Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Affinity purification–mass spectrometry and network analysis to understand protein-protein interactions

Abstract

By determining protein-protein interactions in normal, diseased and infected cells, we can improve our understanding of cellular systems and their reaction to various perturbations. In this protocol, we discuss how to use data obtained in affinity purification–mass spectrometry (AP-MS) experiments to generate meaningful interaction networks and effective figures. We begin with an overview of common epitope tagging, expression and AP practices, followed by liquid chromatography–MS (LC-MS) data collection. We then provide a detailed procedure covering a pipeline approach to (i) pre-processing the data by filtering against contaminant lists such as the Contaminant Repository for Affinity Purification (CRAPome) and normalization using the spectral index (SIN) or normalized spectral abundance factor (NSAF); (ii) scoring via methods such as MiST, SAInt and CompPASS; and (iii) testing the resulting scores. Data formats familiar to MS practitioners are then transformed to those most useful for network-based analyses. The protocol also explores methods available in Cytoscape to visualize and analyze these types of interaction data. The scoring pipeline can take anywhere from 1 d to 1 week, depending on one's familiarity with the tools and data peculiarities. Similarly, the network analysis and visualization protocol in Cytoscape takes 2–4 h to complete with the provided sample data, but we recommend taking days or even weeks to explore one's data and find the right questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screenshot of a network import dialog showing the import of Supplementary Table 4 from Jäger et al.12.
Figure 2: Screenshot of a table import dialog showing the import of Supplementary Table 4 from Jäger et al.12.
Figure 3: Screenshot showing the merging of the IntAct imported network with our original AP-MS data set.
Figure 4: The merged and filtered network.
Figure 5: Screenshot of the JTreeView viewer from clusterMaker2 after a hierarchical cluster of the PE scores from the Collins et al.63 data set.
Figure 6: Cytoscape screenshot showing the clustered network resulting from an MCL cluster on the high-density data set from Collins et al.63.
Figure 7: Final visualized network from the Jäger et al.12 data set showing the Jurkat (purple gradient on the right-hand side of the nodes) and HEK293 scores (blue gradient on the left).

Similar content being viewed by others

References

  1. Sumegi, B., Sherry, A.D., Malloy, C.R., Evans, C. & Srere, P.A. Is there tight channelling in the tricarboxylic acid cycle metabolon? Biochem. Soc. Trans. 19, 1002–1005 (1991).

    CAS  PubMed  Google Scholar 

  2. De la Fuente, I.M. et al. Global self-regulation of the cellular metabolic structure. PLoS ONE 5, e9484 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. Li, J. & Buchner, J. Structure, function and regulation of the hsp90 machinery. Biomed. J. 36, 106–117 (2013).

    PubMed  Google Scholar 

  4. Gao, W., Bohl, C.E. & Dalton, J.T. Chemistry and structural biology of androgen receptor. Chem. Rev. 105, 3352–3370 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Obsil, T. & Obsilova, V. Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 27, 2263–2275 (2008).

    CAS  PubMed  Google Scholar 

  6. Rivera-Molina, F.E. & Novick, P.J. A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. Proc. Natl. Acad. Sci. USA 106, 14408–14413 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ortiz, D., Medkova, M., Walch-Solimena, C. & Novick, P. Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J. Cell Biol. 157, 1005–1015 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, G.I. & Gingras, A.C. Affinity-purification mass spectrometry (AP-MS) of serine/threonine phosphatases. Methods 42, 298–305 (2007).

    CAS  PubMed  Google Scholar 

  9. Couzens, A.L. et al. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci. Signal. 6, rs15 (2013).

    PubMed  Google Scholar 

  10. Jäger, S. et al. Purification and characterization of HIV-human protein complexes. Methods 53, 13–19 (2011).

    PubMed  Google Scholar 

  11. Joshi, P. et al. The functional interactome landscape of the human histone deacetylase family. Mol. Syst. Biol. 9, 672 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Jäger, S. et al. Global landscape of HIV-human protein complexes. Nature 481, 365–370 (2012).

    Google Scholar 

  13. Greninger, A.L., Knudsen, G.M., Betegon, M., Burlingame, A.L. & DeRisi, J.L. ACBD3 interaction with TBC1 domain 22 protein is differentially affected by enteroviral and kobuviral 3A protein binding. mBio 4, e00098–00013 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. Dyer, M.D. et al. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS ONE 5, e12089 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. Coiras, M. et al. Application of proteomics technology for analyzing the interactions between host cells and intracellular infectious agents. Proteomics 8, 852–873 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cristea, I.M. et al. Tracking and elucidating alphavirus-host protein interactions. J. Biol. Chem. 281, 30269–30278 (2006).

    CAS  PubMed  Google Scholar 

  17. Dyer, M.D., Murali, T.M. & Sobral, B.W. The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog. 4, e32 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. Filippova, M., Parkhurst, L. & Duerksen-Hughes, P.J. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J. Biol. Chem. 279, 25729–25744 (2004).

    CAS  PubMed  Google Scholar 

  19. Hartlova, A., Krocova, Z., Cerveny, L. & Stulik, J. A proteomic view of the host-pathogen interaction: the host perspective. Proteomics 11, 3212–3220 (2011).

    CAS  PubMed  Google Scholar 

  20. Henderson, B.R. & Percipalle, P. Interactions between HIV Rev and nuclear import and export factors: the Rev nuclear localisation signal mediates specific binding to human importin-. J. Mol. Biol. 274, 693–707 (1997).

    CAS  PubMed  Google Scholar 

  21. Breslow, D.K. et al. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048–1053 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brandman, O. et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151, 1042–1054 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jonikas, M.C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kelley, R. & Ideker, T. Systematic interpretation of genetic interactions using protein networks. Nat. Biotechnol. 23, 561–566 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    CAS  PubMed  Google Scholar 

  26. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    CAS  PubMed  Google Scholar 

  27. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    CAS  PubMed  Google Scholar 

  28. Ewing, R.M. et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89 (2007).

    PubMed  PubMed Central  Google Scholar 

  29. Goudreault, M. et al. A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol. Cell. Proteomics 8, 157–171 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Guruharsha, K.G. et al. A protein complex network of Drosophila melanogaster. Cell 147, 690–703 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rubio, V. et al. An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J. 41, 767–778 (2005).

    CAS  PubMed  Google Scholar 

  32. Sowa, M.E., Bennett, E.J., Gygi, S.P. & Harper, J.W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, Z., Licklider, L.J., Gygi, S.P. & Reed, R. Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185 (2002).

    CAS  PubMed  Google Scholar 

  34. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cline, M.S. et al. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2, 2366–2382 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Moorman, N.J., Sharon-Friling, R., Shenk, T. & Cristea, I.M. A targeted spatial-temporal proteomics approach implicates multiple cellular trafficking pathways in human cytomegalovirus virion maturation. Mol. Cell. Proteomics 9, 851–860 (2010).

    CAS  PubMed  Google Scholar 

  37. Al-Hakim, A.K., Bashkurov, M., Gingras, A.C., Durocher, D. & Pelletier, L. Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture. Mol. Cell. Proteomics 11, M111 014233 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. Dubois, F. et al. Differential 14-3-3 affinity capture reveals new downstream targets of phosphatidylinositol 3-kinase signaling. Mol. Cell. Proteomics 8, 2487–2499 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Musunuru, K. Genome editing of human pluripotent stem cells to generate human cellular disease models. Dis. Model Mech. 6, 896–904 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang, I.F. Mass spectrometry-based proteomic analysis of the epitope-tag affinity purified protein complexes in eukaryotes. Proteomics 6, 6158–6166 (2006).

    CAS  PubMed  Google Scholar 

  41. Westermarck, J., Ivaska, J. & Corthals, G.L. Identification of protein interactions involved in cellular signaling. Mol. Cell. Proteomics 12, 1752–1763 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods 10, 730–736 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kean, M.J., Couzens, A.L. & Gingras, A.C. Mass spectrometry approaches to study mammalian kinase and phosphatase associated proteins. Methods 57, 400–408 (2012).

    CAS  PubMed  Google Scholar 

  44. Cristea, I.M., Williams, R., Chait, B.T. & Rout, M.P. Fluorescent proteins as proteomic probes. Mol. Cell. Proteomics 4, 1933–1941 (2005).

    CAS  PubMed  Google Scholar 

  45. Gerber, D., Maerkl, S.J. & Quake, S.R. An in vitro microfluidic approach to generating protein-interaction networks. Nat. Methods 6, 71–74 (2009).

    CAS  PubMed  Google Scholar 

  46. Greninger, A.L., Knudsen, G.M., Betegon, M., Burlingame, A.L. & Derisi, J.L. The 3A protein from multiple picornaviruses utilizes the Golgi adaptor protein ACBD3 to recruit PI4KIII. J. Virol. 86, 3605–3616 (2012).

    PubMed  PubMed Central  Google Scholar 

  47. Granvogl, B., Ploscher, M. & Eichacker, L.A. Sample preparation by in-gel digestion for mass spectrometry–based proteomics. Anal. Bioanal. Chem. 389, 991–1002 (2007).

    CAS  PubMed  Google Scholar 

  48. Medzihradszky, K.F. In-solution digestion of proteins for mass spectrometry. Methods Enzymol. 405, 50–65 (2005).

    CAS  PubMed  Google Scholar 

  49. Medzihradszky, K.F., Leffler, H., Baldwin, M.A. & Burlingame, A.L. Protein identification by in-gel digestion, high-performance liquid chromatography, and mass spectrometry: peptide analysis by complementary ionization techniques. J. Am. Soc. Mass Spectrom. 12, 215–221 (2001).

    CAS  PubMed  Google Scholar 

  50. Kaake, R.M., Wang, X. & Huang, L. Profiling of protein interaction networks of protein complexes using affinity purification and quantitative mass spectrometry. Mol. Cell. Proteomics 9, 1650–1665 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    CAS  PubMed  Google Scholar 

  52. Eng, J.K., McCormack, A.L. & Yates, J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    CAS  PubMed  Google Scholar 

  53. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  Google Scholar 

  54. Craig, R. & Beavis, R.C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).

    CAS  PubMed  Google Scholar 

  55. Chalkley, R.J., Baker, P.R., Medzihradszky, K.F., Lynn, A.J. & Burlingame, A.L. In-depth analysis of tandem mass spectrometry data from disparate instrument types. Mol. Cell. Proteomics 7, 2386–2398 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Elias, J.E. & Gygi, S.P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    CAS  PubMed  Google Scholar 

  57. Nesvizhskii, A.I. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteomics 73, 2092–2123 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Choi, H., Fermin, D. & Nesvizhskii, A.I. Significance analysis of spectral count data in label-free shotgun proteomics. Mol. Cell. Proteomics 7, 2373–2385 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, H., Sadygov, R.G. & Yates, J.R. III. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193–4201 (2004).

    CAS  PubMed  Google Scholar 

  60. Gingras, A.C. & Raught, B. Beyond hairballs: the use of quantitative mass spectrometry data to understand protein-protein interactions. FEBS Lett. 586, 2723–2731 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Iwabuchi, K., Li, B., Bartel, P. & Fields, S. Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Oncogene 8, 1693–1696 (1993).

    CAS  PubMed  Google Scholar 

  62. Sasaki, J., Ishikawa, K., Arita, M. & Taniguchi, K. ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. EMBO J. 31, 754–766 (2012).

    CAS  PubMed  Google Scholar 

  63. Collins, S.R. et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6, 439–450 (2007).

    CAS  PubMed  Google Scholar 

  64. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    CAS  PubMed  Google Scholar 

  65. Bader, G.D. & Hogue, C.W. Analyzing yeast protein-protein interaction data obtained from different sources. Nat. Biotechnol. 20, 991–997 (2002).

    CAS  PubMed  Google Scholar 

  66. Gursoy, A., Keskin, O. & Nussinov, R. Topological properties of protein interaction networks from a structural perspective. Biochem. Soc. Trans. 36, 1398–1403 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Dunham, W.H., Mullin, M. & Gingras, A.C. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12, 1576–1590 (2012).

    CAS  PubMed  Google Scholar 

  68. Griffin, N.M. et al. Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat. Biotechnol. 28, 83–89 (2010).

    CAS  PubMed  Google Scholar 

  69. McIlwain, S. et al. Estimating relative abundances of proteins from shotgun proteomics data. BMC Bioinformatics 13, 308 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu, X., Ivanic, J., Wallqvist, A. & Reifman, J. A novel scoring approach for protein co-purification data reveals high interaction specificity. PLoS Comput. Biol. 5, e1000515 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. Breitkreutz, A. et al. A global protein kinase and phosphatase interaction network in yeast. Science 328, 1043–1046 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Choi, H. et al. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat. Methods 8, 70–73 (2011).

    CAS  PubMed  Google Scholar 

  73. Choi, H. et al. Analyzing protein-protein interactions from affinity purification-mass spectrometry data with SAINT. Curr. Protoc. Bioinform. 39, 8.15.1–8.15.23 (2012).

    Google Scholar 

  74. Michaut, M. et al. Protein complexes are central in the yeast genetic landscape. PLoS Comput. Biol. 7, e1001092 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bandyopadhyay, S. et al. A human MAP kinase interactome. Nat. Methods 7, 801–805 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chatr-Aryamontri, A. et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 41, D816–823 (2013).

    CAS  PubMed  Google Scholar 

  77. Croft, D. et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 42, D472–477 (2014).

    CAS  PubMed  Google Scholar 

  78. Franceschini, A. et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–815 (2013).

    CAS  PubMed  Google Scholar 

  79. Ruepp, A. et al. CORUM: the comprehensive resource of mammalian protein complexes--2009. Nucleic Acids Res. 38, D497–501 (2010).

    CAS  PubMed  Google Scholar 

  80. Orchard, S. et al. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–363 (2014).

    CAS  PubMed  Google Scholar 

  81. Sardiu, M.E., Florens, L. & Washburn, M.P. Evaluation of clustering algorithms for protein complex and protein interaction network assembly. J. Proteome Res. 8, 2944–2952 (2009).

    CAS  PubMed  Google Scholar 

  82. Gavin, A.C., Maeda, K. & Kuhner, S. Recent advances in charting protein-protein interaction: mass spectrometry-based approaches. Curr. Opin. Biotechnol. 22, 42–49 (2011).

    CAS  PubMed  Google Scholar 

  83. Montojo, J. et al. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 26, 2927–2928 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Aranda, B. et al. PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat. Methods 8, 528–529 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Vailaya, A. et al. An architecture for biological information extraction and representation. Bioinformatics 21, 430–438 (2005).

    CAS  PubMed  Google Scholar 

  86. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang, D.W. et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35, W169–175 (2007).

    PubMed  PubMed Central  Google Scholar 

  88. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jiao, X. et al. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28, 1805–1806 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang, D.W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

  91. Maere, S., Heymans, K. & Kuiper, M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448–3449 (2005).

    CAS  PubMed  Google Scholar 

  92. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, C. et al. NOA: a Cytoscape plugin for network ontology analysis. Bioinformatics 29, 2066–2067 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, G., Feng, X. & Stein, L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 11, R53 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. Oliver, S. Guilt-by-association goes global. Nature 403, 601–603 (2000).

    CAS  PubMed  Google Scholar 

  96. Pavlopoulos, G.A. et al. Using graph theory to analyze biological networks. BioData Mining 4, 10 (2011).

    PubMed  PubMed Central  Google Scholar 

  97. Grindrod, P. & Kibble, M. Review of uses of network and graph theory concepts within proteomics. Exp. Rev. Proteomics 1, 229–238 (2004).

    CAS  Google Scholar 

  98. Koschutzki, D. & Schreiber, F. Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2, 193–201 (2008).

    Google Scholar 

  99. Vidal, M., Cusick, M.E. & Barabasi, A.L. Interactome networks and human disease. Cell 144, 986–998 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Doncheva, N.T., Assenov, Y., Domingues, F.S. & Albrecht, M. Topological analysis and interactive visualization of biological networks and protein structures. Nat. Protoc. 7, 670–685 (2012).

    CAS  PubMed  Google Scholar 

  101. Scardoni, G., Petterlini, M. & Laudanna, C. Analyzing biological network parameters with CentiScaPe. Bioinformatics 25, 2857–2859 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Enright, A.J., Van Dongen, S. & Ouzounis, C.A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bader, G.D. & Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003).

    PubMed  PubMed Central  Google Scholar 

  104. King, A.D., Przulj, N. & Jurisica, I. Protein complex prediction with RNSC. Methods Mol. Biol. 804, 297–312 (2012).

    CAS  PubMed  Google Scholar 

  105. Blatt, M., Wiseman, S. & Domany, E. Superparamagnetic clustering of data. Phys. Rev. Lett. 76, 3251–3254 (1996).

    CAS  PubMed  Google Scholar 

  106. Brohee, S. & van Helden, J. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7, 488 (2006).

    PubMed  PubMed Central  Google Scholar 

  107. Moschopoulos, C.N. et al. Which clustering algorithm is better for predicting protein complexes? BMC Res. Notes 4, 549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Morris, J.H. et al. clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics 12, 436 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yu, H., Kim, P.M., Sprecher, E., Trifonov, V. & Gerstein, M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3, e59 (2007).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of J.H.M. and A.R.P. is supported by grant no. P41 GM103504 (the National Resource for Network Biology (NRNB)). J.H.M. is also supported by grant no. P41 GM103311 (Resource for Biocomputing, Visualization, and Informatics (RBVI)). G.M.K. is supported by the National Institute of General Medical Sciences (NIGMS) grant no. 8P41 GM103481. E.V. and J.R.J. are supported by US National Institutes of Health grant nos. P50 GM082250, P01 AI090935, P01AI091575 and P01 AI106754. P.C. is supported by a Howard Hughes Medical Institute Predoctoral Fellowship. A.L.G. is supported by the Walter K. Evans Prememorial Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

G.M.K., A.L.G. and J.R.J. contributed the Introduction and Experimental considerations; E.V. and P.C. contributed to Part 1 of the protocol (scoring pipeline) and its associated Supplementary Data; J.H.M. and A.R.P. contributed to Part 2 of the protocol (network analysis) including Cytoscape files and associated Supplementary Methods.

Corresponding author

Correspondence to Alexander R Pico.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data 1

Excel spreadsheet of the raw AP-MS data before scoring. This spreadsheet was reproduced from ref. 12, Macmillan Publishers Limited, and corresponds to Supplementary Data 1 in that paper. (XLS 10905 kb)

Supplementary Data 2

Excel spreadsheet of the scored AP-MS data. This spreadsheet was reproduced from ref. 12, Macmillan Publishers Limited, and corresponds to Supplementary Data 3 in that paper. (XLS 1631 kb)

Supplementary Data 3

Cytoscape session file with data adapted from ref. 63 (Collins, S. R. et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6, 439–450, 2007). (ZIP 1522 kb)

Supplementary Data 4

Cytoscape session file with imported network from Supplementary Data 2.xls (>0.75 CUTOFF), imported network from IntAct (IntAct…), merged network (Merged Network), and filtered merged network (Merged Network(1)). The final visualization of the data for ref. 12 shown in Figure 7 is the view for Merged Network(1). (ZIP 4840 kb)

Supplementary Methods

A step-by-step tutorial of the network analysis protocol using Cytoscape 3.1.1. (PDF 11709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, J., Knudsen, G., Verschueren, E. et al. Affinity purification–mass spectrometry and network analysis to understand protein-protein interactions. Nat Protoc 9, 2539–2554 (2014). https://doi.org/10.1038/nprot.2014.164

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.164

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics