Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Metal- and additive-free photoinduced borylation of haloarenes

Abstract

Boronic acids and esters have critical roles in the areas of synthetic organic chemistry, molecular sensors, materials science, drug discovery, and catalysis. Many of the current applications of boronic acids and esters require materials with very low levels of transition metal contamination. Most of the current methods for the synthesis of boronic acids, however, require transition metal catalysts and ligands that must be removed via additional purification procedures. This protocol describes a simple, metal- and additive-free method of conversion of haloarenes directly to boronic acids and esters. This photoinduced borylation protocol does not require expensive and toxic metal catalysts or ligands, and it produces innocuous and easy-to-remove by-products. Furthermore, the reaction can be carried out on multigram scales in common-grade solvents without the need for reaction mixtures to be deoxygenated. The setup and purification steps are typically accomplished within 1–3 h. The reactions can be run overnight, and the protocol can be completed within 13–16 h. Two representative procedures that are described in this protocol provide details for preparation of a boronic acid (3-cyanopheylboronic acid) and a boronic ester (1,4-benzenediboronic acid bis(pinacol)ester). We also discuss additional details of the method that will be helpful in the application of the protocol to other haloarene substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoinduced borylation of haloarenes.
Figure 2: Photoinduced borylation reactions described in this protocol.

Similar content being viewed by others

References

  1. Suzuki, A. & Brown, H.C. Organic Syntheses via Boranes Vol. 3 (Aldrich Chemical Company, 2003).

  2. Boronic Acids 2nd edn. (ed. Hall, D.G.) (Wiley-VCH, 2011).

  3. Gutekunst, W.R. & Baran, P.S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    Article  CAS  Google Scholar 

  4. Corey, E.J. Catalytic enantioselective Diels-Alder reactions: methods, mechanistic fundamentals, pathways, and applications. Angew. Chem. Int. Ed. 41, 1650–1667 (2002).

    Article  CAS  Google Scholar 

  5. Dimitrijević, E. & Taylor, M.S. Organoboron acids and their derivatives as catalysts for organic synthesis. ACS Catal. 3, 945–962 (2013).

    Article  Google Scholar 

  6. Ishihara, K. Synthesis and application of organoboron compounds. Top. Organomet. Chem. 49, 243–270 (2015).

    Article  CAS  Google Scholar 

  7. Lorbach, A., Huebner, A. & Wagner, M. Aryl(hydro)boranes: versatile building blocks for boron-doped π-electron materials. Dalton Trans. 41, 6048–6063 (2012).

    Article  CAS  Google Scholar 

  8. Jäkle, F. Recent advances in the synthesis and applications of organoborane polymers. Top. Organomet. Chem. 49, 297–325 (2015).

    Article  Google Scholar 

  9. Trippier, P.C. & McGuigan, C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. Med. Chem. Commun. 1, 183–198 (2010).

    Article  CAS  Google Scholar 

  10. Yang, W., Gao, W. & Wang, B. Applications of boronic acids in chemical biology and medicinal chemistry. In Boronic Acids 2nd edn. (ed. Hall, D.G.) 591–619 (Wiley-VCH, 2011).

  11. Ban, H.S. & Nakamura, H. Boron-based drug design. Chem. Rec. 15, 616–635 (2015).

    Article  CAS  Google Scholar 

  12. Fujita, N., Shinkai, S. & James, T.D. Boronic acids in molecular self-assembly. Chem. Asian J. 3, 1076–1091 (2008).

    Article  CAS  Google Scholar 

  13. Mastalerz, M. Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew. Chem. Int. Ed. 49, 5042–5053 (2010).

    Article  CAS  Google Scholar 

  14. James, T.D. & Shinkai, S. Artificial receptors as chemosensors for carbohydrates. Top. Curr. Chem. 218, 159–200 (2002).

    Article  CAS  Google Scholar 

  15. Jelinek, R. & Kolusheva, S. Carbohydrate biosensors. Chem. Rev. 104, 5987–6015 (2004).

    Article  CAS  Google Scholar 

  16. Pal, A., Berube, M. & Hall, D.G. Design, synthesis, and screening of a library of peptidyl bis-boroxoles as low molecular weight receptors for complex oligosaccharides in water: identification of a receptor for the tumour marker TF-antigen. Angew. Chem. Int. Ed. 49, 1492–1495 (2010).

    Article  CAS  Google Scholar 

  17. Wade, C.R., Broomsgrove, A.E.J., Aldridge, S. & Gabbaï, F.P. Fluoride ion complexation and sensing using organoboron compounds. Chem. Rev. 110, 3958–3984 (2010).

    Article  CAS  Google Scholar 

  18. Wu, X. et al. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem. Soc. Rev. 42, 8032–8048 (2013).

    Article  CAS  Google Scholar 

  19. Guan, Y. & Zhang, Y. Boronic acid-containing hydrogels: synthesis and their applications. Chem. Soc. Rev. 42, 8106–8121 (2013).

    Article  CAS  Google Scholar 

  20. You, L., Zha, D. & Anslyn, E.V. Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 115, 7840–7892 (2015).

    Article  CAS  Google Scholar 

  21. Bunnett, J.F. Aromatic substitution by the SRN1 mechanism. Acc. Chem. Res. 11, 413–420 (1978).

    Article  CAS  Google Scholar 

  22. Uyeda, C., Tan, Y.C., Fu, G.C. & Peters, J.C. A new family of nucleophiles for photoinduced, copper-catalyzed cross-couplings via single-electron transfer: reactions of thiols with aryl halides under mild conditions (0 °C). J. Am. Chem. Soc. 135, 9548–9552 (2013).

    Article  CAS  Google Scholar 

  23. Li, L. et al. Photoinduced metal-catalyst-free aromatic Finkelstein reaction. J. Am. Chem. Soc. 137, 8328–8331 (2015).

    Article  CAS  Google Scholar 

  24. Chen, K., He, P., Zhang, S. & Li, P. Synthesis of aryl trimethylstannanes from aryl halides: an efficient photochemical method. Chem. Commun. 52, 9125–9128 (2016).

    Article  CAS  Google Scholar 

  25. Mella, M. et al. Photoinduced, ionic Meerwein arylation of olefins. J. Org. Chem. 66, 6344–6352 (2001).

    Article  CAS  Google Scholar 

  26. Dichiarante, V., Fagnoni, M. & Albini, A. Metal-free synthesis of sterically crowded biphenyls by direct Ar–H substitution in alkyl benzenes. Angew. Chem. Int. Ed. 46, 6495–6498 (2007).

    Article  CAS  Google Scholar 

  27. Grimshaw, J. & de Silva, A.P. Photochemistry and photocyclization of aryl halides. Chem. Soc. Rev. 10, 181–203 (1981).

    Article  CAS  Google Scholar 

  28. Lu, S.C. et al. Intramolecular photochemical cross-coupling reactions of 3-acyl-2-haloindoles and 2-chloropyrrole-3-carbaldehydes with substituted benzenes. Adv. Synth. Catal. 351, 2839–2844 (2009).

    Article  CAS  Google Scholar 

  29. Mfuh, A.M., Doyle, J.D., Chhetri, B., Arman, H.D. & Larionov, O.V. Scalable, metal- and additive-free, photoinduced borylation of haloarenes and quaternary arylammonium salts. J. Am. Chem. Soc. 138, 2985–2988 (2016).

    Article  CAS  Google Scholar 

  30. Chen, K., Zhang, S., He, P. & Li, P. Efficient metal-free photochemical borylation of aryl halides under batch and continuous-flow conditions. Chem. Sci. 7, 3676–3680 (2016).

    Article  CAS  Google Scholar 

  31. Chen, K., Cheung, M.S., Lin, Z. & Li, P. Metal-free borylation of electron-rich aryl (pseudo)halides under continuous-flow photolytic conditions. Org. Chem. Front. 3, 875–879 (2016).

    Article  CAS  Google Scholar 

  32. Mfuh, A.M. et al. Additive- and metal-free, predictably 1,2- and 1,3-regioselective, photoinduced dual C–H/C–X borylation of haloarenes. J. Am. Chem. Soc. 138, 8408–8411 (2016).

    Article  CAS  Google Scholar 

  33. Li, G. et al. Elemental impurities in pharmaceutical excipients. J. Pharm. Sci. 104, 4197–4206 (2015).

    Article  CAS  Google Scholar 

  34. McDaniel, F.D., Datar, S.A., Nigam, M. & Ravi Prasad, G.V. Impurity measurements in semiconductor materials using trace element accelerator mass spectrometry. Nucl. Instrum. Methods Phys. Res., Sect. B 190, 826–830 (2002).

    Article  CAS  Google Scholar 

  35. Ishiyama, T., Murata, M. & Miyaura, N. Palladium(0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes: a direct procedure for arylboronic esters. J. Org. Chem. 60, 7508–7510 (1995).

    Article  CAS  Google Scholar 

  36. Murata, M., Watanabe, S. & Masuda, Y. Novel palladium(0)-catalyzed coupling reaction of dialkoxyborane with aryl halides: convenient synthetic route to arylboronates. J. Org. Chem. 62, 6458–6459 (1997).

    Article  CAS  Google Scholar 

  37. Ishiyama, T. & Miyaura, N. Chemistry of Group 13 element-transition metal linkage — the platinum- and palladium-catalyzed reactions of (alkoxo)diborons. J. Organomet. Chem. 611, 392–402 (2000).

    Article  CAS  Google Scholar 

  38. Chow, W.K. et al. A decade advancement of transition metal-catalyzed borylation of aryl halides and sulfonates. RSC Adv. 3, 12518–12539 (2013).

    Article  CAS  Google Scholar 

  39. Cho, J.-Y., Tse, M.K., Holmes, D., Maleczka, R.E. & Smith, M.R. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002).

    Article  CAS  Google Scholar 

  40. Mkhalid, I.A.I., Barnard, J.H., Marder, T.B., Murphy, J.M. & Hartwig, J.F. CH activation for the construction of CB bonds. Chem. Rev. 110, 890–931 (2010).

    Article  CAS  Google Scholar 

  41. Hartwig, J.F. Borylation and silylation of C–H bonds: a platform for diverse C–H bond functionalizations. Acc. Chem. Res. 45, 864–873 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

O.V.L. gratefully acknowledges financial support from the Welch Foundation (AX-1788), the National Science Foundation (NSF; CHE-1455061), the National Institute of General Medical Sciences (NIGMS; SC3GM105579), and the University of Texas at San Antonio.

Author information

Authors and Affiliations

Authors

Contributions

A.M.M., B.D.S., and W.C. carried out the experiments. O.V.L. and A.M.M. designed the experiments and analyzed the data. O.V.L. directed the research. O.V.L. and A.M.M. wrote the manuscript.

Corresponding author

Correspondence to Oleg V Larionov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary information

Supplementary Figures

Supplementary Figures 1–4 (PDF 275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mfuh, A., Schneider, B., Cruces, W. et al. Metal- and additive-free photoinduced borylation of haloarenes. Nat Protoc 12, 604–610 (2017). https://doi.org/10.1038/nprot.2016.184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.184

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing