Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials

Abstract

Evidence continues to grow of the importance of in vitro and in vivo dosimetry in the hazard assessment and ranking of engineered nanomaterials (ENMs). Accurate dose metrics are particularly important for in vitro cellular screening to assess the potential health risks or bioactivity of ENMs. To ensure meaningful and reproducible quantification of in vitro dose, with consistent measurement and reporting between laboratories, it is necessary to adopt standardized and integrated methodologies for (i) generation of stable ENM suspensions in cell culture media; (ii) colloidal characterization of suspended ENMs, particularly of properties that determine particle kinetics in an in vitro system (size distribution and formed agglomerate effective density); and (iii) robust numerical fate and transport modeling for accurate determination of the ENM dose delivered to cells over the course of the in vitro exposure. Here we present an integrated comprehensive protocol based on such a methodology for in vitro dosimetry, including detailed standardized procedures for each of these three critical aims. The entire protocol requires 6–12 h to complete.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Harvard dispersion dosimetry protocol (HDDP).
Figure 2: ENM dispersion protocol.
Figure 3: Volumetric centrifugation method (VCM).
Figure 4: Determination of DSEcr value.
Figure 5: Volume size distribution.
Figure 6: Fate and Transport modeling results.

References

  1. Ma, X., Wang, Q., Rossi, L., Ebbs, S.D. & White, J.C. Multigenerational exposure to cerium oxide nanoparticles: physiological and biochemical analysis reveals transmissible changes in rapid cycling Brassica rapa. NanoImpact 1, 46–54 (2016).

    Article  Google Scholar 

  2. Pyrgiotakis, G. et al. A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures. Environ. Sci. Nano 1, 15–26 (2014).

    CAS  Article  Google Scholar 

  3. Pyrgiotakis, G. et al. Mycobacteria inactivation using engineered water nanostructures (EWNS). Nanomedicine 10, 1175–83 (2014).

    CAS  PubMed  Article  Google Scholar 

  4. Pyrgiotakis, G. et al. Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS). Environ. Sci. Technol. 49, 3737–45 (2015).

    CAS  PubMed  Article  Google Scholar 

  5. Pyrgiotakis, G. et al. Optimization of a nanotechnology based antimicrobial platform for food safety applications using engineered water nanostructures (EWNS). Sci. Rep. 6, 21073 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Roco, M.C., Mirkin, C.A. & Hersan, M.C. Nanotechnology Research Directions for Societal Needs in 2020, Retrospective and Outlook (Springer, 2011).

  7. Servin, A.D. & White, J.C. Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1, 9–12 (2016).

    Article  Google Scholar 

  8. Sotiriou, G.A. et al. Engineering safer-by-design, transparent, silica-coated ZnO nanorods with reduced DNA damage potential. Environ. Sci. Nano 1, 144–153 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Bott, J., Störmer, A. & Franz, R. A model study into the migration potential of nanoparticles from plastics nanocomposites for food contact. Food Packag. Shelf Life 2, 73–80 (2014).

    Article  Google Scholar 

  10. Froggett, S.J., Clancy, S.F., Boverhof, D.R. & Canady, R.A. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part. Fibre Toxicol. 11, 17 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. Grassian, V.H. et al. NanoEHS – defining fundamental science needs: no easy feat when the simple itself is complex. Environ. Sci. Nano 3, 15–27 (2016).

    CAS  Article  Google Scholar 

  12. Konduru, N.V et al. Silica coating influences the corona and biokinetics of cerium oxide nanoparticles. Part. Fibre Toxicol. 12, 31 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Lu, X. et al. In vivo epigenetic effects induced by engineered nanomaterials: a case study of copper oxide and laser printer-emitted engineered nanoparticles. Nanotoxicology 10, 629–39 (2016).

    CAS  PubMed  Article  Google Scholar 

  14. Pal, A.K. et al. Linking exposures of particles released from nano-enabled products to toxicology: an integrated methodology for particle sampling, extraction, dispersion, and dosing. Toxicol. Sci. 146, 321–33 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  15. Watson, C. et al. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 8, 2118–33 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Yetisen, A.K. et al. Nanotechnology in textiles. ACS Nano 10, 3042–3068 (2016).

    CAS  PubMed  Article  Google Scholar 

  17. Zhou, E.H. et al. Assessing the impact of engineered nanoparticles on wound healing using a novel in vitro bioassay. Nanomedicine (Lond.) 9, 2803–15 (2014).

    CAS  Article  Google Scholar 

  18. Balbus, J.M. et al. Meeting report: hazard assessment for nanoparticles--report from an interdisciplinary workshop. Environ. Health Perspect. 115, 1654–9 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  19. George, S. et al. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5, 1805–17 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Krewski, D. et al. Toxicity testing in the 21st century: a vision and a strategy. J. Toxicol. Environ. Health B Crit. Rev. 13, 51–138 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Lai, D.Y. Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4, 1–15 (2012).

    CAS  PubMed  Article  Google Scholar 

  22. Warheit, D.B., Borm, P.J.A., Hennes, C. & Lademann, J. Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal. Toxicol. 19, 631–43 (2007).

    CAS  PubMed  Article  Google Scholar 

  23. Keller, A.A., McFerran, S., Lazareva, A. & Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 15, 1692 (2013).

    Article  Google Scholar 

  24. Wigger, H. et al. Influences of use activities and waste management on environmental releases of engineered nanomaterials. Sci. Total Environ. 535, 160–71 (2015).

    CAS  PubMed  Article  Google Scholar 

  25. Pirela, S.V et al. Development and characterization of an exposure platform suitable for physico-chemical, morphological and toxicological characterization of printer-emitted particles (PEPs). Inhal. Toxicol. 26, 400–8 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Sisler, J.D. et al. Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model. Nanotoxicology 9, 769–79 (2015).

    CAS  PubMed  Article  Google Scholar 

  27. Sotiriou, G.A. et al. An integrated methodology for the assessment of environmental health implications during thermal decomposition of nano-enabled products. Environ. Sci. Nano 2, 262–272 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Wohlleben, W. et al. On the lifecycle of nanocomposites: comparing released fragments and their in-vivo hazards from three release mechanisms and four nanocomposites. Small 7, 2384–95 (2011).

    CAS  PubMed  Article  Google Scholar 

  29. Pirela, S.V. et al. Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: a case study of toxicological implications from nanomaterials released during consumer use. NanoImpact 1, 1–8 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  30. Pirela, S.V et al. Consumer exposures to laser printer-emitted engineered nanoparticles: a case study of life-cycle implications from nano-enabled products. Nanotoxicology 9, 760–8 (2015).

    CAS  PubMed  Article  Google Scholar 

  31. Pirela, S. et al. Effects of copy center particles on the lungs: a toxicological characterization using a Balb/c mouse model. Inhal. Toxicol. 25, 498–508 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Demokritou, P. et al. An in vivo and in vitro toxicological characterisation of realistic nanoscale CeO2 inhalation exposures. Nanotoxicology 7, 1338–50 (2013).

    CAS  PubMed  Article  Google Scholar 

  33. Cohen, J., Deloid, G., Pyrgiotakis, G. & Demokritou, P. Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 7, 417–31 (2013).

    CAS  PubMed  Article  Google Scholar 

  34. Gangwal, S. et al. Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential. Environ. Health Perspect. 119, 1539–46 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Oberdörster, G. Nanotoxicology: in vitro-in vivo dosimetry. Environ. Health Perspect. 120, A13 author reply A13 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  36. DeLoid, G. et al. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat. Commun. 5, 3514 (2014).

    PubMed  Article  CAS  Google Scholar 

  37. DeLoid, G.M. et al. Advanced computational modeling for in vitro nanomaterial dosimetry. Part. Fibre Toxicol. 12, 32 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Pal, A.K. et al. High resolution characterization of engineered nanomaterial dispersions in complex media using tunable resistive pulse sensing technology. ACS Nano 8, 9003–15 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Teeguarden, J.G., Hinderliter, P.M., Orr, G., Thrall, B.D. & Pounds, J.G. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 95, 300–12 (2007).

    CAS  PubMed  Article  Google Scholar 

  40. Bakand, S., Winder, C., Khalil, C. & Hayes, A. Toxicity assessment of industrial chemicals and airborne contaminants: transition from in vivo to in vitro test methods: a review. Inhal. Toxicol. 17, 775–87 (2005).

    CAS  PubMed  Article  Google Scholar 

  41. Pyrgiotakis, G., Blattmann, C.O. & Demokritou, P. Real-time nanoparticle-cell interactions in physiological media by atomic force microscopy. ACS Sustain. Chem. Eng. 2, 1681–1690 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Pyrgiotakis, G., Blattmann, C.O., Pratsinis, S. & Demokritou, P. Nanoparticle-nanoparticle interactions in biological media by atomic force microscopy. Langmuir 29, 11385–95 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Lundqvist, M. et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5, 7503–7509 (2011).

    CAS  PubMed  Article  Google Scholar 

  44. Buford, M.C., Hamilton, R.F. & Holian, A. A comparison of dispersing media for various engineered carbon nanoparticles. Part. Fibre Toxicol. 4, 6 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  45. Sharma, G. et al. Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose-response profiles in vitro. Nanotoxicology 8, 663–75 (2014).

    CAS  PubMed  Article  Google Scholar 

  46. Watson, C.Y., DeLoid, G.M., Pal, A. & Demokritou, P. Buoyant nanoparticles: implications for nano-biointeractions in cellular studies. Small 12, 3172–3180 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Cai, W. The optimized fabrication of nanobubbles as ultrasound contrast agents for tumor imaging. Sci. Rep. 5, 13725 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  48. DasSarma, S. et al. An improved genetic system for bioengineering buoyant gas vesicle nanoparticles from Haloarchaea. BMC Biotechnol. 13, 112 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Schmit, V.L., Martoglio, R., Scott, B., Strickland, A.D. & Carron, K.T. Lab-on-a-bubble: synthesis, characterization, and evaluation of buoyant gold nanoparticle-coated silica spheres. J. Am. Chem. Soc. 134, 59–62 (2012).

    CAS  PubMed  Article  Google Scholar 

  50. Suzuki, R. & Maruyama, K. Effective in vitro and in vivo gene delivery by the combination of liposomal bubbles (bubble liposomes) and ultrasound exposure. Methods Mol. Biol. 605, 473–86 (2010).

    CAS  PubMed  Article  Google Scholar 

  51. Wittmaack, K. Excessive delivery of nanostructured matter to submersed cells caused by rapid gravitational settling. ACS Nano 5, 3766–3778 (2011).

    CAS  PubMed  Article  Google Scholar 

  52. Wittmaack, K. Novel dose metric for apparent cytotoxicity effects generated by in vitro cell exposure to silica nanoparticles. Chem. Res. Toxicol. 24, 150–158 (2011).

    CAS  PubMed  Article  Google Scholar 

  53. Pal, A.K., Bello, D., Cohen, J. & Demokritou, P. Implications of in vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials. Nanotoxicology 9, 871–885 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Cohen, J.M., Teeguarden, J.G. & Demokritou, P. An integrated approach for the in vitro dosimetry of engineered nanomaterials. Part. Fibre Toxicol. 11, 20 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. Cohen, J.M. et al. Tracking translocation of industrially relevant engineered nanomaterials (ENMs) across alveolar epithelial monolayers in vitro. Nanotoxicology 8, 216–25 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Kreyling, W.G. et al. In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics. Beilstein J. Nanotechnol. 5, 1699–711 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. Anjilvel, S. & Asgharian, B. A multiple-path model of particle deposition in the rat lung. Fundam. Appl. Toxicol. 28, 41–50 (1995).

    CAS  PubMed  Article  Google Scholar 

  58. Cassee, F.R. et al. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model. Arch. Toxicol. 76, 277–86 (2002).

    CAS  PubMed  Article  Google Scholar 

  59. Geraets, L., Oomen, A.G., Schroeter, J.D., Coleman, V.A. & Cassee, F.R. Tissue distribution of inhaled micro- and nano-sized cerium oxide particles in rats: results from a 28-day exposure study. Toxicol. Sci. 127, 463–73 (2012).

    CAS  PubMed  Article  Google Scholar 

  60. Pirela, S.V et al. Effects of laser printer-emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive in vitro analysis in human small airway epithelial cells, macrophages, and lymphoblasts. Environ. Health Perspect. 124, 210–219 (2016).

    CAS  PubMed  Article  Google Scholar 

  61. Powers, K.W., Palazuelos, M., Moudgil, B.M. & Roberts, S.M. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1, 42–51 (2007).

    CAS  Article  Google Scholar 

  62. Powers, K.W. et al. Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol. Sci. 90, 296–303 (2006).

    CAS  PubMed  Article  Google Scholar 

  63. Brown, S.C. et al. Nanoparticle characterization for cancer nanotechnology and other biological applications. Methods Mol. Biol. 624, 39–65 (2010).

    CAS  PubMed  Article  Google Scholar 

  64. Brown, S.C. et al. Influence of shape, adhesion and simulated lung mechanics on amorphous silica nanoparticle toxicity. Adv. Powder Technol. 18, 69–79 (2007).

    CAS  Article  Google Scholar 

  65. Crist, R.M. et al. Common pitfalls in nanotechnology: lessons learned from NCI's Nanotechnology Characterization Laboratory. Integr. Biol. (Camb.) 5, 66–73 (2013).

    CAS  Article  Google Scholar 

  66. Patri, A. et al. Nanotechnology characterization laboratory: a resource for translational research in nanomedicine. Abstr. Pap. Am. Chem. Soc. 238, COLL 101 (2008).

  67. Warheit, D.B. & Donner, E.M. How meaningful are risk determinations in the absence of a complete dataset? Making the case for publishing standardized test guideline and 'no effect' studies for evaluating the safety of nanoparticulates versus spurious 'high effect' results from single investigative studies. Sci. Technol. Adv. Mater. 16, 034603 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. Cohen, J.M., DeLoid, G.M. & Demokritou, P. A critical review of in vitro dosimetry for engineered nanomaterials. Nanomedicine (Lond.) 10, 3015–3032 (2015).

    CAS  Article  Google Scholar 

  69. Schulze, C. et al. Not ready to use – overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2, 51–61 (2008).

    CAS  Article  Google Scholar 

  70. Taurozzi, J.S., Hackley, V.A. & Weisner, M.W. Preparation of Nanoparticle Dispersions from Powdered Material Using Ultrasonic Disruption. NIST Special Publication 1200-2, 1–15 (2012) http://dx.doi.org/10.6028/NIST.SP.1200-2.

  71. Taurozzi, J.S., Hackley, V.A. & Wiesner, M.R. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment--issues and recommendations. Nanotoxicology 5, 711–29 (2011).

    CAS  PubMed  Article  Google Scholar 

  72. Taurozzi, J.S., Hackley, V.A. & Wiesner, M.R. A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media. Nanotoxicology 7, 389–401 (2013).

    CAS  PubMed  Article  Google Scholar 

  73. Wu, W. et al. Dispersion method for safety research on manufactured nanomaterials. Ind. Health 52, 54–65 (2014).

    CAS  PubMed  Article  Google Scholar 

  74. Wohlleben, W. Validity range of centrifuges for the regulation of nanomaterials: from classification to as-tested coronas. J. Nanopart. Res. 14, 1300 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  75. Sterling, M.C., Bonner, J.S., Ernest, A.N.S., Page, C.A. & Autenrieth, R.L. Application of fractal flocculation and vertical transport model to aquatic sol-sediment systems. Water Res. 39, 1818–30 (2005).

    CAS  PubMed  Article  Google Scholar 

  76. Carney, R.P. et al. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation. Nat. Commun. 2, 335 (2011).

    PubMed  Article  CAS  Google Scholar 

  77. Hinderliter, P.M. et al. ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part. Fibre Toxicol. 7, 36 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Ma, R. et al. Size-controlled dissolution of organic-coated silver nanoparticles. Environ. Sci. Technol. 46, 752–9 (2012).

    CAS  PubMed  Article  Google Scholar 

  79. Odzak, N., Kistler, D., Behra, R. & Sigg, L. Dissolution of metal and metal oxide nanoparticles in aqueous media. Environ. Pollut. 191, 132–8 (2014).

    CAS  PubMed  Article  Google Scholar 

  80. Kittler, S., Greulich, C., Diendorf, J., Ko¨ller, M. & Epple, M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 22, 4548–4554 (2010).

    CAS  Article  Google Scholar 

  81. Vasyukova, E., Pokrovsky, O.S., Viers, J. & Dupré, B. New operational method of testing colloid complexation with metals in natural waters. Appl. Geochem. 27, 1226–1237 (2012).

    CAS  Article  Google Scholar 

  82. Lu, X. et al. Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology 10, 140–150 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Ayán-Varela, M. et al. Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer. ACS Appl. Mater. Interfaces 7, 10293–307 (2015).

    PubMed  Article  CAS  Google Scholar 

  84. Zhang, L. et al. Rationally designed surfactants for few-layered graphene exfoliation: ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers. ACS Nano 8, 6663–70 (2014).

    CAS  PubMed  Article  Google Scholar 

  85. Vanhecke, D. et al. Quantification of nanoparticles at the single-cell level: an overview about state-of-the-art techniques and their limitations. Nanomedicine (Lond.) 9, 1885–900 (2014).

    CAS  Article  Google Scholar 

  86. Demokritou, P. et al. Development and characterization of a Versatile Engineered Nanomaterial Generation System (VENGES) suitable for toxicological studies. Inhal. Toxicol. 22, 107–116 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Gass, S. et al. A safer formulation concept for flame-generated engineered nanomaterials. ACS Sustain. Chem. Eng. 1, 843–857 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Sotiriou, G.A. et al. Thermal decomposition of nano-enabled thermoplastics: possible environmental health and safety implications. J. Hazard. Mater. 305, 87–95 (2016).

    CAS  PubMed  Article  Google Scholar 

  89. Gauss, C.F. Besprechung des Buchs von L.A. Seeber: Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen usw. Göttingsche Gelehrt. Anzeigen 2, 188–196 (1831).

    Google Scholar 

  90. Song, C., Wang, P. & Makse, H.A. A phase diagram for jammed matter. Nature 453, 629–632 (2008).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This research project was supported by a Harvard–National Institute of Environmental Health Sciences Nanosafety Center grant (1U24ES026946) and a National Science Foundation grant (1436450), both awarded to P.D.

Author information

Authors and Affiliations

Authors

Contributions

G.M.D., J.M.C., G.P., and P.D. co-wrote the manuscript. P.D. oversaw the manuscript preparation.

Corresponding author

Correspondence to Philip Demokritou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Software

Supplementary Software. This file contains the MATLAB .m code to run the distorted grid computational dosimetry model as described in the text. (TXT 40 kb)

Supplementary Data

Supplementary Data. This file contains the dosimetry output obtained from running the distorted grid computational model with parameters set as described in the text for an example Fe2O3 ENM. (XLSX 1920 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DeLoid, G., Cohen, J., Pyrgiotakis, G. et al. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat Protoc 12, 355–371 (2017). https://doi.org/10.1038/nprot.2016.172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.172

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing