Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR

Abstract

Suitable membrane mimetics are crucial to the performance of structural and functional studies of membrane proteins. Phospholipid nanodiscs (formed when a membrane scaffold protein encircles a small portion of a lipid bilayer) have native-like membrane properties. These have been used for a variety of functional studies, but structural studies by high-resolution solution-state NMR spectroscopy of membrane proteins in commonly used nanodiscs of 10-nm diameter were limited by the high molecular weight of these particles, which caused unfavorably large NMR line widths. We have recently constructed truncated versions of the membrane scaffold protein, allowing the preparation of a range of stepwise-smaller nanodiscs (6- to 8-nm diameter) to overcome this limitation. Here, we present a protocol on the assembly of phospholipid nanodiscs of various sizes for structural studies of membrane proteins with solution-state NMR spectroscopy. We describe specific isotope-labeling schemes required for working with large membrane protein systems in nanodiscs, and provide guidelines on the setup of NMR non-uniform sampling (NUS) data acquisition and high-resolution NMR spectra reconstruction. We discuss critical points and pitfalls relating to optimization of nanodiscs for NMR spectroscopy and outline a strategy for the high-resolution structure determination and positioning of isotope-labeled membrane proteins in nanodiscs using nuclear Overhauser enhancement spectroscopy (NOESY) spectroscopy, residual dipolar couplings (RDCs) and paramagnetic relaxation enhancements (PREs). Depending on the target protein of interest, nanodisc assembly and purification can be achieved within 12–24 h. Although the focus of this protocol is on protein NMR, these nanodiscs can also be used for (cryo-) electron microscopy (EM) and small-angle X-ray and neutron-scattering studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of smaller nanodiscs for solution-state NMR spectroscopy.
Figure 2
Figure 3: Geometrical considerations on the available lipid bilayer surface area in a nanodisc that can be replaced by a target membrane protein.
Figure 4: Flow scheme for the optimization of nanodisc preparations for NMR spectroscopy.
Figure 5: Optimization of NMR spectra.
Figure 6: High-resolution structure determination of membrane proteins in smaller nanodiscs using multidimensional NMR spectroscopy and selective isotope labeling.
Figure 7: Measurement of residual dipolar couplings and paramagnetic relaxation enhancements of membrane proteins in phospholipid nanodiscs.

Similar content being viewed by others

References

  1. Linke, D. Detergents: an overview. Methods Enzymol. 463, 603–617 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, A.G. Lipid-protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Seddon, A.M., Curnow, P. & Booth, P.J. Membrane proteins, lipids and detergents: not just a soap opera. Biochim. Biophys. Acta 1666, 105–117 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Malia, T.J. & Wagner, G. NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL. Biochemistry 46, 514–525 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Losonczi, J.A. et al. NMR studies of the anti-apoptotic protein Bcl-xL in micelles. Biochemistry 39, 11024–11033 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Sanders, C.R. II & Landis, G.C. Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry 34, 4030–4040 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Bocharov, E.V. et al. Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J. Biol. Chem. 282, 16256–16266 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Lau, T.L., Kim, C., Ginsberg, M.H. & Ulmer, T.S. The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J. 28, 1351–1361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lind, J., Graslund, A. & Maler, L. Membrane interactions of dynorphins. Biochemistry 45, 15931–15940 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Caffrey, M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu. Rev. Biophys. 38, 29–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Judge, P.J. & Watts, A. Recent contributions from solid-state NMR to the understanding of membrane protein structure and function. Curr. Opin. Chem. Biol. 15, 690–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Denisov, I.G., Grinkova, Y.V., Lazarides, A.A. & Sligar, S.G. Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J. Am. Chem. Soc. 126, 3477–3487 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Nath, A., Atkins, W.M. & Sligar, S.G. Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46, 2059–2069 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ritchie, T.K. et al. Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fang, Y., Gursky, O. & Atkinson, D. Lipid-binding studies of human apolipoprotein A-I and its terminally truncated mutants. Biochemistry 42, 13260–13268 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Krieger, M., Brown, M.S., Faust, J.R. & Goldstein, J.L. Replacement of endogenous cholesteryl esters of low density lipoprotein with exogenous cholesteryl linoleate. Reconstitution of a biologically active lipoprotein particle. J. Biol. Chem. 253, 4093–4101 (1978).

    CAS  PubMed  Google Scholar 

  18. Bayburt, T.H., Grinkova, Y.V. & Sligar, S.G. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2, 853–856 (2002).

    Article  CAS  Google Scholar 

  19. Etzkorn, M. et al. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21, 394–401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raschle, T. et al. Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J. Am. Chem. Soc. 131, 17777–17779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, T.Y., Raschle, T., Hiller, S. & Wagner, G. Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. Biochim. Biophys. Acta 1818, 1562–1569 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Hagn, F., Etzkorn, M., Raschle, T. & Wagner, G. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J. Am. Chem. Soc. 135, 1919–1925 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bibow, S. et al. Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nat. Struct. Mol. Biol. 24, 187–193 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Kucharska, I., Edrington, T.C., Liang, B. & Tamm, L.K. Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins. J. Biomol. NMR 61, 261–274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bibow, S. et al. Measuring membrane protein bond orientations in nanodiscs via residual dipolar couplings. Protein Sci. 23, 851–856 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yao, Y. et al. Conformation of BCL-XL upon membrane integration. J. Mol. Biol. 427, 2262–2270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yao, Y. et al. Characterization of the membrane-inserted C-terminus of cytoprotective BCL-XL. Protein Expr. Purif. 122, 56–63 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mors, K. et al. Modified lipid and protein dynamics in nanodiscs. Biochim. Biophys. Acta 1828, 1222–1229 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Kijac, A.Z., Li, Y., Sligar, S.G. & Rienstra, C.M. Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46, 13696–13703 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Ding, Y., Fujimoto, L.M., Yao, Y. & Marassi, F.M. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation. J. Biomol. NMR 61, 275–286 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Zorzi, R., Mi, W., Liao, M. & Walz, T. Single-particle electron microscopy in the study of membrane protein structure. Microscopy 65, 81–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bao, H. et al. Exocytotic fusion pores are composed of both lipids and proteins. Nat. Struct. Mol. Biol. 23, 67–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Battiste, J.L. & Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear Overhauser effect data. Biochemistry 39, 5355–5365 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, D., Hilty, C., Wider, G. & Wuthrich, K. Effective rotational correlation times of proteins from NMR relaxation interference. J. Magn. Reson. 178, 72–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Spector, A.A. & Yorek, M.A. Membrane lipid composition and cellular function. J. Lipid Res. 26, 1015–1035 (1985).

    CAS  PubMed  Google Scholar 

  37. van Meer, G., Voelker, D.R. & Feigenson, G.W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goricanec, D. et al. Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding. Proc. Natl. Acad. Sci. USA 113, E3629–E3638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Velez-Ruiz, G.A. & Sunahara, R.K. Reconstitution of G protein-coupled receptors into a model bilayer system: reconstituted high-density lipoprotein particles. Methods Mol. Biol. 756, 167–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hagn, F. & Wagner, G. Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs. J. Biomol. NMR 61, 249–260 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Morgado, L., Zeth, K., Burmann, B.M., Maier, T. & Hiller, S. Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy. J. Biomol. NMR 61, 333–345 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Susac, L., Horst, R. & Wuthrich, K. Solution-NMR characterization of outer-membrane protein A from E. coli in lipid bilayer nanodiscs and detergent micelles. Chembiochem 15, 995–1000 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Salzmann, M., Pervushin, K., Wider, G., Senn, H. & Wuthrich, K. TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. Natl. Acad. Sci. USA 95, 13585–13590 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goto, N.K., Gardner, K.H., Mueller, G.A., Willis, R.C. & Kay, L.E. A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J. Biomol. NMR 13, 369–374 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Mazhab-Jafari, M.T. et al. Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc. J. Am. Chem. Soc. 135, 3367–3370 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Hyberts, S.G., Arthanari, H. & Wagner, G. Applications of non-uniform sampling and processing. Top. Curr. Chem. 316, 125–148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hyberts, S.G., Robson, S.A. & Wagner, G. Exploring signal-to-noise ratio and sensitivity in non-uniformly sampled multi-dimensional NMR spectra. J. Biomol. NMR 55, 167–178 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Hyberts, S.G., Takeuchi, K. & Wagner, G. Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. J. Am. Chem. Soc. 132, 2145–2147 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nasr, M.L. et al. Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat. Methods 14, 49–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Kapust, R.B. et al. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng. 14, 993–1000 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, P.S., Toribara, T.Y. & Warner, H. Microdetermination of phosphorus. Anal. Chem. 28, 1756–1758 (1956).

    Article  CAS  Google Scholar 

  53. Fiske, C.H. & Subbarow, Y. The colorimetric determination of phosphorous. J. Biol. Chem. 66, 375–400 (1925).

    CAS  Google Scholar 

  54. Vranken, W.F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley, 1986).

  56. Hansen, M.R., Mueller, L. & Pardi, A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065–1074 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, K. & Tjandra, N. The use of residual dipolar coupling in studying proteins by NMR. Top. Curr. Chem. 326, 47–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bertini, I. et al. Persistent contrast enhancement by sterically stabilized paramagnetic liposomes in murine melanoma. Magn. Resonance Med. 52, 669–672 (2004).

    Article  CAS  Google Scholar 

  59. Morgan, C.R. et al. Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs. Mol. Cell Proteomics 10, M111 010876 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McDougle, D.R., Palaria, A., Magnetta, E., Meling, D.D. & Das, A. Functional studies of N-terminally modified CYP2J2 epoxygenase in model lipid bilayers. Protein Sci. 22, 964–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bayburt, T.H., Leitz, A.J., Xie, G., Oprian, D.D. & Sligar, S.G. Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 282, 14875–14881 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Dalal, K. & Duong, F. Reconstitution of the SecY translocon in nanodiscs. Methods Mol. Biol. 619, 145–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Eggensperger, S., Fisette, O., Parcej, D., Schafer, L.V. & Tampe, R. An annular lipid belt is essential for allosteric coupling and viral inhibition of the antigen translocation complex TAP (transporter associated with antigen processing). J. Biol. Chem. 289, 33098–33108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gawrisch, K., Soubias, O. & Mihailescu, M. Insights from biophysical studies on the role of polyunsaturated fatty acids for function of G-protein coupled membrane receptors. Prostaglandins Leukot. Essent. Fatty Acids 79, 131–134 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ma, G. et al. Inside-out Ca(2+) signalling prompted by STIM1 conformational switch. Nat. Commun. 6, 7826 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Shenkarev, Z.O. et al. Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. Biochim. Biophys. Acta 1828, 776–784 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Bayburt, T.H. & Sligar, S.G. Membrane protein assembly into nanodiscs. FEBS Lett. 584, 1721–1727 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Silvius, J.R. Thermotropic Phase Transitions of Pure Lipids in Model Membranes and Their Modifications by Membrane Proteins (Wiley, 1982).

  69. Orekhov, V.Y., Ibraghimov, I. & Billeter, M. Optimizing resolution in multidimensional NMR by three-way decomposition. J. Biomol. NMR 27, 165–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Frueh, D.P. et al. Non-uniformly sampled double-TROSY hNcaNH experiments for NMR sequential assignments of large proteins. J. Am. Chem. Soc. 128, 5757–5763 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hyberts, S.G. et al. Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J. Am. Chem. Soc. 129, 5108–5116 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mobli, M., Maciejewski, M.W., Gryk, M.R. & Hoch, J.C. Automatic maximum entropy spectral reconstruction in NMR. J. Biomol. NMR 39, 133–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Rovnyak, D. et al. Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J. Magn. Reson. 170, 15–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Schmieder, P., Stern, A.S., Wagner, G. & Hoch, J.C. Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain. J. Biomol. NMR 4, 483–490 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Hyberts, S.G., Milbradt, A.G., Wagner, A.B., Arthanari, H. & Wagner, G. Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J. Biomol. NMR 52, 315–327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Gardner, K.H. & Kay, L.E. The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu. Rev. Biophys. Biomol. Struct. 27, 357–406 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Tugarinov, V., Kanelis, V. & Kay, L.E. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1, 749–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Plevin, M.J., Hamelin, O., Boisbouvier, J. & Gans, P. A simple biosynthetic method for stereospecific resonance assignment of prochiral methyl groups in proteins. J. Biomol. NMR 49, 61–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Ayala, I., Sounier, R., Use, N., Gans, P. & Boisbouvier, J. An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J. Biomol. NMR 43, 111–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Gans, P. et al. Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew. Chem. Int. Ed. Engl. 49, 1958–1962 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Hyberts (Harvard Medical School) for advice on NMR non-uniform sampling (NUS) setup and data processing. F.H. acknowledges support of the Technical University of Munich–Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement no. 291763, the Helmholtz Center Munich and the Helmholtz Society (grant VH-NG-1039), the Center for Integrated Protein Science Munich (CIPSM) and German Research Foundation (DFG) grant SFB1035 (project B13). M.L.N. acknowledges support from National Institutes of Health (NIH) grant F32GM113406. G.W. acknowledges support from the NIH through grants GM075879, GM047467, GM094608, AI037581 and EB002026.

Author information

Authors and Affiliations

Authors

Contributions

F.H. performed the experiments and analyzed the data; F.H. wrote the paper, and G.W. and M.L.N. commented on and edited the paper.

Corresponding authors

Correspondence to Franz Hagn or Gerhard Wagner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagn, F., Nasr, M. & Wagner, G. Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat Protoc 13, 79–98 (2018). https://doi.org/10.1038/nprot.2017.094

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.094

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing