Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics

Abstract

Transparent graphene-based neural electrode arrays provide unique opportunities for simultaneous investigation of electrophysiology, various neural imaging modalities, and optogenetics. Graphene electrodes have previously demonstrated greater broad-wavelength transmittance (90%) than other transparent materials such as indium tin oxide (80%) and ultrathin metals (60%). This protocol describes how to fabricate and implant a graphene-based microelectrocorticography (μECoG) electrode array and subsequently use this alongside electrophysiology, fluorescence microscopy, optical coherence tomography (OCT), and optogenetics. Further applications, such as transparent penetrating electrode arrays, multi-electrode electroretinography, and electromyography, are also viable with this technology. The procedures described herein, from the material characterization methods to the optogenetic experiments, can be completed within 3–4 weeks by an experienced graduate student. These protocols should help to expand the boundaries of neurophysiological experimentation, enabling analytical methods that were previously unachievable using opaque metal–based electrode arrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Advantages of a transparent graphene neural electrode array.
Figure 2: Raman spectroscopy of four-layer graphene on Parylene C.
Figure 3: Optogenetic experiments in a Thy1::ChR2 mouse with varying optical stimulation power.
Figure 4: Surgery and electrophysiology equipment and setup.
Figure 5: Fabrication procedure for transparent graphene electrode array.
Figure 6: Graphene transfer and stacking processes.
Figure 7: Assembly of ZIF PCB and electrode arrays.
Figure 8: Steps for implantation of a graphene or platinum array into a rat model.
Figure 9: Steps for implantation of a graphene or platinum array into a mouse model.
Figure 10: Electrophysiology setup.
Figure 11: Anticipated results.

Similar content being viewed by others

References

  1. Geim, A.K. & Novoselov, K.S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Novoselov, K.S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  3. Geim, A.K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  Google Scholar 

  4. Schwierz, F. Graphene transistors. Nature Nanotechnol. 5, 487–496 (2010).

    Article  CAS  Google Scholar 

  5. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  6. Park, D.-W. et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014).

    Article  CAS  Google Scholar 

  7. Schendel, A.A. et al. A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices. J. Neurosci. Methods 218, 121–130 (2013).

    Article  Google Scholar 

  8. Richner, T.J. et al. Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity. J. Neural Eng. 11, 016010 (2014).

    Article  Google Scholar 

  9. Thongpang, S. et al. A micro-electrocorticography platform and deployment strategies for chronic BCI applications. Clin. EEG Neurosci. 42, 259–265 (2011).

    Article  Google Scholar 

  10. Schendel, A.A. et al. The effect of micro-ECoG substrate footprint on the meningeal tissue response. J. Neural. Eng. 11, 046011 (2014).

    Article  Google Scholar 

  11. Andresen, V. et al. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr. Opin. Biotechnol. 20, 54–62 (2009).

    Article  CAS  Google Scholar 

  12. Ntziachristos, V., Bremer, C. & Weissleder, R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13, 195–208 (2003).

    PubMed  Google Scholar 

  13. Kim, T.-I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  CAS  Google Scholar 

  14. McCall, J.G. et al. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat. Protoc. 8, 2413–2428 (2013).

    Article  CAS  Google Scholar 

  15. Sundmark, E. Recording of the human electroretinogram with the contact glass. Acta Ophthalmol. 36, 273–280 (1958).

    Article  CAS  Google Scholar 

  16. Steinberg, R.H. Relation between ganglion cell activity and the local electroretinogram of cat retina. Nature 216, 1008–1010 (1967).

    Article  CAS  Google Scholar 

  17. Selner, A.N., Ban, T., Williams, J., Thongpang, S. & Hetling, J.R. in 2011 IEEE 37th Annual Northeast Bioengineering Conference (NEBEC) (2011).

  18. Krakova, Y. et al. Spatial differences in corneal electroretinogram potentials measured in rat with a contact lens electrode array. Doc. Ophthalmol. 129, 151–166 (2014).

    Article  Google Scholar 

  19. Hood, D.C. et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc. Ophthalmol. 124, 1–13 (2012).

    Article  Google Scholar 

  20. Jiang, C., Hao, H. & Li, L. Artifact properties of carbon nanotube yarn electrode in magnetic resonance imaging. J. Neural Eng. 10, 026013 (2013).

    Article  CAS  Google Scholar 

  21. Koch, K. et al. Magnetic resonance imaging near metal implants. J. Magn. Reson. Imaging 32, 773–787 (2010).

    Article  CAS  Google Scholar 

  22. Pollo, C. et al. Magnetic resonance artifact induced by the electrode Activa 3389: an in vitro and in vivo study. Acta Neurochir. 146, 161–164 (2004).

    Article  CAS  Google Scholar 

  23. Sillay, K.A., Rusy, D., Buyan-Dent, L., Ninman, N.L. & Vigen, K.K. Wide-bore 1.5 T MRI-guided deep brain stimulation surgery: initial experience and technique comparison. Clin. Neurol. Neurosurg. 127, 79–85 (2014).

    Article  Google Scholar 

  24. Boas, F.E. & Fleischmann, D. CT artifacts: causes and reduction techniques. Imaging Med. 4, 229–240 (2012).

    Article  Google Scholar 

  25. Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386 (2006).

    Article  CAS  Google Scholar 

  26. Pastrana, E. Optogenetics: controlling cell function with light. Nat. Methods 8, 24–25 (2011).

    Article  CAS  Google Scholar 

  27. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Article  CAS  Google Scholar 

  28. Zhang, F., Wang, L.P., Boyden, E.S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006).

    Article  CAS  Google Scholar 

  29. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  Google Scholar 

  30. Richner, T.J. et al. Patterned optogenetic modulation of neurovascular and metabolic signals. J. Cereb. Blood Flow Metab. 35, 140–147 (2015).

    Article  CAS  Google Scholar 

  31. Atry, F. et al. Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography. IEEE Trans. Biomed. Eng. 62, 766–773 (2015).

    Article  Google Scholar 

  32. Pashaie, R. et al. Optogenetic brain interfaces. IEEE Rev. Biomed. Eng. 7, 3–30 (2014).

    Article  Google Scholar 

  33. Watson, B.D., Dietrich, W.D., Busto, R., Wachtel, M.S. & Ginsberg, M.D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann. Neurol. 17, 497–504 (1985).

    Article  CAS  Google Scholar 

  34. Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).

    Article  CAS  Google Scholar 

  35. Balandin, A.A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  CAS  Google Scholar 

  36. Cogan, S.F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    Article  CAS  Google Scholar 

  37. Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article  CAS  Google Scholar 

  38. Ferrari, A.C. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

    Article  CAS  Google Scholar 

  39. Ferrari, A. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  40. Jakabovicˇč, J. et al. Preparation and properties of thin parylene layers as the gate dielectrics for organic field effect transistors. Microelectron. J. 40, 595–597 (2009).

    Article  Google Scholar 

  41. Park, D.-W., Mikael, S., Chang, T.-H., Gong, S. & Ma, Z. Bottom-gate coplanar graphene transistors with enhanced graphene adhesion on atomic layer deposition Al2O3. App. Phys. Lett. 106, 102106 (2015).

    Article  Google Scholar 

  42. Chang, B.-Y. & Park, S.-M. Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3, 207–229 (2010).

    Article  CAS  Google Scholar 

  43. Williams, J.C., Hippensteel, J.A., Dilgen, J., Shain, W. & Kipke, D.R. Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J. Neural Eng. 4, 410 (2007).

    Article  Google Scholar 

  44. Norlin, P., Kindlundh, M., Mouroux, A., Yoshida, K. & Hofmann, U.G. A 32-site neural recording probe fabricated by DRIE of SOI substrates. J. Micromech. Microeng. 12, 414 (2002).

    Article  CAS  Google Scholar 

  45. Sloan, T.B. Anesthetic effects on electrophysiologic recordings. J. Clin. Neurophysiol. 15, 217–226 (1998).

    Article  CAS  Google Scholar 

  46. Li, B.-H., Lohmann, J.S., Schuler, H.G. & Cronin, A.J. Preservation of the cortical somatosensory-evoked potential during dexmedetomidine infusion in rats. Anesth. Analg. 96, 1155–1160 (2003).

    Article  CAS  Google Scholar 

  47. Wang, H. et al. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. 104, 8143–8148 (2007).

    Article  CAS  Google Scholar 

  48. Foutz, T., Arlow, R. & McIntyre, C. Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron. J. Neurophysiol. 107, 3235–3245 (2012).

    Article  CAS  Google Scholar 

  49. Azimipour, M., Atry, F. & Pashaie, R. Effect of blood vessels on light distribution in optogenetic stimulation of cortex. Opt. Lett. 40, 2173–2176 (2015).

    Article  Google Scholar 

  50. Liu, Y. et al. OptogenSIM: a 3D Monte Carlo simulation platform for light delivery design in optogenetics. Biomed. Opt. Exp. 6, 4859–4870 (2015).

    Article  Google Scholar 

  51. Flecknell, P. Laboratory Animal Anaesthesia (Academic Press, 2015).

  52. Cheng, K.P., Kiernan, E.A., Eliceiri, K.W., Williams, J.C. & Watters, J.J. Blue light modulates murine microglial gene expression in the absence of optogenetic protein expression. Sci. Rep. 6, 21172 (2016).

    Article  CAS  Google Scholar 

  53. Atry, F. et al. Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography. IEEE Trans. Biomed. Eng 62, 766–773 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH NIBIB 1R01EB009103-01 and NIH NIBIB 2R01EB000856-06 to J.C.W.). This work was also sponsored by the Defense Advanced Research Projects Agency (DARPA) Biological Technology Office (BTO), under the auspices of D. Weber through Space and Naval Warfare Systems Command (SPAWAR) Systems Center (SSC) Pacific grants no. N66001-11-1-4013 and no. N66001-12-C-4025 to J.C.W. The work was also partly supported by the Army Research Office under grant W911NF-14-1-0652 to Z.M. The program manager is J.X. Qiu. D.-W.P. and S.M. were partly supported by the Office of Naval Research (ONR) under grant N00014-09-1-0803. D.-W.P. was partly supported by a grant from the National Institutes of Health (NIH DHHS/PHS R01HG000225). A.S. is supported by NIH NIBIB 1T32EB011434-01A1. S.M was partly supported by a Winslow Sargeant Fellowship. R.P. and F.A. were partially supported by National Science Foundation (NSF) Career Award grant 1454300 and Brain and Behavior Research Foundation (NARSAD) grant 20610. We thank K. Eliceiri for technical discussions related to electrode transparency measurements. We thank S. Kang for illustrations.

Author information

Authors and Affiliations

Authors

Contributions

D.-W.P., S.K.B., J.P.N., F.A., A.S., S.M., T.J.R., J.N., H.K., D.-H.B., J.B., S.T.F., and S.T. performed the experiments. D.-W.P., S.K.B., J.P.N., F.A., A.S., S.M., T.J.R., R.P., J.C.W., and Z.M. developed the protocol. D.-W.P., S.K.B., J.P.N., F.A., L.K.-H., K.I.S., W.L., J.C.W., and Z.M. wrote the manuscript.

Corresponding authors

Correspondence to Justin C Williams or Zhenqiang Ma.

Ethics declarations

Competing interests

D.-W.P., A.S., S.M., Z.M. and J.C.W. declare competing financial interests in the form of a pending patent application (transparent and flexible neural electrode arrays).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, DW., Brodnick, S., Ness, J. et al. Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics. Nat Protoc 11, 2201–2222 (2016). https://doi.org/10.1038/nprot.2016.127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.127

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research