Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An optogenetics- and imaging-assisted simultaneous multiple patch-clamp recording system for decoding complex neural circuits


Deciphering neuronal circuitry is central to understanding brain function and dysfunction, yet it remains a daunting task. To facilitate the dissection of neuronal circuits, a process requiring functional analysis of synaptic connections and morphological identification of interconnected neurons, we present here a method for stable simultaneous octuple patch-clamp recordings. This method allows physiological analysis of synaptic interconnections among 4–8 simultaneously recorded neurons and/or 10–30 sequentially recorded neurons, and it allows anatomical identification of >85% of recorded interneurons and >99% of recorded principal neurons. We describe how to apply the method to rodent tissue slices; however, it can be used on other model organisms. We also describe the latest refinements and optimizations of mechanics, electronics, optics and software programs that are central to the realization of a combined single- and two-photon microscopy–based, optogenetics- and imaging-assisted, stable, simultaneous quadruple–viguple patch-clamp recording system. Setting up the system, from the beginning of instrument assembly and software installation to full operation, can be completed in 3–4 d.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Manipulators for simultaneous multiple patch-clamp recordings.
Figure 2: Hardware wiring for simultaneous multiple patch-clamp recordings.
Figure 3: IGOR-based program for simultaneous multiple patch-clamp recordings.
Figure 4: Laserspritzer-based synaptic connection 'search' technique.
Figure 5: Single- and two-photon laser–based synaptic connection search technique.
Figure 6: Example of simultaneous multiple patch-clamp recordings.


  1. 1

    Scanziani, M. & Hausser, M. Electrophysiology in the age of light. Nature 461, 930–939 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Stuart, G.J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    CAS  Article  Google Scholar 

  3. 3

    Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Markram, H., Lubke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (Lond) 500, 409–440 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. (Lond) 505, 605–616 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Feldmeyer, D., Egger, V., Lubke, J. & Sakmann, B. Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single 'barrel' of developing rat somatosensory cortex. J. Physiol. 521 Pt 1: 169–190 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Larkum, M.E., Zhu, J.J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Reyes, A. & Sakmann, B. Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex. J. Neurosci. 19, 3827–3835 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Larkum, M.E. & Zhu, J.J. Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J Neurosci 22, 6991–7005 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 23, 8558–8567 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Brown, S.P. & Hestrin, S. Cell-type identity: a key to unlocking the function of neocortical circuits. Curr. Opin. Neurobiol. 19, 415–421 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Wu, G.K., Tao, H.W. & Zhang, L.I. From elementary synaptic circuits to information processing in primary auditory cortex. Neurosci. Biobehav. Rev. 35, 2094–2104 (2011).

    Article  Google Scholar 

  14. 14

    Le Be, J.V. & Markram, H. Spontaneous and evoked synaptic rewiring in the neonatal neocortex. Proc. Natl. Acad. Sci. USA 103, 13214–13219 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Lefort, S., Tomm, C., Floyd Sarria, J.C. & Petersen, C.C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Perin, R., Berger, T.K. & Markram, H. A synaptic organizing principle for cortical neuronal groups. Proc. Natl. Acad. Sci. USA 108, 5419–5424 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Jiang, X., Wang, G., Lee, A.J., Stornetta, R.L. & Zhu, J.J. The organization of two new cortical interneuronal circuits. Nat. Neurosci. 16, 210–218 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Lee, A.J. et al. Canonical organization of layer 1 neuron-led cortical inhibitory and disinhibitory interneuronal circuits. Cereb. Cortex (2014).

  19. 19

    Komai, S., Denk, W., Osten, P., Brecht, M. & Margrie, T.W. Two-photon targeted patching (TPTP) in vivo. Nat. Protoc. 1, 647–652 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Hausser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5, 61–67 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Suter, B.A. et al. Ephus: multipurpose data acquisition software for neuroscience experiments. Front. Neural Circuits 4, 100 (2010).

    Article  Google Scholar 

  22. 22

    Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser-scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    Article  Google Scholar 

  23. 23

    Brown, S.P. & Hestrin, S. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457, 1133–1136 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Yu, Y.C., Bultje, R.S., Wang, X. & Shi, S.H. Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature 458, 501–504 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Buchanan, K.A. et al. Target-specific expression of presynaptic NMDA receptors in neocortical microcircuits. Neuron 75, 451–466 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Couey, J.J. et al. Recurrent inhibitory circuitry as a mechanism for grid formation. Nat. Neurosci. 16, 318–324 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Xue, M., Atallah, B.V. & Scanziani, M. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 511, 596–600 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Geiger, J.R. et al. Patch-clamp recording in brain slices with improved slicer technology. Pflugers Arch. 443, 491–501 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Zhu, J.J. Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites. J. Physiol. (Lond) 526, 571–587 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Davie, J.T. et al. Dendritic patch-clamp recording. Nat. Protoc. 1, 1235–1247 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Zhu, J.J. Activity level-dependent synapse-specific AMPA receptor trafficking regulates transmission kinetics. J. Neurosci. 29, 6320–6335 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Zhao, S. et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods 8, 745–752 (2011).

    CAS  Article  Google Scholar 

  34. 34

    Constantinople, C.M. & Bruno, R.M. Deep cortical layers are activated directly by thalamus. Science 340, 1591–1594 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Zhu, Y. & Zhu, J.J. Rapid arrival and integration of ascending sensory information in layer 1 nonpyramidal neurons and tuft dendrites of layer 5 pyramidal neurons of the neocortex. J. Neurosci. 24, 1272–1279 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Murayama, M. & Larkum, M.E. In vivo dendritic calcium imaging with a fiberoptic periscope system. Nat. Protoc. 4, 1551–1559 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Tang, Q., Brecht, M. & Burgalossi, A. Juxtacellular recording and morphological identification of single neurons in freely moving rats. Nat. Protoc. 9, 2369–2381 (2014).

    CAS  Article  Google Scholar 

  38. 38

    Zhu, Y., Stornetta, R.L. & Zhu, J.J. Chandelier cells control excessive cortical excitation: characteristics of whisker-evoked synaptic responses of layer 2/3 nonpyramidal and pyramidal neurons. J. Neurosci. 24, 5101–5108 (2004).

    CAS  Article  Google Scholar 

  39. 39

    Wickersham, I.R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    CAS  Article  Google Scholar 

  40. 40

    Osakada, F. & Callaway, E.M. Design and generation of recombinant rabies virus vectors. Nat. Protoc. 8, 1583–1601 (2013).

    Article  Google Scholar 

  41. 41

    Kim, J. et al. mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat. Methods 9, 96–102 (2012).

    CAS  Article  Google Scholar 

  42. 42

    Feng, L., Kwon, O., Lee, B., Oh, W.C. & Kim, J. Using mammalian GFP reconstitution across synaptic partners (mGRASP) to map synaptic connectivity in the mouse brain. Nat. Protoc. 9, 2425–2437 (2014).

    CAS  Article  Google Scholar 

  43. 43

    Sun, Q.Q., Wang, X. & Yang, W. Laserspritzer: a simple method for optogenetic investigation with subcellular resolutions. PLoS ONE 9, e101600 (2014).

    Article  Google Scholar 

  44. 44

    Hochbaum, D.R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    CAS  Article  Google Scholar 

  45. 45

    Kozloski, J., Hamzei-Sichani, F. & Yuste, R. Stereotyped position of local synaptic targets in neocortex. Science 293, 868–872 (2001).

    CAS  Article  Google Scholar 

  46. 46

    Flytzanis, N.C. et al. Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat. Commun. 5, 4894 (2014).

    CAS  Article  Google Scholar 

  47. 47

    St-Pierre, F. et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17, 884–889 (2014).

    CAS  Article  Google Scholar 

  48. 48

    Edwards, F.A., Konnerth, A., Sakmann, B. & Takahashi, T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 414, 600–612 (1989).

    CAS  Article  Google Scholar 

  49. 49

    Chen, X. et al. LOTOS-based two-photon calcium imaging of dendritic spines in vivo. Nat. Protoc. 7, 1818–1829 (2012).

    CAS  Article  Google Scholar 

  50. 50

    Debanne, D. et al. Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices. Nat. Protoc. 3, 1559–1568 (2008).

    CAS  Article  Google Scholar 

  51. 51

    Marx, M., Gunter, R.H., Hucko, W., Radnikow, G. & Feldmeyer, D. Improved biocytin labeling and neuronal 3D reconstruction. Nat. Protoc. 7, 394–407 (2012).

    CAS  Article  Google Scholar 

  52. 52

    Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682–1697 (2014).

    CAS  Article  Google Scholar 

  53. 53

    Lim, C.S. et al. Pharmacological rescue of Ras signaling, GluA1-dependent synaptic plasticity, and learning deficits in a fragile X model. Genes Dev. 28, 273–289 (2014).

    CAS  Article  Google Scholar 

  54. 54

    Zhu, J.J. & Connors, B.W. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183 (1999).

    CAS  Article  Google Scholar 

  55. 55

    Stern, E.A., Maravall, M. & Svoboda, K. Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron 31, 305–315 (2001).

    CAS  Article  Google Scholar 

  56. 56

    Lee, A.K., Epsztein, J. & Brecht, M. Head-anchored whole-cell recordings in freely moving rats. Nat. Protoc. 4, 385–392 (2009).

    CAS  Article  Google Scholar 

Download references


We thank R. Andrade, M. Beenhakker, T. Figl, V. Iyer, J. Kim, P. Neumann and K. Svoboda for technical advice and invaluable discussions, and we thank members of the Zhu laboratory for comments and technical assistance. Although we discuss here a few approaches for setting up a single- and two-photon optogenetics- and imaging-aided simultaneous multiple patch-clamp recordings system using mechanics, electronics, optics and software that we have some experience with, we anticipate alternative approaches to achieve the same goal with other instruments and software programs. We hope that this protocol will inspire more scientists to contribute their wisdom and experience to this subject. This work was supported in part by postdoctoral fellowships from the Epilepsy Foundation (G.W. and X.J.), National Institutes of Health (NIH) predoctoral training fellowships (D.R.W. and L.C.M.), a French governmental Bourse du mérite graduate fellowship and Aquimob traveling fellowship (T.L.), a Cultural and Educational Expert award from the State Administration of Foreign Experts Affairs of China (Y.S. and J.J.Z.), Chinese Ministry of Education Project 111 Program grant B13026 (Y.S. and J.J.Z.) and NIH grants R15NS081628 (Q.-Q.S. and W.Y.) and R01NS053570 (J.J.Z). This paper is the part of a dissertation in partial fulfillment of the requirements of the M.S. degree at the Bordeaux University, France (T.L.).

Author information




G.W. and J.J.Z. developed the optogenetics- and imaging-assisted simultaneous multiple patch-clamp recording system with inputs from D.R.W., T.L., X.J. and Y.S. Q.-Q.S. developed the laserspritzer technique. G.W., D.R.W. and W.Y. performed the experiments with technical assistance from Y.W., L.C.M., Q.-Q.S. and J.J.Z. G.W., D.R.W. and J.J.Z. wrote the manuscript with contributions from all other authors.

Corresponding author

Correspondence to J Julius Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wyskiel, D., Yang, W. et al. An optogenetics- and imaging-assisted simultaneous multiple patch-clamp recording system for decoding complex neural circuits. Nat Protoc 10, 397–412 (2015).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing