Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice

Abstract

Despite the growing popularity of blood oxygen level–dependent (BOLD) functional MRI (fMRI), understanding of its underlying principles is still limited. This protocol describes a technique for simultaneous measurement of neural activity using fluorescent calcium indicators together with the corresponding hemodynamic BOLD fMRI response in the mouse brain. Our early work using small-molecule fluorophores in rats gave encouraging results but was limited to acute measurements using synthetic dyes. Our latest procedure combines fMRI with optical detection of cell-type-specific virally delivered GCaMP6, a genetically encoded calcium indicator (GECI). GCaMP6 fluorescence, which increases upon calcium binding, is collected by a chronically implanted optical fiber, allowing longitudinal studies in mice. The chronic implant, placed horizontally on the skull, has an angulated tip that reflects light into the brain and is connected via fiber optics to a remote optical setup. The technique allows access to the neocortex and does not require adaptations of commercial MRI hardware. The hybrid approach permits fiber-optic calcium recordings with simultaneous artifact-free BOLD fMRI with full brain coverage and 1-s temporal resolution using standard gradient-echo echo-planar imaging (GE-EPI) sequences. The method provides robust, cell-type-specific readouts to link neural activity to BOLD signals, as emonstrated for task-free ('resting-state') conditions and in response to hind-paw stimulation. These results highlight the power of fiber photometry combined with fMRI, which we aim to further advance in this protocol. The approach can be easily adapted to study other molecular processes using suitable fluorescent indicators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experimental setup.
Figure 2: Comparison between acute and chronic preparations.
Figure 3: Implantation of the horizontal fiber-optic implant.
Figure 4: Example data from chronic simultaneous Ca2+ recording/BOLD fMRI under resting-state conditions.
Figure 5: Simultaneous Ca2+ recording/BOLD fMRI data in response to electrical hind-paw stimulation.

Similar content being viewed by others

References

  1. Kwong, K.K. et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 89, 5675–5679 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huster, R.J., Debener, S., Eichele, T. & Herrmann, C.S. Methods for simultaneous EEG-fMRI: an introductory review. J. Neurosci. 32, 6053–6060 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Steinbrink, J. et al. Illuminating the BOLD signal: combined fMRI–fNIRS studies. Magn. Reson. Imaging 24, 495–505 (2006).

    Article  PubMed  Google Scholar 

  5. Hillman, E.M.C. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37, 161–181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ives, J.R., Warach, S., Schmitt, F., Edelman, R.R. & Schomer, D.L. Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr. Clin. Neurophysiol. 87, 417–420 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Oishi, N. et al. Neural correlates of regional EEG power change. Neuroimage 36, 1301–1312 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Brinker, G. et al. Simultaneous recording of evoked potentials and T2*-weighted MR images during somatosensory stimulation of rat. Magn. Reson. Med. 41, 469–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Goense, J.B.M. & Logothetis, N.K. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr. Biol. 18, 631–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Scanziani, M. & Häusser, M. Electrophysiology in the age of light. Nature 461, 930–939 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Rose, T., Goltstein, P.M., Portugues, R. & Griesbeck, O. Putting a finishing touch on GECIs. Front. Mol. Neurosci. 7, 88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tian, L., Hires, S.A. & Looger, L.L. Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb. Protoc. 2012, 647–656 (2012).

    Article  PubMed  Google Scholar 

  14. Yang, W. & Yuste, R. In vivo imaging of neural activity. Nat. Methods 14, 349–359 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murphy, T.H. et al. High-throughput automated home-cage mesoscopic functional imaging of mouse cortex. Nat. Commun. 7, 11611 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adelsberger, H., Grienberger, C., Stroh, A. & Konnerth, A. In vivo calcium recordings and channelrhodopsin-2 activation through an optical fiber. Cold Spring Harb. Protoc. 2014, pdb.prot084145 (2014).

    Article  PubMed  Google Scholar 

  17. Guo, Q. et al. Multi-channel fiber photometry for population neuronal activity recording. Biomed. Opt. Express 6, 3919 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murayama, M., Perez-Garci, E., Luscher, H.-R. & Larkum, M.E. Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. J. Neurophysiol. 98, 1791–1805 (2007).

    Article  PubMed  Google Scholar 

  19. Lütcke, H. et al. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front. Neural Circuits 4, 9 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Stroh, A. et al. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 77, 1136–1150 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fuhrmann, F. et al. Locomotion, theta oscillations, and the speed-correlated firing of hippocampal neurons are controlled by a medial septal glutamatergic circuit. Neuron 86, 1253–1264 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Cui, G. et al. Deep brain optical measurements of cell type-specific neural activity in behaving mice. Nat. Protoc. 9, 1213–1228 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. González, J.A., Iordanidou, P., Strom, M., Adamantidis, A. & Burdakov, D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat. Commun. 7, 11395 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Schulz, K. et al. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat. Methods 9, 597–602 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, J.H. et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scherf, T. et al. Hippocampal CA3 activation alleviates fMRI-BOLD responses in the rat prefrontal cortex induced by electrical VTA stimulation. PLoS One 12, e0172926 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lohani, S., Poplawsky, A.J., Kim, S.-G. & Moghaddam, B. Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI. Mol. Psychiatry 22, 585–594 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Kahn, I. et al. Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons. J. Neurosci. 31, 15086–15091 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Christie, I.N., Wells, J.A., Kasparov, S., Gourine, A.V. & Lythgoe, M.F. Volumetric spatial correlations of neurovascular coupling studied using single pulse opto-fMRI. Sci. Rep. 7, 41583 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmid, F. et al. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings. J. Cereb. Blood Flow Metab. 36, 1885–1900 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Rungta, R.L., Osmanski, B.-F., Boido, D., Tanter, M. & Charpak, S. Light controls cerebral blood flow in naive animals. Nat. Commun. 8, 14191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shigetomi, E. et al. Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J. Gen. Physiol. 141, 633–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsien, R.Y. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M. & Miyawaki, A. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. USA 101, 10554–10559 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horikawa, K. et al. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat. Methods 7, 729–732 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. Elife 5, 1888–1891 (2016).

    Article  CAS  Google Scholar 

  40. Srinivasan, R. et al. Ca2+ signaling in astrocytes from Ip3r2/ mice in brain slices and during startle responses in vivo. Nat. Neurosci. 18, 708–717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Margolis, D.J. et al. Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nat. Neurosci. 15, 1539–1546 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Stobart, J.L. et al. Long-term in vivo calcium imaging of astrocytes reveals distinct cellular compartment responses to sensory stimulation. Cereb. Cortex 1–15 (2016).

  43. Doronina-Amitonova, L.V. et al. Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice. Sci. Rep. 3, 3265 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garcia, M.I., Chen, J.J. & Boehning, D. Genetically encoded calcium indicators for studying long-term calcium dynamics during apoptosis. Cell Calcium 61, 44–49 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Margolis, D.J., Lütcke, H., Helmchen, F., Weber, B. & Haiss, F. in Optical Imaging of Neocortical Dynamics (eds. Weber, B. & Helmchen, F.) 151–173 Humana Press, 2014.

  46. Pan, W. et al. Simultaneous FMRI and electrophysiology in the rodent brain. J. Vis. Exp. http://dx.doi.org/10.3791/1901 (2010).

  47. Oeltermann, A., Augath, M.A. & Logothetis, N.K. Simultaneous recording of neuronal signals and functional NMR imaging. Magn. Reson. Imaging 25, 760–774 (2007).

    Article  PubMed  Google Scholar 

  48. Kim, C.K. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13, 325–328 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ren, W. et al. Dynamic measurement of tumor vascular permeability and perfusion using a hybrid system for simultaneous magnetic resonance and fluorescence imaging. Mol. Imaging Biol. 18, 191–200 (2016).

    Article  PubMed  Google Scholar 

  50. Murayama, M. & Larkum, M.E. In vivo dendritic calcium imaging with a fiberoptic periscope system. Nat. Protoc. 4, 1551–1559 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Inagaki, S. & Nagai, T. Current progress in genetically encoded voltage indicators for neural activity recording. Curr. Opin. Chem. Biol. 33, 95–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Potzkei, J. et al. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor. BMC Biol. 10, 28 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tantama, M., Hung, Y.P. & Yellen, G. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J. Am. Chem. Soc. 133, 10034–10037 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuner, T. & Augustine, G.J. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27, 447–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Deuschle, K. et al. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci. 14, 2304–2314 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. San Martín, A. et al. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS One 8, e57712 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mächler, P. et al. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 23, 94–102 (2016).

    Article  PubMed  CAS  Google Scholar 

  58. Violin, J.D., Zhang, J., Tsien, R.Y. & Newton, A.C. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J. Cell Biol. 161, 899–909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roth, B.L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, F., Wang, L.-P., Boyden, E.S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Zeng, H. & Madisen, L. Mouse transgenic approaches in optogenetics. Prog. Brain Res. 196, 193–213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dana, H. et al. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS One 9, e108697 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Desai, M. et al. Mapping brain networks in awake mice using combined optical neural control and fMRI. J. Neurophysiol. 105, 1393–1405 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Gao, Y.-R. et al. Time to wake up: studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. Neuroimage 153, 382–398 (2016).

    Article  PubMed  Google Scholar 

  65. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Srinivasan, R. et al. New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo. Neuron 92, 1181–1195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harris, J.A. et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front. Neural Circuits 8, 76 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Baltes, C., Radzwill, N., Bosshard, S., Marek, D. & Rudin, M. Micro MRI of the mouse brain using a novel 400MHz cryogenic quadrature RF probe. NMR Biomed. 22, 834–842 (2009).

    Article  PubMed  Google Scholar 

  71. Hanusch, C., Hoeger, S. & Beck, G.C. Anaesthesia of small rodents during magnetic resonance imaging. Methods 43, 68–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Ueki, M., Mies, G. & Hossmann, K.A. Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol. Scand. 36, 318–322 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Soma, L.R. Anesthetic and analgesic considerations in the experimental animal. Ann. N. Y. Acad. Sci. 32–47 (1983).

    Article  CAS  PubMed  Google Scholar 

  74. Zerbi, V., Grandjean, J., Rudin, M. & Wenderoth, N. Mapping the mouse brain with rs-fMRI: an optimized pipeline for functional network identification. Neuroimage 123, 11–21 (2015).

    Article  PubMed  Google Scholar 

  75. Grandjean, J., Schroeter, A., Batata, I. & Rudin, M. Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. Neuroimage 102, 838–847 (2014).

    Article  PubMed  Google Scholar 

  76. Lerner, T.N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao, F. BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat. Neuroimage 39, 248–260 (2009).

    Article  Google Scholar 

  78. Bosshard, S.C. et al. Assessment of brain responses to innocuous and noxious electrical forepaw stimulation in mice using BOLD fMRI. Pain 151, 655–663 (2010).

    Article  PubMed  Google Scholar 

  79. Adamczak, J.M., Farr, T.D., Seehafer, J.U., Kalthoff, D. & Hoehn, M. High field BOLD response to forepaw stimulation in the mouse. Neuroimage 51, 704–712 (2010).

    Article  PubMed  Google Scholar 

  80. Schroeter, A., Schlegel, F., Seuwen, A., Grandjean, J. & Rudin, M. Specificity of stimulus-evoked fMRI responses in the mouse: the influence of systemic physiological changes associated with innocuous stimulation under four different anesthetics. Neuroimage 94, 372–384 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Schlegel, F., Schroeter, A. & Rudin, M. The hemodynamic response to somatosensory stimulation in mice depends on the anesthetic used: implications on analysis of mouse fMRI data. Neuroimage 116, 40–49 (2015).

    Article  PubMed  Google Scholar 

  82. Yu, X. et al. Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV-V of the rat whisker-barrel cortex. Neuroimage 59, 1451–1460 (2012).

    Article  PubMed  Google Scholar 

  83. Van Camp, N., Verhoye, M., De Zeeuw, C.I. & Van der Linden, A. Light stimulus frequency dependence of activity in the rat visual system as studied with high-resolution BOLD fMRI. J. Neurophysiol. 95, 3164–3170 (2006).

    Article  PubMed  Google Scholar 

  84. Jia, H., Rochefort, N.L., Chen, X. & Konnerth, A. In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nat. Protoc. 6, 28–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Monti, M.M. Statistical analysis of fMRI time-series: a critical review of the GLM approach. Front. Hum. Neurosci. 5, 28 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Albers, F., Schmid, F., Wachsmuth, L. & Faber, C. Line scanning fMRI reveals earlier onset of optogenetically evoked BOLD response in rat somatosensory cortex as compared to sensory stimulation. Neuroimage 164, 144–154 (2018).

    Article  PubMed  Google Scholar 

  87. Yu, X., Qian, C., Chen, D.-Y., Dodd, S.J. & Koretsky, A.P. Deciphering laminar-specific neural inputs with line-scanning fMRI. Nat. Methods 11, 55–58 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Glover, C.P.J., Bienemann, A.S., Heywood, D.J., Cosgrave, A.S. & Uney, J.B. Adenoviral-mediated, high-level, cell-specific transgene expression: a SYN1-WPRE cassette mediates increased transgene expression with no loss of neuron specificity. Mol. Ther. 5, 509–516 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Kügler, S. et al. Neuron-specific expression of therapeutic proteins: evaluation of different cellular promoters in recombinant adenoviral vectors. Mol. Cell. Neurosci. 17, 78–96 (2001).

    Article  PubMed  CAS  Google Scholar 

  90. Lee, Y., Messing, A., Su, M. & Brenner, M. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56, 481–493 (2008).

    Article  PubMed  Google Scholar 

  91. Lowery, R.L. & Majewska, A.K. Intracranial injection of adeno-associated viral vectors. J. Vis. Exp. http://dx.doi.org/10.3791/2140 (2010).

  92. Cetin, A., Komai, S., Eliava, M., Seeburg, P.H. & Osten, P. Stereotaxic gene delivery in the rodent brain. Nat. Protoc. 1, 3166–3173 (2007).

    Article  CAS  Google Scholar 

  93. Gonzalez-Castillo, J., Roopchansingh, V., Bandettini, P.A. & Bodurka, J. Physiological noise effects on the flip angle selection in BOLD fMRI. Neuroimage 54, 2764–2778 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Yizhar, O., Fenno, L., Davidson, T., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Aravanis, A.M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    Article  PubMed  Google Scholar 

  96. Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Gulf Professional Publishing, 2004).

  97. Sparta, D.R. et al. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7, 12–23 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Steriade, M., Nunez, A. & Amzica, F. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Landsness, E.C. et al. Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep 32, 1273–1284 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ma, Y. et al. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons. Proc. Natl. Acad. Sci. USA 113, E8463–E8471 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Matsui, T., Murakami, T. & Ohki, K. Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity. Proc. Natl. Acad. Sci. USA 113, 6556–6561 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Duffy, B.A., Choy, M., Chuapoco, M.R., Madsen, M. & Lee, J.H. MRI compatible optrodes for simultaneous LFP and optogenetic fMRI investigation of seizure-like afterdischarges. Neuroimage 123, 173–184 (2015).

    Article  PubMed  Google Scholar 

  103. Airaksinen, A.M. et al. Simultaneous fMRI and local field potential measurements during epileptic seizures in medetomidine-sedated rats using raser pulse sequence. Magn. Reson. Med. 64, 1191–1199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Shih, Y.-Y.I. et al. Ultra high-resolution fMRI and electrophysiology of the rat primary somatosensory cortex. Neuroimage 73, 113–120 (2013).

    Article  PubMed  Google Scholar 

  105. Dickey, A.S., Suminski, A., Amit, Y. & Hatsopoulos, N.G. Single-unit stability using chronically implanted multielectrode arrays. J. Neurophysiol. 102, 1331–1339 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Okun, M. et al. Long term recordings with immobile silicon probes in the mouse cortex. PLoS One 11, e0151180 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Paralikar, K.J. et al. Feasibility and safety of longitudinal magnetic resonance imaging in a rodent model with intracortical microwire implants. J. Neural Eng. 6, 34001 (2009).

    Article  CAS  Google Scholar 

  108. Lütcke, H., Margolis, D.J. & Helmchen, F. Steady or changing? Long-term monitoring of neuronal population activity. Trends Neurosci. 36, 375–384 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an R'Equip grant of the Swiss National Science Foundation (SNSF grant 316030_405019 to F.H. and B.W., grants 310030_141202 and 310030B_160310 to M.R.), a Joint Collaborative Project with F. Hoffmann La-Roche (Y.S. and F.H.) and an ERC Advanced Grant to F.H. (grant 670757; BRAINCOMPATH).

Author information

Authors and Affiliations

Authors

Contributions

M.R., F.H., F.S., and Y.S. developed the concept and designed the experiments. F.S. performed the surgeries and experiments with the help of Y.S. and A.S., and prepared the manuscript. F.H. edited the manuscript with contributions from M.R., B.W., A.S., and J.S. Y.S. designed the optical setup and developed the software tools with contributions from F.S. J.S. developed and validated the astrocyte-specific constructs.

Corresponding author

Correspondence to Markus Rudin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Evaluation of the GCaMP6s expression under neuronal or astrocytic promoter.

(a) Photomicrograph of a coronal brain section at the site of primary sensory cortex of a mouse transduced with the neuron specific AAV‐hSyn1‐GCaMP6s. Shown is the GFP channel indicating the area of GCaMP expression. (b) Confocal microscopic section (70 μm thickness) showing a zoomed-in view of a cortical S1 region 2 months after AAV‐hSyn1‐GCaMP6s transduction. The majority of neurons (morphologically discernible as pyramidal neurons with their apical dendrites pointing upwards) show cytosolic GCaMP6s expression and a dark spot (nucleus). Only a small number of neurons appear to show nuclear filling which may indicate toxicity.

(c-e) Show the results of mice transduced with astrocyte‐specific AAV‐GFAP‐GCaMP6s. All scale bars are 20 μm.

(c) Two‐photon microscopic images of GCaMP6s expression (left), the astrocyte‐specific dye sulforhodamine‐101 (20mg/kg, imaged 100 min after i.v. injection, middle), and the overlay of both channels (right). (d) Immunohistochemistry of brain slices at the virus injection site, further stained with anti‐GFP antibody (left), anti-GFAP antibody (middle), and the overlay of both channels (right). (e) Immunohistochemistry to test for microglial activation. As in (d) anti-GFP antibody was applied (left), but anti-Iba1 was used to label microglia (middle). The overlay revealed no overlap between the two channels (right). For further details and additional control experiments of the astrocyte-specific GCaMP6 construct, see Stobart et al.1

1. Stobart, J. L. et al. Long-term in vivo calcium imaging of astrocytes reveals distinct cellular compartment responses to sensory stimulation. Cereb. Cortex 1–15 (2016). doi:10.1093/gbe/evw245

Supplementary Figure 2 Examples of coronal EPI slices for animals with fiber-optic implants, showing varying degrees of susceptibility artifacts.

(a) Representative EPI image in the absence of any artifacts. (b) Small susceptibility artifact caused by air bubbles enclosed in the Kwik-Sil at the fiber implantation site. (c) Strong susceptibility artifact caused by inadequate dental material. Dental materials typically contain paramagnetic particles to render them radiopaque.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Supplementary Methods 1–3. (PDF 2611 kb)

Subcutaneous injection.

Demonstrating the injection of the local analgesic subcutaneously under the scalp. (MP4 24579 kb)

Scalp removal.

Demonstrating the procedure and the amount of the scalp that should be removed. (MP4 16192 kb)

Craniotomy.

Demonstrating the use of the microdrill to prepare the craniotomy for the fiber-optic implant. (MP4 16638 kb)

Dental composite wall.

Demonstrating application of the dental composite and the use of the dental curing lamp to create a barrier at the outer circumference of the skull. (MP4 9228 kb)

Connecting the implant.

Demonstrating how the fiber-optic patch cable is connected with a fiber-optic implant via a ceramic split sleeve. (MP4 27985 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlegel, F., Sych, Y., Schroeter, A. et al. Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice. Nat Protoc 13, 840–855 (2018). https://doi.org/10.1038/nprot.2018.003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2018.003

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing