Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Targeting mammalian organelles with internalizing phage (iPhage) libraries

Abstract

Techniques that are largely used for protein interaction studies and the discovery of intracellular receptors, such as affinity-capture complex purification and the yeast two-hybrid system, may produce inaccurate data sets owing to protein insolubility, transient or weak protein interactions or irrelevant intracellular context. A versatile tool for overcoming these limitations, as well as for potentially creating vaccines and engineering peptides and antibodies as targeted diagnostic and therapeutic agents, is the phage-display technique. We have recently developed a new technology for screening internalizing phage (iPhage) vectors and libraries using a ligand/receptor-independent mechanism to penetrate eukaryotic cells. iPhage particles provide a unique discovery platform for combinatorial intracellular targeting of organelle ligands along with their corresponding receptors and for fingerprinting functional protein domains in living cells. Here we explain the design, cloning, construction and production of iPhage-based vectors and libraries, along with basic ligand-receptor identification and validation methodologies for organelle receptors. An iPhage library screening can be performed in 8 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart of the iPhage combinatorial library technology.
Figure 2: The iPhage vector and library cloning strategy.
Figure 3: An overview of phage vector (f88-4, fUSE5 and iPhage) purification by CsCl.
Figure 4: A systematic approach for affinity chromatography and receptor identification based on the iPhage technology.
Figure 5: An overview of differential centrifugation and subcellular fractionation quality analysis.
Figure 6: iPhage organelle-targeting properties.
Figure 7: Combinatorial screening of peptides targeting subcellular compartments and the identification of candidate receptors by affinity chromatography and MS/MS analysis.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366 (1996).

    Article  CAS  Google Scholar 

  2. Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380 (1998).

    Article  CAS  Google Scholar 

  3. Pasqualini, R., Arap, W., Rajotte, D. & Ruoslahti, E. in Phage display: a laboratory manual. (eds. Barbas, C.F., Burton, D.R., Scott, J.K. & Silverman, G.J.) 1–24 (Cold Spring Harbor Laboratory Press, 2001).

  4. Pasqualini, R. et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60, 722–727 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Arap, W. et al. Steps toward mapping the human vasculature by phage display. Nat. Med. 8, 121–127 (2002).

    Article  CAS  Google Scholar 

  6. Laakkonen, P., Porkka, K., Hoffman, J.A. & Ruoslahti, E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat. Med. 8, 751–755 (2002).

    Article  CAS  Google Scholar 

  7. Mintz, P.J. et al. Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat. Biotechnol. 21, 57–63 (2003).

    Article  CAS  Google Scholar 

  8. Higgins, L.M. et al. In vivo phage display to identify M cell-targeting ligands. Pharm. Res. 21, 695–705 (2004).

    Article  CAS  Google Scholar 

  9. Kolonin, M.G., Saha, P.K., Chan, L., Pasqualini, R. & Arap, W. Reversal of obesity by targeted ablation of adipose tissue. Nat. Med. 10, 625–632 (2004).

    Article  CAS  Google Scholar 

  10. Ballard, V.L., Holm, J.M. & Edelberg, J.M. Quantitative PCR-based approach for rapid phage display analysis: a foundation for high throughput vascular proteomic profiling. Physiol. Genomics 26, 202–208 (2006).

    Article  CAS  Google Scholar 

  11. Kolonin, M.G. et al. Synchronous selection of homing peptides for multiple tissues by in vivo phage display. FASEB J. 20, 979–981 (2006).

    Article  CAS  Google Scholar 

  12. Zhang, L., Giraudo, E., Hoffman, J.A., Hanahan, D. & Ruoslahti, E. Lymphatic zip codes in premalignant lesions and tumors. Cancer Res. 66, 5696–5706 (2006).

    Article  CAS  Google Scholar 

  13. Hardy, B., Battler, A., Weiss, C., Kudasi, O. & Raiter, A. Therapeutic angiogenesis of mouse hind limb ischemia by novel peptide activating GRP78 receptor on endothelial cells. Biochem. Pharmacol. 75, 891–899 (2008).

    Article  CAS  Google Scholar 

  14. Mintz, P.J. et al. An unrecognized extracellular function for an intracellular adapter protein released from the cytoplasm into the tumor microenvironment. Proc. Natl. Acad. Sci. USA 106, 2182–2187 (2009).

    Article  CAS  Google Scholar 

  15. Staquicini, F.I. et al. Vascular ligand-receptor mapping by direct combinatorial selection in cancer patients. Proc. Natl. Acad. Sci. USA 108, 18637–18642 (2011).

    Article  CAS  Google Scholar 

  16. Joliot, A., Pernelle, C., Deagostini-Bazin, H. & Prochiantz, A. Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. USA 88, 1864–1868 (1991).

    Article  CAS  Google Scholar 

  17. Derossi, D., Joliot, A.H., Chassaing, G. & Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444–10450 (1994).

    CAS  PubMed  Google Scholar 

  18. Derossi, D. et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 271, 18188–18193 (1996).

    Article  CAS  Google Scholar 

  19. Théodore, L. et al. Intraneuronal delivery of protein kinase C pseudosubstrate leads to growth cone collapse. J. Neurosci. 15, 7158–7167 (1995).

    Article  Google Scholar 

  20. Chen, Y.N. et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl. Acad. Sci. USA 96, 4325–4329 (1999).

    Article  CAS  Google Scholar 

  21. Mi, Z., Mai, J., Lu, X. & Robbins, P.D. Characterization of a class of cationic peptides able to facilitate efficient protein transduction in vitro and in vivo. Mol. Ther. 2, 339–347 (2000).

    Article  CAS  Google Scholar 

  22. Cardó-Vila, M., Arap, W. & Pasqualini, R. Mol. Cell 11, 1151–1162 (2003).

    Article  Google Scholar 

  23. Davidson, T.J. et al. Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J. Neurosci. 24, 10040–10046 (2004).

    Article  CAS  Google Scholar 

  24. Muratovska, A. & Eccles, M.R. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 558, 63–68 (2004).

    Article  CAS  Google Scholar 

  25. Apostolopoulos, V. et al. Delivery of tumor associated antigens to antigen presenting cells using penetratin induces potent immune responses. Vaccine 24, 3191–3202 (2006).

    Article  CAS  Google Scholar 

  26. Fabani, M.M. & Gait, M.J. miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 14, 336–346 (2008).

    Article  CAS  Google Scholar 

  27. Blobel, G. & Sabatini, D.D. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes. J. Cell Biol. 45, 130–145 (1970).

    Article  CAS  Google Scholar 

  28. Blobel, G. & Dobberstein, B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 67, 835–851 (1975).

    Article  CAS  Google Scholar 

  29. Blobel, G. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA 77, 1496–1500 (1980).

    Article  CAS  Google Scholar 

  30. Walter, P. & Blobel, G. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc. Natl. Acad Sci. USA 77, 7112–7116 (1980).

    Article  CAS  Google Scholar 

  31. Pain, D., Murakami, H. & Blobel, G. Identification of a receptor for protein import into mitochondria. Nature 347, 444–449 (1990).

    Article  CAS  Google Scholar 

  32. Rangel, R. et al. Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells. Nat. Commun. 3, 788 (2012).

    Article  Google Scholar 

  33. Barnhart, K.F. et al. A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys. Sci. Transl. Med. 3, 108ra112 (2011).

    Article  Google Scholar 

  34. Zurita, A.J. et al. Combinatorial screenings in patients: the interleukin-11 receptor as a candidate target in the progression of human prostate cancer. Cancer Res. 64, 435–439 (2004).

    Article  CAS  Google Scholar 

  35. Lewis, V.O. et al. The interleukin-11 receptor as a candidate ligand-directed target in osteosarcoma: consistent data from cell lines, orthotopic models, and human tumor samples. Cancer Res. 69, 1995–1999 (2009).

    Article  CAS  Google Scholar 

  36. Cardó-Vila, M. et al. From combinatorial peptide selection to drug prototype (II): targeting the epidermal growth factor receptor pathway. Proc. Natl. Acad. Sci. USA 107, 5118–5123 (2010).

    Article  Google Scholar 

  37. Giordano, R.J. et al. From combinatorial peptide selection to drug prototype (I): targeting the vascular endothelial growth factor receptor pathway. Proc. Natl. Acad. Sci. USA 107, 5112–5117 (2010).

    Article  CAS  Google Scholar 

  38. Marchiò, S. et al. Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell 5, 151–162 (2004).

    Article  Google Scholar 

  39. Hajitou, A. et al. A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 125, 385–398 (2006).

    Article  CAS  Google Scholar 

  40. Hajitou, A. et al. Design and construction of targeted AAVP vectors for mammalian cell transduction. Nat. Protoc. 2, 523–531 (2007).

    Article  CAS  Google Scholar 

  41. Hajitou, A. et al. A preclinical model for predicting drug response in soft-tissue sarcoma with targeted AAVP molecular imaging. Proc. Natl. Acad. Sci. USA 105, 4471–4476 (2008).

    Article  CAS  Google Scholar 

  42. Soghomonyan, S. et al. Molecular PET imaging of HSV1-tk reporter gene expression using [18F]FEAU. Nat. Protoc. 2, 416–423 (2007).

    Article  CAS  Google Scholar 

  43. Paoloni, M.C. et al. Launching a novel preclinical infrastructure: comparative oncology trials consortium directed therapeutic targeting of TNF to cancer vasculature. PLoS ONE 4, e4972 (2009).

    Article  Google Scholar 

  44. Tandle, A. et al. Tumor vasculature-targeted delivery of tumor necrosis factor-. Cancer 115, 128–139 (2009).

    Article  CAS  Google Scholar 

  45. Staquicini, F.I. et al. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J. Clin. Invest. 121, 161–173 (2011).

    Article  CAS  Google Scholar 

  46. Xu, X. et al. Dominant effector genetics in mammalian cells. Nat. Genet. 27, 23–29 (2001).

    Article  CAS  Google Scholar 

  47. Schlabach, M.R. et al. Cancer proliferation gene discovery through functional genomics. Science 319, 620–624 (2008).

    Article  CAS  Google Scholar 

  48. Silva, J.M. et al. Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319, 617–620 (2008).

    Article  CAS  Google Scholar 

  49. Peelle, B. et al. Intracellular protein scaffold-mediated display of random peptide libraries for phenotypic screens in mammalian cells. Chem. Biol. 8, 521–534 (2001).

    Article  CAS  Google Scholar 

  50. Norman, T.C. et al. Genetic selection of peptide inhibitors of biological pathways. Science 285, 591–595 (1999).

    Article  CAS  Google Scholar 

  51. Zhong, J., Zhang, H., Stanyon, C.A., Tromp, G. & Finley, R.L. A strategy for constructing large protein interaction maps using the yeast two-hybrid system: regulated expression arrays and two-phase mating. Genome Res. 13, 2691–2699 (2003).

    Article  CAS  Google Scholar 

  52. Staquicini, F.I., Sidman, R.L., Arap, W. & Pasqualini, R. Phage display technology for stem cell delivery and systemic therapy. Adv. Drug Deliv. Rev. 62, 1213–1216 (2010).

    Article  CAS  Google Scholar 

  53. Smith, G.P. & Scott, J.K. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217, 228–257 (1993).

    Article  CAS  Google Scholar 

  54. Herndier, B.G. et al. Characterization of a human Kaposi's sarcoma cell line that induces angiogenic tumors in animals. AIDS 8, 575–581 (1994).

    Article  CAS  Google Scholar 

  55. Claude, A. Fractionation of mammalian liver cells by differential centrifugation: I. problems, methods, and preparation of extract. J. Exp. Med. 84, 51–59 (1946).

    Article  CAS  Google Scholar 

  56. Castle, J.D. Purification of organelles from mammalian cells. Curr. Protoc. Immunol. 56, 8.1B.1–8.1B.57 (2003).

    Article  Google Scholar 

  57. de Araùjo, M.E., Huber, L.A. & Stasyk, T. Isolation of endocitic organelles by density gradient centrifugation. Methods Mol. Biol. 424, 317–331 (2008).

    Article  Google Scholar 

  58. Huber, L.A., Pfaller, K. & Vietor, I. Organelle proteomics: implications for subcellular fractionation in proteomics. Circ. Res. 92, 962–968 (2003).

    Article  CAS  Google Scholar 

  59. Cox, B. & Emili, A. Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat. Protoc. 1, 1872–1878 (2006).

    Article  CAS  Google Scholar 

  60. Hoffmann, K. et al. New application of a subcellular fractionation method to kidney and testis for the determination of conjugated linoleic acid in selected cell organelles of healthy and cancerous human tissues. Anal. Bioanal. Chem. 381, 1138–1144 (2005).

    Article  CAS  Google Scholar 

  61. Spann, T.P. in Cells: A laboratory manual, Vol. 1: Culture and Biochemical Analysis of Cells (eds. Spector, D.L., Goldman, R.D. & Leinwand, L.A.) 2136 (Cold Spring Harbor Laboratory Press, 1998).

  62. Huang, D.W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  63. Franceschini, A. et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).

    Article  CAS  Google Scholar 

  64. Dias-Neto, E. et al. Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis. PLoS ONE 4, e8338 (2009).

    Article  Google Scholar 

  65. Parmley, S.F. & Smith, G.P. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73, 305–318 (1988).

    Article  CAS  Google Scholar 

  66. Sambrook, J.J. & Russell, D.W. Molecular Cloning: A Laboratory Manual Vol. 1, 3rd edn. (Cold Spring Harbor Laboratory Press, 2001).

  67. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual Vol. 3, 2nd edn. (Cold Spring Harbor Laboratory Press, 1989).

  68. Kalderon, D., Roberts, B.L., Richardson, W.D. & Smith, A.E. A short amino acid sequence able to specify nuclear location. Cell 39, 499–509 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health, the US Department of Defense, and by awards from The University of Texas M.D. Anderson Cancer Center Trust, the Marcus Foundation, AngelWorks and the Gillson-Longenbaugh Foundation (all to W.A. and R.P.). R.R. received support from the Odyssey Scholar Program at the University of Texas M.D. Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

R.R., A.S.D., L.G.-R., J.G.G., R.L.S., R.P. and W.A. designed experiments. R.R., A.S.D., L.G.-R. and C.C.S. performed the experiments. R.R., A.S.D., L.G.-R., C.C.S., J.G.G., R.L.S., R.P. and W.A. analyzed data. R.R., A.S.D., L.G.-R., R.L.S., R.P. and W.A. wrote the manuscript. R.P. and W.A. supervised the project.

Corresponding authors

Correspondence to Renata Pasqualini or Wadih Arap.

Ethics declarations

Competing interests

The University of Texas M.D. Anderson Cancer Center (UTMDACC), along with its researchers (R.R., L.G.-R., R.P., W.A.), has filed patents on the technology and intellectual property reported here. If licensing or commercialization occurs, the researchers are entitled to standard royalties. R.P. and W.A. have equity in AAVP Biosystems. UTMDACC manages the terms of these arrangements in accordance with its established institutional conflict of interest policies.

Supplementary information

Supplementary Text and Figures

Subcellular iPhage localization (PDF 820 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangel, R., Dobroff, A., Guzman-Rojas, L. et al. Targeting mammalian organelles with internalizing phage (iPhage) libraries. Nat Protoc 8, 1916–1939 (2013). https://doi.org/10.1038/nprot.2013.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.119

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research