Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fabrication of nanopores with ultrashort single-walled carbon nanotubes inserted in a lipid bilayer

Abstract

We describe a protocol for the insertion of ultrashort single-walled carbon nanotubes (SWCNTs) to form nanopores in a Montal-Mueller lipid bilayer. The SWCNTs are designed to bind to a specific analyte of interest; binding will result in the reduction of current in single-channel recording experiments. The first stage of the PROCEDURE is to cut and separate the SWCNTs. We cut long, purified SWCNTs with sonication in concentrated sulfuric acid/nitric acid (3/1). Isolation of ultrashort SWCNTs is carried out by size-exclusion HPLC separation. The second stage is to insert these short SWCNTs into the lipid bilayer. This step requires a microinjection probe made from a glass capillary. The setup for protein nanopore research can be adopted for the single-channel recording experiments without any special treatment. The obtained current traces are of very high quality, showing stable baselines and little background noise. Example procedures are shown for investigating ion transport and DNA translocation through these SWCNT nanopores. This nanopore has potential applications in molecular sensing, nanopore DNA sequencing and early disease diagnosis. For example, we have selectively detected modified 5-hydroxymethylcytosine in single-stranded DNA (ssDNA), which may have implications in screening specific genomic DNA sequences. The protocol takes 15 d, including SWCNT purification, cutting and separation, as well as the formation of SWCNT nanopores for DNA analyses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microinjection probe.
Figure 2: HPLC chromatograms of the separation of DNA segments and ultrashort SWCNTs.
Figure 3: Representation of single-channel recording traces and I–V curves.
Figure 4: Conductance distribution of SWCNT nanopores.
Figure 5: ssDNA translocation through SWCNT nanopore and detection of 5hmC site in ssDNA.

Similar content being viewed by others

References

  1. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).

    CAS  PubMed  Google Scholar 

  2. Cherf, G.M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-angstrom precision. Nat. Biotechnol. 30, 344–348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Manrao, E.A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashton, P.M. et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33, 296–300 (2015).

    CAS  PubMed  Google Scholar 

  5. Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nat. Methods 12, 351–356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bayley, H. & Cremer, P.S. Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

    CAS  PubMed  Google Scholar 

  7. Howorka, S. & Siwy, Z. Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009).

    CAS  PubMed  Google Scholar 

  8. Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010).

    CAS  PubMed  Google Scholar 

  9. Wang, Y., Zheng, D.L., Tan, Q.L., Wang, M.X. & Gu, L.Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol. 6, 668 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kasianowicz, J.J., Brandin, E., Branton, D. & Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shin, S.H., Luchian, T., Cheley, S., Braha, O. & Bayley, H. Kinetics of a reversible covalent-bond-forming reaction observed at the single-molecule level. Angew. Chem. Int. Ed. 41, 3707–3709 (2002).

    CAS  Google Scholar 

  12. Luchian, T., Shin, S.H. & Bayley, H. Single-molecule covalent chemistry with spatially separated reactants. Angew. Chem. Int. Ed. 42, 3766–3771 (2003).

    CAS  Google Scholar 

  13. Braha, O. et al. Simultaneous stochastic sensing of divalent metal ions. Nat. Biotechnol. 18, 1005–1007 (2000).

    CAS  PubMed  Google Scholar 

  14. Hammerstein, A.F., Shin, S.-H. & Bayley, H. Single-molecule kinetics of two-step divalent cation chelation. Angew. Chem. Int. Ed. 49, 5085–5090 (2010).

    CAS  Google Scholar 

  15. Wen, S. et al. Highly sensitive and selective DNA-based detection of mercury(II) with α-hemolysin nanopore. J. Am. Chem. Soc. 133, 18312–18317 (2011).

    CAS  PubMed  Google Scholar 

  16. Yang, C. et al. Highly sensitive simultaneous detection of lead(II) and barium(II) with G-quadruplex DNA in α-hemolysin nanopore. Anal. Chem. 85, 7302–7307 (2013).

    CAS  PubMed  Google Scholar 

  17. Gu, L.Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).

    CAS  PubMed  Google Scholar 

  18. Wu, H.-C. & Bayley, H. Single-molecule detection of nitrogen mustards by covalent reaction within a protein nanopore. J. Am. Chem. Soc. 130, 6813–6819 (2008).

    CAS  PubMed  Google Scholar 

  19. Movileanu, L., Howorka, S., Braha, O. & Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 18, 1091–1095 (2000).

    CAS  PubMed  Google Scholar 

  20. Howorka, S., Cheley, S. & Bayley, H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat. Biotechnol. 19, 636–639 (2001).

    CAS  PubMed  Google Scholar 

  21. Yusko, E.C. et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6, 253–260 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei, R., Gatterdam, V., Wieneke, R., Tampe, R. & Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat. Nanotechnol. 7, 257–263 (2012).

    CAS  PubMed  Google Scholar 

  23. Hladky, S.B. & Haydon, D.A. Discreteness of conductance change in bimolecular lipid membranes in presence of certain antibiotics. Nature 225, 451–453 (1970).

    CAS  PubMed  Google Scholar 

  24. Ghadiri, M.R., Granja, J.R., Milligan, R.A., McRee, D.E. & Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993).

    CAS  PubMed  Google Scholar 

  25. Ghadiri, M.R., Granja, J.R. & Buehler, L.K. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369, 301–304 (1994).

    CAS  PubMed  Google Scholar 

  26. Bezrukov, S.M., Vodyanoy, I. & Parsegian, V.A. Counting polymers moving through a single-ion channel. Nature 370, 279–281 (1994).

    CAS  PubMed  Google Scholar 

  27. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    CAS  PubMed  Google Scholar 

  28. Storm, A.J., Chen, J.H., Ling, X.S., Zandbergen, H.W. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).

    CAS  PubMed  Google Scholar 

  29. Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2, 209–215 (2007).

    CAS  PubMed  Google Scholar 

  30. Butler, T.Z., Pavlenok, M., Derrington, I.M., Niederweis, M. & Gundlach, J.H. Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl. Acad. Sci. USA 105, 20647–20652 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wendell, D. et al. Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat. Nanotechnol. 4, 765–772 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mohammad, M.M. et al. Engineering a rigid protein tunnel for biomolecular detection. J. Am. Chem. Soc. 134, 9521–9531 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Soskine, M. et al. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett. 12, 4895–4900 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, H. et al. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327, 64–67 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, L., Yang, C., Zhao, K., Li, J. & Wu, H.C. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat. Commun. 4, 2989 (2013).

    PubMed  Google Scholar 

  36. Geng, J. et al. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514, 612–615 (2014).

    CAS  PubMed  Google Scholar 

  37. Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Burns, J.R., Stulz, E. & Howorka, S. Self-assembled DNA nanopores that span lipid bilayers. Nano Lett. 13, 2351–2356 (2013).

    CAS  PubMed  Google Scholar 

  39. Matile, S., Jentzsch, A.V., Montenegro, J. & Fin, A. Recent synthetic transport systems. Chem. Soc. Rev. 40, 2453–2474 (2011).

    CAS  PubMed  Google Scholar 

  40. Takeuchi, T. & Matile, S. Sensing applications of synthetic transport systems. Chem. Commun. 49, 19–29 (2013).

    CAS  Google Scholar 

  41. Montenegro, J., Ghadiri, M.R. & Granja, J.R. Ion channel models based on self-assembling cyclic peptide nanotubes. Acc. Chem. Res. 46, 2955–2965 (2013).

    CAS  PubMed  Google Scholar 

  42. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–194 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schneider, G.F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).

    CAS  PubMed  Google Scholar 

  44. Merchant, C.A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    CAS  PubMed  Google Scholar 

  45. Liu, S. et al. Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv. Mater. 25, 4549–4554 (2013).

    CAS  PubMed  Google Scholar 

  46. Liu, K., Feng, J., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8, 2504–2511 (2014).

    CAS  PubMed  Google Scholar 

  47. Holden, M.A. & Bayley, H. Direct introduction of single protein channels and pores into lipid bilayers. J. Am. Chem. Soc. 127, 6502–6503 (2005).

    CAS  PubMed  Google Scholar 

  48. Holden, M.A., Jayasinghe, L., Daltrop, O., Mason, A. & Bayley, H. Direct transfer of membrane proteins from bacteria to planar bilayers for rapid screening by single-channel recording. Nat. Chem. Biol. 2, 314–318 (2006).

    CAS  PubMed  Google Scholar 

  49. Lee, C.Y., Choi, W., Han, J.-H. & Strano, M.S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320–1324 (2010).

    CAS  PubMed  Google Scholar 

  50. Wu, J., Gerstandt, K., Zhang, H., Liu, J. & Hinds, B.J. Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes. Nat. Nanotechnol. 7, 133–139 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014).

    CAS  PubMed  Google Scholar 

  52. Tanaka, M. & Sackmann, E. Polymer-supported membranes as models of the cell surface. Nature 437, 656–663 (2005).

    CAS  PubMed  Google Scholar 

  53. Holt, J.K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    CAS  PubMed  Google Scholar 

  54. Maglia, G., Heron, A.J., Stoddart, D., Japrung, D. & Bayley, H. Analysis of single nucleic acid molecules with protein nanopores. Methods Enzymol. 475, 591–623 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Basic Research Program of China (973 program, grant no. 2013CB932800), the National Natural Science Foundation of China (grant nos. 21175135, 21375130, 21205119 and 21475132) and the Chinese Academy of Sciences Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and H.-C.W. conceived the project; L.L., J.X. and T.L. performed the experiments; L.L., T.L. and H.-C.W. performed data analysis; and L.L., J.X. and H.-C.W. wrote the paper.

Corresponding author

Correspondence to Hai-Chen Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Micro-injection probe interaction with the aperture

This movie illustrates how the micro-injection probe is controlled to interact with the PTFE aperture in the absence of buffer solutions. The round aperture is about 100 μm in diameter over which the lipid bilayer forms. The distance between the probe tip and the aperture can be precisely controlled. Starting from 40 s, the micro-injector is shown to inject solutions from the probe syringe. (MOV 3338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Xie, J., Li, T. et al. Fabrication of nanopores with ultrashort single-walled carbon nanotubes inserted in a lipid bilayer. Nat Protoc 10, 1670–1678 (2015). https://doi.org/10.1038/nprot.2015.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.112

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing