A highly multiplexed and sensitive RNA-seq protocol for simultaneous analysis of host and pathogen transcriptomes

Abstract

The ability to simultaneously characterize the bacterial and host expression programs during infection would facilitate a comprehensive understanding of pathogen–host interactions. Although RNA sequencing (RNA-seq) has greatly advanced our ability to study the transcriptomes of prokaryotes and eukaryotes separately, limitations in existing protocols for the generation and analysis of RNA-seq data have hindered simultaneous profiling of host and bacterial pathogen transcripts from the same sample. Here we provide a detailed protocol for simultaneous analysis of host and bacterial transcripts by RNA-seq. Importantly, this protocol details the steps required for efficient host and bacteria lysis, barcoding of samples, technical advances in sample preparation for low-yield sample inputs and a computational pipeline for analysis of both mammalian and microbial reads from mixed host–pathogen RNA-seq data. Sample preparation takes 3 d from cultured cells to pooled libraries. Data analysis takes an additional day. Compared with previous methods, the protocol detailed here provides a sensitive, facile and generalizable approach that is suitable for large-scale studies and will enable the field to obtain in-depth analysis of host–pathogen interactions in infection models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Overview of the simultaneous host–pathogen RNA-seq analysis protocol.
Figure 2: Electropherogram of total RNA extracted from Salmonella-infected macrophages.
Figure 3: Electropherogram of the resulting RNA-seq libraries.

References

  1. 1

    Galan, J.E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Medzhitov, R. TLR-mediated innate immune recognition. Semin. Immunol. 19, 1–2 (2007).

    Article  Google Scholar 

  3. 3

    Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. & Hinton, J.C. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol. Microbiol. 47, 103–118 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Berry, M.P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Westermann, A.J., Gorski, S.A. & Vogel, J. Dual RNA-seq of pathogen and host. Nat. Rev. Microbiol. 10, 618–630 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Baddal, B. et al. Dual RNA-seq of nontypeable Haemophilus influenzae and host cell transcriptomes reveals novel insights into host-pathogen cross talk. mBio 6, e01765–e01715 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Humphrys, M.S. et al. Simultaneous transcriptional profiling of bacteria and their host cells. PloS One 8, e80597 (2013).

    Article  Google Scholar 

  8. 8

    Mavromatis, C.H. et al. The co-transcriptome of uropathogenic Escherichia coli-infected mouse macrophages reveals new insights into host-pathogen interactions. Cell Microbiol. 17, 730–746 (2015).

    CAS  Article  Google Scholar 

  9. 9

    Avraham, R. et al. Pathogen cell-to-cell variability drives heterogeneity in host immune responses. Cell 162, 1309–1321 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Shishkin, A.A. et al. Simultaneous generation of many RNA-seq libraries in a single reaction. Nat. Methods 12, 323–325 (2015).

    CAS  Article  Google Scholar 

  11. 11

    Dillon, L.A. et al. Simultaneous transcriptional profiling of Leishmania major and its murine macrophage host cell reveals insights into host-pathogen interactions. BMC Genomics 16, 1108 (2015).

    Article  Google Scholar 

  12. 12

    Schulze, S., Henkel, S.G., Driesch, D., Guthke, R. & Linde, J. Computational prediction of molecular pathogen-host interactions based on dual transcriptome data. Front. Microbiol. 6, 65 (2015).

    Article  Google Scholar 

  13. 13

    Tierney, L. et al. An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front. Microbiol. 3, 85 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Kawahara, Y. et al. Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PloS One 7, e49423 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Yazawa, T., Kawahigashi, H., Matsumoto, T. & Mizuno, H. Simultaneous transcriptome analysis of Sorghum and Bipolaris sorghicola by using RNA-seq in combination with de novo transcriptome assembly. PloS One 8, e62460 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Bischler, T., Tan, H.S., Nieselt, K. & Sharma, C.M. Differential RNA-seq (dRNA-seq) for annotation of transcriptional start sites and small RNAs in Helicobacter pylori. Methods 86, 89–101 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Westermann, A.J. et al. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529, 496–501 (2016).

    CAS  Article  Google Scholar 

  18. 18

    Losick, V.P. & Isberg, R.R. NF-kappaB translocation prevents host cell death after low-dose challenge by Legionella pneumophila. J. Exp. Med. 203, 2177–2189 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Beattie, L. et al. A transcriptomic network identified in uninfected macrophages responding to inflammation controls intracellular pathogen survival. Cell Host Microbe. 14, 357–368 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Risso, D., Ngai, J., Speed, T.P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Giannoukos, G. et al. Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol. 13, R23 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  24. 24

    Liao, Y., Smyth, G.K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Haas, B.J., Chin, M., Nusbaum, C., Birren, B.W. & Livny, J. How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? BMC Genomics 13, 734 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  29. 29

    Soneson, C. & Delorenzi, M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 14, 91 (2013).

    Article  Google Scholar 

  30. 30

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an NIH grant (HG002295 to N.H.)

Author information

Affiliations

Authors

Contributions

R.A. designed the experiments. R.A., N.H., A.F. and Z.B.-A. conducted the experimental work. N.H. and J.L. performed the computational analysis. R.A., J.L. and D.T.H. wrote the manuscript.

Corresponding author

Correspondence to Deborah T Hung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avraham, R., Haseley, N., Fan, A. et al. A highly multiplexed and sensitive RNA-seq protocol for simultaneous analysis of host and pathogen transcriptomes. Nat Protoc 11, 1477–1491 (2016). https://doi.org/10.1038/nprot.2016.090

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing