Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology


Artificial metalloenzymes (ArMs) based on the incorporation of a biotinylated metal cofactor within streptavidin (Sav) combine attractive features of both homogeneous and enzymatic catalysts. To speed up their optimization, we present a streamlined protocol for the design, expression, partial purification and screening of Sav libraries. Twenty-eight positions have been subjected to mutagenesis to yield 335 Sav isoforms, which can be expressed in 24-deep-well plates using autoinduction medium. The resulting cell-free extracts (CFEs) typically contain >1 mg of soluble Sav. Two straightforward alternatives are presented, which allow the screening of ArMs using CFEs containing Sav. To produce an artificial transfer hydrogenase, Sav is coupled to a biotinylated three-legged iridium pianostool complex Cp*Ir(Biot-p-L)Cl (the cofactor). To screen Sav variants for this application, you would determine the number of free binding sites, treat them with diamide, incubate them with the cofactor and then perform the reaction with your test compound (the example used in this protocol is 1-phenyl-3,4-dihydroisoquinoline). This process takes 20 d. If you want to perform metathesis reactions, Sav is coupled to a biotinylated second-generation Grubbs-Hoveyda catalyst. In this application, it is best to first immobilize Sav on Sepharose-iminobiotin beads and then perform washing steps. Elution from the beads is achieved in an acidic reaction buffer before incubation with the cofactor. Catalysis using your test compound (in this protocol, 2-(4-(N,N-diallylsulfamoyl)phenyl)-N,N,N-trimethylethan-1-aminium iodide) is performed using the formed metalloenzyme. Screening using this approach takes 19 d.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Model reactions and structures of the ATHase cofactor [Cp*Ir(biot-p-L)Cl] 3 and the metathesase cofactor 6 (for a synthesis overview see Supplementary Figs. 1 and 2).
Figure 2: Workflow used in this protocol.
Figure 3: Close-up view of the X-ray structure of an artificial transfer hydrogenase based on the biotin-Sav technology.
Figure 4: Summary of designed mutants.
Figure 5
Figure 6: DNA analysis of the plasmid amplification by agarose gel electrophoresis.
Figure 7: Typical calibration curve for Sav K121A using the B4F-assay.

Accession codes


Protein Data Bank


  1. 1

    Yu, F. et al. Protein design: toward functional metalloenzymes. Chem. Rev. 114, 3495–3578 (2014).

    CAS  Article  Google Scholar 

  2. 2

    Pàmies, O., Diéguez, M. & Bäckvall, J.-E. Artificial metalloenzymes in asymmetric catalysis: key developments and future directions. Adv. Synth. Catal. 357, 1567–1586 (2015).

    Article  Google Scholar 

  3. 3

    Lewis, J.C. Artificial metalloenzymes and metallopeptide catalysts for organic synthesis. ACS Catal. 3, 2954–2975 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Ward, T.R. Artificial metalloenzymes based on the biotin–avidin technology: enantioselective catalysis and beyond. Acc. Chem. Res. 44, 47–57 (2010).

    Article  Google Scholar 

  5. 5

    Wilson, M.E. & Whitesides, G.M. Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety. J. Am. Chem. Soc. 100, 306–307 (1978).

    CAS  Article  Google Scholar 

  6. 6

    Lin, C.-C., Lin, C.-W. & Chan, A.S.C. Catalytic hydrogenation of itaconic acid in a biotinylated pyrphos–rhodium(I) system in a protein cavity. Tetrahedron Asymmetr. 10, 1887–1893 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Reetz, M.T. Directed evolution of stereoselective hybrid catalysts. Top. Organomet. Chem. 25, 63–92 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Collot, J. et al. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin. J. Am. Chem. Soc. 125, 9030–9031 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Letondor, C., Humbert, N. & Ward, T.R. Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation. Proc. Natl. Acad. Sci. USA 102, 4683–4687 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Pierron, J. et al. Artificial metalloenzymes for asymmetric allylic alkylation on the basis of the biotin–avidin technology. Angew. Chem. Int. Ed. 47, 701–705 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Hyster, T.K., Knörr, L., Ward, T.R. & Rovis, T. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation. Science 338, 500–503 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Lo, C., Ringenberg, M.R., Gnandt, D., Wilson, Y. & Ward, T.R. Artificial metalloenzymes for olefin metathesis based on the biotin-(strept)avidin technology. Chem. Commun. 47, 12065–12067 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Pordea, A., Mathis, D. & Ward, T.R. Incorporation of biotinylated manganese-salen complexes into streptavidin: new artificial metalloenzymes for enantioselective sulfoxidation. J. Organomet. Chem. 694, 930–936 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Pordea, A. et al. Artificial metalloenzyme for enantioselective sulfoxidation based on vanadyl-loaded streptavidin. J. Am. Chem. Soc. 130, 8085–8088 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Köhler, V. et al. OsO4·streptavidin: a tunable hybrid catalyst for the enantioselective cis-dihydroxylation of olefins. Angew. Chem. Int. Ed. 50, 10863–10866 (2011).

    Article  Google Scholar 

  16. 16

    Thomas, C.M., Letondor, C., Humbert, N. & Ward, T.R. Aqueous oxidation of alcohols catalyzed by artificial metalloenzymes based on the biotin–avidin technology. J. Organomet. Chem. 690, 4488–4491 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Sano, T. & Cantor, C.R. Expression of a cloned streptavidin gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 142–146 (1990).

    CAS  Article  Google Scholar 

  18. 18

    Chilkoti, A., Tan, P.H. & Stayton, P.S. Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120. Proc. Natl. Acad. Sci. USA 92, 1754–1758 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Sletten, E.M. & Bertozzi, C.R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Köhler, V. et al. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat. Chem. 5, 93–99 (2013).

    Article  Google Scholar 

  21. 21

    Laitinen, O.H., Hytönen, V.P., Nordlund, H.R. & Kulomaa, M.S. Genetically engineered avidins and streptavidins. Cell. Mol. Life Sci. 63, 2992–3017 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Schmidt, T.G.M. & Skerra, A. The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat. Protoc. 2, 1528–1535 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Wilchek, M. & Bayer, E.A. Introduction to avidin-biotin technology. Methods Enyzmol. 184, 5–13 (1990).

    CAS  Google Scholar 

  24. 24

    Reetz, M.T., Soni, P., Fernandez, L., Gumulya, Y. & Carballeira, J.D. Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method. Chem. Commun. 46, 8657–8658 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Dürrenberger, M. et al. Artificial transfer hydrogenases for the enantioselective reduction of cyclic imines. Angew. Chem. Int. Ed. 50, 3026–3029 (2011).

    Article  Google Scholar 

  26. 26

    Wilson, Y.M., Dürrenberger, M., Nogueira, E.S. & Ward, T.R. Neutralizing the detrimental effect of glutathione on precious metal catalysts. J. Am. Chem. Soc. 136, 8928–8932 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Creus, M. et al. X-ray structure and designed evolution of an artificial transfer hydrogenase. Angew. Chem. Int. Ed. 47, 1400–1404 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Reetz, M.T., Carballeira, J.D. & Vogel, A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew. Chem. Int. Ed. 45, 7745–7751 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Papworth, C., Bauer, J.C., Braman, J. & Wright, D.A. Site-directed mutagenesis in one day with >80% efficiency. Strategies 9, 3–4 (1996).

    Article  Google Scholar 

  30. 30

    Zimbron, J.M. et al. Chemo-genetic optimization of DNA recognition by metallodrugs using a presenter-protein strategy. Chemistry 16, 12883–12889 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Zimbron, J.M. et al. A dual anchoring strategy for the localization and activation of artificial metalloenzymes based on the biotin-streptavidin technology. J. Am. Chem. Soc. 135, 5384–5388 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Zheng, L., Baumann, U. & Reymond, J.L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115 (2004).

    Article  Google Scholar 

  33. 33

    Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Robles, V.M. et al. Structural, kinetic, and docking studies of artificial imine reductases based on biotin–streptavidin technology: an induced lock-and-key hypothesis. J. Am. Chem. Soc. 136, 15676–15683 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Kada, G., Kaiser, K., Falk, H. & Gruber, H.J. Rapid estimation of avidin and streptavidin by fluorescence quenching or fluorescence polarization. Biochim. Biophys. Acta 1427, 44–48 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Waner, M.J. & Mascotti, D.P. A simple spectrophotometric streptavidin-biotin binding assay utilizing biotin-4-fluorescein. J. Biochem. Biophys. Methods 70, 873–877 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Wilson, Y.M., Dürrenberger, M. & Ward, T.R. Organometallic chemistry in protein scaffolds. in Protein Engineering Handbook Vol. 3 (eds. Lütz, S. & Bornscheuer, U.T.) 215–238 (Wiley-VCH, Weinheim, 2012).

  38. 38

    Bennett, B.D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Kajetanowicz, A., Chatterjee, A., Reuter, R. & Ward, T. Biotinylated metathesis catalysts: synthesis and performance in ring closing metathesis. Catal. Lett. 144, 373–379 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Lantos, I., Bhattacharjee, D. & Eggleston, D.S. Synthesis of 1-phenyl-5H-2-benzazepines by ring expansion of 1-phenyl-1,2-dihydroisoquinolines. J. Org. Chem. 51, 4147–4150 (1986).

    CAS  Article  Google Scholar 

  41. 41

    Bertani, G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293–300 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Hanahan, D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580 (1983).

    CAS  Article  Google Scholar 

  43. 43

    Hanahan, D., Jessee, J. & Bloom, F.R. Techniques for transformation of E. coli. in DNA Cloning (Oxford University Press, 1995).

  44. 44

    Muto, T. et al. Preparation of 1,4-diazepane-3,5-dione derivatives as chymase inhibitors and pharmaceutical use thereof. Japanese patent no. WO 2010053182A1 (2010).

  45. 45

    Becker, G.O. et al. Organikum 19th edn. (Barth Verlagsgesellschaft, 1993).

  46. 46

    Angov, E. Codon usage: nature's roadmap to expression and folding of proteins. Biotechnol. J. 6, 650–659 (2011).

    CAS  Article  Google Scholar 

Download references


T.R.W. thanks the Swiss National Science Foundation (grants 200020_162348 and the NCCR (National Centres of Competence in Research) Molecular Systems Engineering) and the Seventh Framework Programme Project METACODE (KBBE (Knowledge-Based BioEconomy), 'Code-engineered new-to nature microbial cell factories for novel and safety enhanced bioproduction') and the US National Institutes of Health (NIH; grant GM050781) for generous support. M.H. thanks the SNI (Swiss Nanoscience Institute) for a Ph.D. scholarship. The authors are happy to provide the library free of charge upon request to academic institutions.

Author information




T.R.W. conceived and established the concept of ArMs using the Sav-biotin technology and planned the experiments. H.M. planned experiments, designed the mutant library and established the expression protocol. M.H. and R.R. designed and performed the screening catalysis experiments. T.R.W., H.M., M.H. and R.R. wrote the manuscript.

Corresponding authors

Correspondence to Hendrik Mallin or Thomas R Ward.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Methods, Supplementary Table 1 and Supplementary Data (PDF 1571 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mallin, H., Hestericová, M., Reuter, R. et al. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology. Nat Protoc 11, 835–852 (2016).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.