol. 58, 2663–2666 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Widdel, F. & Bak, F. in The Prokaryotes Vol. 4 (eds. Trüper H.G., Balows A., Dworkin M., Harder W. & Schleifer K.H.) 3352–3378 (Springer, 1992).

  59. Brock, T.D. & Od'ea, K. Amorphous ferrous sulfide as a reducing agent for culture of anaerobes. Appl. Environ. Microbiol. 33, 254–256 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nauhaus, K., Albrecht, M., Elvert, M., Boetius, A. & Widdel, F. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol. 9, 187–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Wegener, G. & Boetius, A. An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes. Biogeosciences 6, 867–876 (2009).

    Article  CAS  Google Scholar 

  62. Deusner, C., Meyer, V. & Ferdelman, T.G. High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Biotechnol. Bioeng. 105, 524–533 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Y., Henriet, J.-P., Bursens, J. & Boon, N. Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor. Bioresour. Technol. 101, 3132–3138 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Wankel, S.D. et al. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environ. Microbiol. 14, 2726–2740 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Cord-Ruwisch, R. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. Microbiol. Methods 4, 33–36 (1985).

    Article  CAS  Google Scholar 

  66. Aeckersberg, F., Bak, F. & Widdel, F. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156, 5–14 (1991).

    Article  CAS  Google Scholar 

  67. Pawlak, Z. & Pawlak, A.S. Modification of iodometric determination of total and reactive sulfide in environmental samples. Talanta 48, 347–353 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis (Wiley, 2009).

Download references

Acknowledgements

We thank F. Widdel for his advice and guidance in regard to cultivation and the development of this protocol. We are indebted to R. Appel, S. Menger and T. Holler for their contributions to the maintenance of the enrichment cultures and their suggestions for further improvement of our protocol. This protocol was tested with samples collected during Guaymas expedition AT15/45 in December 2016, Chief Scientist A. Teske, NSF grant BIO-OCE 1357238. This work was supported by the DFG Excellence Cluster MARUM and a Leibniz Grant to A. Boetius.

Author information

Authors and Affiliations

Authors

Contributions

R.L.-P., V.K., F.M. and G.W. contributed equally to the design, validation and optimization of this protocol. R.L.-P., V.K. and G.W. prepared the figures; R.L.-P. and G.W. prepared the supplementary videos. R.L.-P., V.K., F.M. and G.W. cooperatively wrote and edited the manuscript.

Corresponding author

Correspondence to Gunter Wegener.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Step 1A.

Preparation of anoxic medium in a Widdel flask. (MOV 29836 kb)

Step 1B.

Preparation of anoxic medium in a Duran bottle. (MOV 29422 kb)

Step 8.

Addition of hydrocarbon substrates to culture bottles. (MOV 12646 kb)

Step 17B.

Enrichment culture transfer without an anoxic chamber. (MOV 20183 kb)

Step 23C.

Collection and preservation of material for RNA extraction using RNAlater. (MP4 25460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laso-Pérez, R., Krukenberg, V., Musat, F. et al. Establishing anaerobic hydrocarbon-degrading enrichment cultures of microorganisms under strictly anoxic conditions. Nat Protoc 13, 1310–1330 (2018). https://doi.org/10.1038/nprot.2018.030

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2018.030

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing