Using mammalian GFP reconstitution across synaptic partners (mGRASP) to map synaptic connectivity in the mouse brain


Many types of questions in neuroscience require the detection and mapping of synapses in the complex mammalian brain. A tool, mammalian GFP reconstitution across synaptic partners (mGRASP), offers a relatively easy, quick and economical approach to this technically challenging task. Here we describe in step-by-step detail the protocols for virus production, gene delivery, brain specimen preparation, fluorescence imaging and image analysis, calibrated substantially and specifically to make mGRASP-assisted circuit mapping (mGRASPing) practical in the mouse brain. The protocol includes troubleshooting suggestions and solutions to common problems. The mGRASP method is suitable for mapping mammalian synaptic connectivity at multiple scales: microscale for synapse-by-synapse or neuron-by-neuron analysis, and mesoscale for revealing local and long-range circuits. The entire protocol takes 5–6 weeks, including time for incubation and virus expression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2: Schematic illustration of mGRASP variants and experimental design for mGRASP-assisted circuit mapping (mGRASPing; Step 1).
Figure 3: mGRASP transduction and transfection in vivo.
Figure 4: mGRASP detection and synapse mapping.
Figure 5: Anticipated results.


  1. 1

    Yook, C., Druckmann, S. & Kim, J. Mapping mammalian synaptic connectivity. Cell Mol. Life Sci. 70, 4747–4757 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Kleinfeld, D. et al. Large-scale automated histology in the pursuit of connectomes. J. Neurosci. 31, 16125–16138 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Morgan, J.L. & Lichtman, J.W. Why not connectomics? Nat. Methods 10, 494–500 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Wickersham, I.R. & Feinberg, E.H. New technologies for imaging synaptic partners. Curr. Opin. Neurobiol. 22, 121–127 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Bock, D.D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Briggman, K.L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Cai, D., Cohen, K.B., Luo, T., Lichtman, J.W. & Sanes, J.R. Improved tools for the Brainbow toolbox. Nat. Methods 10, 540–547 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Micheva, K.D. & Smith, S.J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Micheva, K.D., Busse, B., Weiler, N.C., O'Rourke, N. & Smith, S.J. Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68, 639–653 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Wickersham, I.R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Kim, J. et al. mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat. Methods 9, 96–102 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Feng, L., Zhao, T. & Kim, J. Improved synapse detection for mGRASP-assisted brain connectivity mapping. Bioinformatics 28, I25–I31.

  14. 14

    Feinberg, E.H. et al. GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353–363 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Druckmann, S. et al. Structured synaptic connectivity between hippocampal regions. Neuron 81, 629–640 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Zingg, B. et al. Neural networks of the mouse neocortex. Cell 156, 1096–1111 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Oh, S.W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Grieger, J.C., Choi, V.W. & Samulski, R.J. Production and characterization of adeno-associated viral vectors. Nat. Protoc. 1, 1412–1428 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Saito, T. In vivo electroporation in the embryonic mouse central nervous system. Nat. Protoc. 1, 1552–1558 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Navarro-Quiroga, I., Chittajallu, R., Gallo, V. & Haydar, T.F. Long-term, selective gene expression in developing and adult hippocampal pyramidal neurons using focal in utero electroporation. J. Neurosci. 27, 5007–5011 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Cetin, A., Komai, S., Eliava, M., Seeburg, P.H. & Osten, P. Stereotaxic gene delivery in the rodent brain. Nat. Protoc. 1, 3166–3173 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Yamagata, M. & Sanes, J.R. Transgenic strategy for identifying synaptic connections in mice by fluorescence complementation (GRASP). Front. Mol. Neurosci. 5, 18 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Yu, Y.-C., Bultje, R.S., Wang, X. & Shi, S.-H. Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature 458, 501–504 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Wojtowicz, J.M. & Kee, N. BrdU assay for neurogenesis in rodents. Nat. Protoc. 1, 1399–1405 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Ono, M. et al. Quantitative comparison of anti-fading mounting media for confocal laser scanning microscopy. J. Histochem. Cytochem. 49, 305–312 (2001).

    CAS  Article  Google Scholar 

Download references


We thank M. Son for technical support. This work was supported by the KIST Institutional Program (project no. 2E24210) and by the World Class Institute (WCI) Program of the Nation Research Foundation (NRF) of Korea (NRF grant no. WCI 2009-003).

Author information




O.K., B.L., W.C.O. and J.K. performed the experiments, and L.F. made MATLAB functions for analysis. L.F., O.K. and J.K. drew figures. B.L. and W.C.O. wrote the stereotaxic and specimen preparation sections. L.F. wrote the synapse mapping section. J.K. wrote the paper.

Corresponding author

Correspondence to Jinhyun Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

AAV production and titer determination. (PDF 391 kb)

Procedures for in utero electroporation. (MOV 3512 kb)

Procedures for in vivo stereotaxic injection. (AVI 2508 kb)

Supplementary Data

The zipped mGRASP detection package named 'puncta'. (ZIP 160 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Kwon, O., Lee, B. et al. Using mammalian GFP reconstitution across synaptic partners (mGRASP) to map synaptic connectivity in the mouse brain. Nat Protoc 9, 2425–2437 (2014).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing