Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants

Abstract

Artificial miRNA (amiRNA) technology offers highly specific gene silencing in diverse plant species. The principal challenge in amiRNA application is to select potent amiRNAs from hundreds of bioinformatically designed candidates to enable maximal target gene silencing at the protein level. To address this issue, we developed the epitope-tagged protein-based amiRNA (ETPamir) screens, in which single or multiple potential target genes encoding epitope-tagged proteins are constitutively or inducibly coexpressed with individual amiRNA candidates in plant protoplasts. Accumulation of tagged proteins, detected by immunoblotting with commercial tag antibodies, inversely and quantitatively reflects amiRNA efficacy in vivo. The core procedure, from protoplast isolation to identification of optimal amiRNA, can be completed in 2–3 d. The ETPamir screens circumvent the limited availability of plant antibodies and the complexity of plant amiRNA silencing at target mRNA and/or protein levels. The method can be extended to verify predicted target genes for endogenous plant miRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart of the ETPamir screens for identifying optimal amiRNAs.
Figure 2: Flowchart of the protein-based validation of predicted target genes for plant natural miRNAs.

Similar content being viewed by others

References

  1. Zhang, F. et al. High-frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc. Natl. Acad. Sci. USA 107, 12028–12033 (2010).

    Article  CAS  Google Scholar 

  2. Li, T., Liu, B., Spalding, M.H., Weeks, D.P. & Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30, 390–392 (2012).

    Article  CAS  Google Scholar 

  3. Christian, M., Qi, Y., Zhang, Y. & Voytas, D.F. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 3, 1697–1705 (2013).

    Article  Google Scholar 

  4. Li, J.F. et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688–691 (2013).

    Article  CAS  Google Scholar 

  5. Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686–688 (2013).

    Article  CAS  Google Scholar 

  6. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D.G. & Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691–693 (2013).

    Article  CAS  Google Scholar 

  7. Wang, Y. et al. Modes of gene duplication contribute differently to genetic novelty and redundancy but show parallels across divergent angiosperms. PLoS ONE 6, e28150 (2011).

    Article  CAS  Google Scholar 

  8. Alvarez, J.P. et al. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18, 1134–1151 (2006).

    Article  CAS  Google Scholar 

  9. Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  10. Ossowski, S., Schwab, R. & Weigel, D. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 53, 674–690 (2008).

    Article  CAS  Google Scholar 

  11. Li, J.F. et al. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 25, 1507–1522 (2013).

    Article  CAS  Google Scholar 

  12. Parizotto, E.A., Dunoyer, P., Rahm, N., Himber, C. & Voinnet, O. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev. 18, 2237–2242 (2004).

    Article  CAS  Google Scholar 

  13. Niu, Q.W. et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24, 1420–1428 (2006).

    Article  CAS  Google Scholar 

  14. Eamens, A.L., McHale, M. & Waterhouse, P.M. The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana. Methods Mol. Biol. 1062, 211–224 (2014).

    Article  Google Scholar 

  15. Warthmann, N., Chen, H., Ossowski, S., Weigel, D. & Herve, P. Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 3, e1829 (2008).

    Article  Google Scholar 

  16. Park, W., Zhai, J. & Lee, J.Y. Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes. Plant Cell Rep. 28, 469–480 (2009).

    Article  CAS  Google Scholar 

  17. Deveson, I., Li, J. & Millar, A.A. MicroRNAs with analogous target complementarities perform with highly variable efficacies in Arabidopsis. FEBS Lett. 587, 3703–3708 (2013).

    Article  CAS  Google Scholar 

  18. Bhagwat, B. et al. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation. J. Genet. Genomics 40, 261–270 (2013).

    Article  CAS  Google Scholar 

  19. Pasquinelli, A.E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13, 271–282 (2012).

    Article  CAS  Google Scholar 

  20. Yoo, S.D., Cho, Y.H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    Article  CAS  Google Scholar 

  21. Felippes, F.F., Wang, J.W. & Weigel, D. MIGS: miRNA-induced gene silencing. Plant J. 70, 541–547 (2012).

    Article  Google Scholar 

  22. Weiberg, A. et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342, 118–123 (2013).

    Article  CAS  Google Scholar 

  23. Llave, C., Xie, Z., Kasschau, K.D. & Carrington, J.C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).

    Article  CAS  Google Scholar 

  24. Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185–1190 (2008).

    Article  CAS  Google Scholar 

  25. Iwakawa, H.O. & Tomari, Y. Molecular insights into microRNA-mediated translational repression in plants. Mol. Cell 52, 591–601 (2013).

    Article  CAS  Google Scholar 

  26. Palatnik, J.F. et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev. Cell 13, 115–125 (2007).

    Article  CAS  Google Scholar 

  27. Li, J.F., Li, L. & Sheen, J. A rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology. Plant Methods 6, 1 (2010).

    Article  Google Scholar 

  28. Gursanscky, N.R., Searle, I.R. & Carroll, B.J. Mobile microRNAs hit the target. Traffic 12, 1475–1482.

  29. Oliveira, M.M., Barroso, J. & Pais, M.S. Direct gene transfer into Actinidia deliciosa protoplasts: analysis of transient expression of the CAT gene using TLC autoradiography and a GC-MS-based method. Plant Mol. Biol. 17, 235–242 (1991).

    Article  CAS  Google Scholar 

  30. Li, Z., Cheng, M., Demski, J.W. & Jarret, R.L. Improved electroporation buffer enhances transient gene expression in Arachis hypogaea protoplasts. Genome 38, 858–863 (1995).

    Article  CAS  Google Scholar 

  31. Huttly, A.K. & Baulcombe, D.C. A wheat α-Amy2 promoter is regulated by gibberellin in transformed oat aleurone protoplasts. EMBO J. 8, 1907–1913 (1989).

    Article  CAS  Google Scholar 

  32. Pauls, P.K., Kunert, K., Huttner, E. & Grandbastien, M.A. Expression of the tobacco Tnt1 retrotransposon promoter in heterologous species. Plant Mol. Biol. 26, 393–402 (1994).

    Article  CAS  Google Scholar 

  33. Eimert, K. & Siegemund, F. Transformation of cauliflower (Brassica oleracea L. var. botrytis)-an experimental survey. Plant Mol. Biol. 19, 485–490 (1992).

    Article  CAS  Google Scholar 

  34. Chung, E. et al. Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses. Planta 220, 286–295 (2004).

    Article  CAS  Google Scholar 

  35. Jiang, L. & Pan, L.J. Identification and expression of C2H2 transcription factor genes in Carica papaya under abiotic and biotic stresses. Mol. Biol. Rep. 39, 7105–7115 (2012).

    Article  CAS  Google Scholar 

  36. Kindle, K.L. High-efficiency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 87, 1228–1232 (1990).

    Article  CAS  Google Scholar 

  37. Niedz, R.P., McKendree, W.L. & Shatters Jr, R.C. Electroporation of embryogenic protoplasts of sweet orange (Citrus sinensis L. Osbeck) and regeneration of transformed plants. In Vitro Cell. Dev. Biol. –Plant 39, 586–594 (2003).

    Article  CAS  Google Scholar 

  38. Graham, I.A., Baker, C.J. & Leaver, C.J. Analysis of the cucumber malate synthase gene promoter by transient expression and gel retardation assays. Plant J. 6, 893–902 (1994).

    Article  CAS  Google Scholar 

  39. Wang, Z.Y. et al. Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Biotechnology 10, 691–696 (1992).

    CAS  PubMed  Google Scholar 

  40. Lin, W., Odell, J.T. & Schreiner, R.M. Soybean protoplast culture and direct gene uptake and expression by cultured soybean protoplasts. Plant Physiol. 84, 856–861 (1987).

    Article  CAS  Google Scholar 

  41. Gao, X. et al. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J. 66, 293–305 (2011).

    Article  CAS  Google Scholar 

  42. Gopalakrishnan, B., Sonthayanon, B., Rahmatullah, R. & Muthukrishnan, S. Barley aleurone layer cell protoplasts as a transient expression system. Plant Mol. Biol. 16, 463–467 (1991).

    Article  CAS  Google Scholar 

  43. Czarnecka, E., Verner, F.L. & Gurley, W.B. A strategy for building an amplified transcriptional switch to detect bacterial contamination of plants. Plant Mol. Biol. 78, 59–75 (2012).

    Article  CAS  Google Scholar 

  44. Loake, G.J. et al. Phenylpropanoid pathway intermediates regulate transient expression of a chalcone synthase gene promoter. Plant Cell 3, 829–840 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kobayashi, Y., Dokiya, Y., Sugiura, M., Niwa, Y. & Sugita, M. Genomic organization and organ-specific expression of a nuclear gene encoding phage-type RNA polymerase in Nicotiana sylvestris. Gene 279, 33–40 (2001).

    Article  CAS  Google Scholar 

  46. Ranjan, R. et al. Development and functional analysis of novel genetic promoters using DNA shuffling, hybridization and a combination thereof. PLoS ONE 7, e31931 (2012).

    Article  CAS  Google Scholar 

  47. Zhang, Y. et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30 (2011).

    Article  CAS  Google Scholar 

  48. Mazarei, M., Al-Ahmad, H., Rudis, M.R. & Stewart Jr, C.N. Protoplast isolation and transient gene expression in switchgrass, Panicum virgatum L. Biotechnol. J. 3, 354–359 (2008).

    Article  CAS  Google Scholar 

  49. de Lange, P., de Boer, G.J., Mol, J.N. & Kooter, J.M. Conditional inhibition of β-glucuronidase expression by antisense gene fragments in petunia protoplasts. Plant Mol. Biol. 23, 45–55 (1993).

    Article  CAS  Google Scholar 

  50. Roby, D., Broglie, K., Gaynor, J. & Broglie, R. Regulation of a chitinase gene promoter by ethylene and elicitors in bean protoplasts. Plant Physiol. 97, 433–439 (1991).

    Article  CAS  Google Scholar 

  51. Thevenin, J. et al. A new system for fast and quantitative analysis of heterologous gene expression in plants. New Phytol. 193, 504–512 (2012).

    Article  CAS  Google Scholar 

  52. Gomez-Maldonado, J., Crespillo, R., Avila, C. & Canovas, F.M. Efficient preparation of maritime pine (Pinus pinaster) protoplasts suitable for transgene expression analysis. Plant Mol. Biol. Rep. 19, 361–366 (2001).

    Article  CAS  Google Scholar 

  53. Ballas, N., Wong, L.M. & Theologis, A. Identification of the auxin-responsive element, AuxRE, in the primary indoleacetic acid-inducible gene, PS-IAA4/5, of pea (Pisum sativum). J. Mol. Biol. 233, 580–596 (1993).

    Article  CAS  Google Scholar 

  54. Guo, J. et al. Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS ONE 7, e44908 (2012).

    Article  CAS  Google Scholar 

  55. Gao, S.J. et al. Enhanced transgene expression in sugarcane by co-expression of virus-encoded RNA silencing suppressors. PLoS ONE 8, e66046 (2013).

    Article  CAS  Google Scholar 

  56. Yin, C., Richter, U., Borner, T. & Weihe, A. Evolution of phage-type RNA polymerases in higher plants: characterization of the single phage-type RNA polymerase gene from Selaginella moellendorffii. J. Mol. Evol. 68, 528–538 (2009).

    Article  CAS  Google Scholar 

  57. Feltkamp, D., Masterson, R., Starke, J. & Rosahl, S. Analysis of the involvement of ocs-like bZip-binding elements in the differential strength of the bidirectional mas1′2′ promoter. Plant Physiol. 105, 259–268 (1994).

    Article  CAS  Google Scholar 

  58. Wahler, D. et al. Polyphenoloxidase silencing affects latex coagulation in Taraxacum species. Plant Physiol. 151, 334–346 (2009).

    Article  CAS  Google Scholar 

  59. Lee, B., Murdoch, K., Topping, J., Kreis, M. & Jones, M.G. Transient gene expression in aleurone protoplasts isolated from developing caryopses of barley and wheat. Plant Mol. Biol. 13, 21–29 (1989).

    Article  CAS  Google Scholar 

  60. Mirabella, R., Franken, C., van der Krogt, G.N., Bisseling, T. & Geurts, R. Use of the fluorescent timer DsRED-E5 as reporter to monitor dynamics of gene activity in plants. Plant Physiol. 135, 1879–1887 (2004).

    Article  CAS  Google Scholar 

  61. Marchive, C. et al. Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PLoS ONE 8, e54185 (2013).

    Article  CAS  Google Scholar 

  62. Sheen, J. Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell 3, 225–245 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu, C. et al. A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis. Mol. Biol. Rep. 37, 256–262 (2009).

    CAS  Google Scholar 

  64. Zhao, T., Wang, W., Bai, X. & Qi, Y. Gene silencing by artificial microRNAs in Chlamydomonas. Plant J. 58, 157–164 (2009).

    Article  CAS  Google Scholar 

  65. Molnar, A. et al. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J. 58, 165–174 (2009).

    Article  CAS  Google Scholar 

  66. Melito, S. et al. A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance. BMC Plant Biol. 10, 104 (2010).

    Article  Google Scholar 

  67. Ali, I., Amin, I., Briddon, R.W. & Mansoor, S. Artificial microRNA-mediated resistance against the monopartite begomovirus Cotton leaf curl Burewala virus. Virol. J. 10, 231 (2013).

    Article  Google Scholar 

  68. Verdonk, J.C. & Sullivan, M.L. Artificial microRNA (amiRNA) induced gene silencing in alfalfa (Medicago sativa). Botany 91, 117–122 (2013).

    Article  CAS  Google Scholar 

  69. Devers, E.A., Teply, J., Reinert, A., Gaude, N. & Krajinski, F. An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula. BMC Plant Biol. 13, 82 (2013).

    Article  CAS  Google Scholar 

  70. Khraiwesh, B., Ossowski, S., Weigel, D., Reski, R. & Frank, W. Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol. 148, 684–693 (2008).

    Article  CAS  Google Scholar 

  71. Shi, R., Yang, C., Lu, S., Sederoff, R. & Chiang, V.L. Specific down-regulation of PAL genes by artificial microRNAs in Populus trichocarpa. Planta 232, 1281–1288 (2010).

    Article  CAS  Google Scholar 

  72. Fernandez, A.I. et al. Flexible tools for gene expression and silencing in tomato. Plant Physiol. 151, 1729–1740 (2009).

    Article  CAS  Google Scholar 

  73. Toppino, L. et al. Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes. Plant Biotechnol. J. 9, 684–692 (2011).

    Article  CAS  Google Scholar 

  74. Fahim, M., Millar, A.A., Wood, C.C. & Larkin, P.J. Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol. J. 10, 150–163 (2012).

    Article  CAS  Google Scholar 

  75. Roumi, V. et al. Transient expression of artificial microRNAs confers resistance to grapevine virus A in Nicotiana benthamiana. J. Plant Pathol. 94, 643–649 (2012).

    Google Scholar 

  76. Debernardi, J.M., Rodriguez, R.E., Mecchia, M.A. & Palatnik, J.F. Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genet. 8, e1002419 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Weigel laboratory for developing the versatile WMD platform and members in the Sheen laboratory for their efforts to test and improve the ETPamir screens. This work has been supported by a Massachusetts General Hospital Executive Committee on Research Postdoctoral Fellowship for Medical Discovery to J.-F.L. and by grants from the US National Science Foundation (grant no. IOS-0843244) and the US National Institutes of Health (grant nos. R01 GM60493 and R01 GM70567) to J.S.

Author information

Authors and Affiliations

Authors

Contributions

J.-F.L. developed the protocol under the guidance of J.S. The article was written by J.-F.L. and J.S. D.Z. prepared Tables 1 and 2 and related references.

Corresponding author

Correspondence to Jian-Feng Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JF., Zhang, D. & Sheen, J. Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Nat Protoc 9, 939–949 (2014). https://doi.org/10.1038/nprot.2014.061

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.061

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing