Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation of transgenic mice with megabase-sized human yeast artificial chromosomes by yeast spheroplast–embryonic stem cell fusion

Abstract

Introducing human genes into mice offers the opportunity to analyze their in vivo function or to obtain therapeutic molecules. For proper gene regulation, or in case of multigene families, megabase (Mb)-sized DNA fragments often have to be used. Yeast artificial chromosome (YAC)–mediated transgenesis is irreplaceable for this purpose, because alternative methods such as the use of bacterial artificial chromosomes (BACs) cannot introduce DNA fragments larger than 500 kb into the mouse germ line. However, YAC libraries often contain only partial gene loci. Time-consuming reconstruction of YACs, genetic instability and the difficulty in obtaining intact YAC DNA above a certain size impede the generation of humanized mice. Here we describe how to reconstruct YACs containing Mb-sized human DNA, such as the T cell receptor-α (TRA) gene locus, thus facilitating the introduction of large DNA fragments into the mouse germ line. Fusion of YAC-containing yeast and embryonic stem (ES) cells avoids the need for YAC DNA purification. These ES cells are then used to stably introduce the functional TRA gene locus into the mouse germ line. The protocol takes 1 year to complete, from reconstruction of the entire TRA gene locus from YACs containing partial but overlapping TRA regions to germline transmission of the YAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of overlapping TRA-YACs with a set of TRA-specific primers.
Figure 2: Determination of YAC insert orientation by YAC fragmentation.
Figure 3: Schematic diagram for the transfer of one YAC to a MATα host, YAC end modification with different selectable markers and reconstruction of YACs.
Figure 4: Alu Southern blot analysis of recombined TRA-YACs.
Figure 5: Modification of an intact Mb-sized TRA-YAC.
Figure 6: Transfer of human TRA-YAC into the mouse genome by ES cell–yeast spheroplast fusion.

Similar content being viewed by others

References

  1. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  2. Lee, S.T. et al. Altered microRNA regulation in Huntington's disease models. Exp. Neurol. 227, 172–179 (2011).

    Article  CAS  Google Scholar 

  3. Kleinjan, D.A. et al. Long-range downstream enhancers are essential for Pax6 expression. Dev. Biol. 299, 563–581 (2006).

    Article  CAS  Google Scholar 

  4. Navas, P.A., Li, Q., Peterson, K.R. & Stamatoyannopoulos, G. Investigations of a human embryonic globin gene silencing element using YAC transgenic mice. Exp. Biol. Med. (Maywood) 231, 328–334 (2006).

    Article  CAS  Google Scholar 

  5. Li, L.P. et al. Transgenic mice with a diverse human T cell antigen receptor repertoire. Nat. Med. 16, 1029–1034 (2010).

    Article  CAS  Google Scholar 

  6. Pruzina, S. et al. Human monoclonal antibodies to HIV-1 gp140 from mice bearing YAC-based human immunoglobulin transloci. Protein Eng. Des. Sel. 24, 791–799 (2011).

    Article  CAS  Google Scholar 

  7. Han, S.J., O'Malley, B.W. & DeMayo, F.J. An estrogen receptor-α activity indicator model in mice. Genesis 47, 815–824 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Harju-Baker, S., Costa, F.C., Fedosyuk, H., Neades, R. & Peterson, K.R. Silencing of Aγ-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the -566 GATA site. Mol. Cell Biol. 28, 3101–3113 (2008).

    Article  CAS  Google Scholar 

  9. Bentley, K.L., Shashikant, C.S., Wang, W., Ruddle, N.H. & Ruddle, F.H. A yeast-based recombinogenic targeting toolset for transgenic analysis of human disease genes. Ann. N Y Acad. Sci. 1207 (suppl. 1): E58–E68 (2010).

    Article  Google Scholar 

  10. Dow, L.E. & Lowe, S.W. Life in the fast lane: mammalian disease models in the genomics era. Cell 148, 1099–1109 (2012).

    Article  CAS  Google Scholar 

  11. Seo, H. & Isacson, O. The hAPP-YAC transgenic model has elevated UPS activity in the frontal cortex similar to Alzheimer's disease and Down's syndrome. J. Neurochem. 114, 1819–1826 (2010).

    Article  CAS  Google Scholar 

  12. t Hoen, P.A. et al. Generation and characterization of transgenic mice with the full-length human DMD gene. J. Biol. Chem. 283, 5899–5907 (2008).

    Article  CAS  Google Scholar 

  13. Mendez, M.J. et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat. Genet. 15, 146–156 (1997).

    Article  CAS  Google Scholar 

  14. Xu, Z., Lefevre, G.M. & Felsenfeld, G. Chromatin structure, epigenetic mechanisms and long-range interactions in the human insulin locus. Diabetes Obes. Metab. 14, 1–11 (2012).

    Article  Google Scholar 

  15. O'Connor, M., Peifer, M. & Bender, W. Construction of large DNA segments in Escherichia coli. Science 244, 1307–1312 (1989).

    Article  CAS  Google Scholar 

  16. Ioannou, P.A. et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat. Genet. 6, 84–89 (1994).

    Article  CAS  Google Scholar 

  17. Burke, D.T., Carle, G.F. & Olson, M.V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812 (1987).

    Article  CAS  Google Scholar 

  18. Peterson, K.R. Transgenic mice carrying yeast artificial chromosomes. Expert Rev. Mol. Med. 5, 1–25 (2003).

    Article  Google Scholar 

  19. Scherer, S. & Davis, R.W. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc. Natl. Acad. Sci. USA 76, 4951–4955 (1979).

    Article  CAS  Google Scholar 

  20. Duff, K. & Huxley, C. Targeting mutations to YACs by homologous recombination. Methods Mol. Biol. 54, 187–198 (1996).

    CAS  PubMed  Google Scholar 

  21. Silverman, G.A. Reconstruction of large genomic segments of DNA by meiotic recombination between YACs. Methods Mol. Biol. 54, 199–216 (1996).

    CAS  PubMed  Google Scholar 

  22. McKee-Johnson, J.W. & Reeves, R.H. Fragmentation and integrative modification of YACs. Methods Mol. Biol. 54, 167–186 (1996).

    CAS  PubMed  Google Scholar 

  23. Kohno, K. et al. Stability of YACs containing ribosomal or RCP/GCP locus DNA in wild-type S. cerevisiae and RAD mutant strains. DNA Res. 1, 191–199 (1994).

    Article  CAS  Google Scholar 

  24. Korenberg, J.R. & Rykowski, M.C. Human genome organization: Alu, LINES, and the molecular structure of metaphase chromosome bands. Cell 53, 391–400 (1988).

    Article  CAS  Google Scholar 

  25. Moir, D.T. et al. Rapid identification of overlapping YACs in the MEN2 region of human chromosome 10 by hybridization with Alu element–mediated PCR products. Gene 136, 177–183 (1993).

    Article  CAS  Google Scholar 

  26. Schedl, A. et al. Transgenic mice generated by pronuclear injection of a yeast artificial chromosome. Nucleic Acids Res. 20, 3073–3077 (1992).

    Article  CAS  Google Scholar 

  27. Strauss, W.M. et al. Germline transmission of a yeast artificial chromosome spanning the murine alpha 1(I) collagen locus. Science 259, 1904–1907 (1993).

    Article  CAS  Google Scholar 

  28. Jakobovits, A. et al. Germ-line transmission and expression of a human-derived yeast artificial chromosome. Nature 362, 255–258 (1993).

    Article  CAS  Google Scholar 

  29. Moreira, P.N. et al. Efficient generation of transgenic mice with intact yeast artificial chromosomes by intracytoplasmic sperm injection. Biol. Reprod. 71, 1943–1947 (2004).

    Article  CAS  Google Scholar 

  30. Huxley, C. Exploring gene function: use of yeast artificial chromosome transgenesis. Methods 14, 199–210 (1998).

    Article  CAS  Google Scholar 

  31. Noskov, V.N. et al. Isolation of circular yeast artificial chromosomes for synthetic biology and functional genomics studies. Nat. Protoc. 6, 89–96 (2011).

    Article  CAS  Google Scholar 

  32. Peterson, K.R. Preparation of intact yeast artificial chromosome DNA for transgenesis of mice. Nat. Protoc. 2, 3009–3015 (2007).

    Article  CAS  Google Scholar 

  33. Moreira, P.N. et al. Improving the generation of genomic-type transgenic mice by ICSI. Transgenic Res. 16, 163–168 (2007).

    Article  CAS  Google Scholar 

  34. Davies, N.P. & Huxley, C. YAC transfer into mammalian cells by cell fusion. Methods Mol. Biol. 54, 281–292 (1996).

    CAS  PubMed  Google Scholar 

  35. Alami, R. et al. β-globin YAC transgenes exhibit uniform expression levels but position effect variegation in mice. Hum. Mol. Genet. 9, 631–636 (2000).

    Article  CAS  Google Scholar 

  36. Kouprina, N. & Larionov, V. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat. Protoc. 3, 371–377 (2008).

    Article  CAS  Google Scholar 

  37. Rack, K.A. et al. A chromosome 14q11/TCR α/δ specific yeast artificial chromosome improves the detection rate and characterization of chromosome abnormalities in T-lymphoproliferative disorders. Blood 90, 1233–1240 (1997).

    CAS  PubMed  Google Scholar 

  38. Wei, S. & Concannon, P. Repertoire and organization of human T cell receptor–α region variable genes. Genomics 38, 442–445 (1996).

    Article  CAS  Google Scholar 

  39. Sambrook, J. & Russell, D.W. Analyzing yeast colonies by PCR. Cold Spring Harb. Protoc. http://dx.doi.org/10.1101/pdb.prot4015 (2006).

  40. Valdes, J.M., Tagle, D.A. & Collins, F.S. Island rescue PCR: a rapid and efficient method for isolating transcribed sequences from yeast artificial chromosomes and cosmids. Proc. Natl. Acad. Sci. USA 91, 5377–5381 (1994).

    Article  CAS  Google Scholar 

  41. Bates, G. Isolation of YAC ends by plasmid rescue. Methods Mol. Biol. 54, 139–144 (1996).

    CAS  PubMed  Google Scholar 

  42. Lewis, B.C., Shah, N.P., Braun, B.S. & Denny, C.T. Creation of a yeast artificial chromosome fragmentation vector based on lysine-2. Genet. Anal. Tech. Appl. 9, 86–90 (1992).

    Article  CAS  Google Scholar 

  43. Spencer, F. & Simchen, G. Transfer of YAC clones to new yeast hosts. Methods Mol. Biol. 54, 239–252 (1996).

    CAS  PubMed  Google Scholar 

  44. Hermanson, G.G., Hoekstra, M.F., McElligott, D.L. & Evans, G.A. Rescue of end fragments of yeast artificial chromosomes by homologous recombination in yeast. Nucleic Acids Res. 19, 4943–4948 (1991).

    Article  CAS  Google Scholar 

  45. Ragoussis, J., Trowsdale, J. & Markie, D. Mitotic recombination of yeast artificial chromosomes. Nucleic Acids Res. 20, 3135–3138 (1992).

    Article  CAS  Google Scholar 

  46. Fairhead, C., Heard, E., Arnaud, D., Avner, P. & Dujon, B. Insertion of unique sites into YAC arms for rapid physical analysis following YAC transfer into mammalian cells. Nucleic Acids Res 23, 4011–4012 (1995).

    Article  CAS  Google Scholar 

  47. Pavan, W.J., Hieter, P. & Reeves, R.H. Modification and transfer into an embryonal carcinoma cell line of a 360-kilobase human-derived yeast artificial chromosome. Mol. Cell Biol. 10, 4163–4169 (1990).

    Article  CAS  Google Scholar 

  48. Bryja, V., Bonilla, S. & Arenas, E. Derivation of mouse embryonic stem cells. Nat. Protoc. 1, 2082 (2006).

    Article  CAS  Google Scholar 

  49. Gibson, D.G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Article  CAS  Google Scholar 

  50. Dymond, J.S. et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477, 471–476 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Textor for technical assistance, and G. Willimsky, T. Kammertoens, D. Strathdee and J. Guo for critical reading of the manuscript. We thank E. A. Macintyre (Hôpital Necker Enfants Malades) for YAC 27BE8 (y27BE8), isolated from the ICRF human YAC library. We also thank A. Garratt (Max Delbrük Center) for the ES14.1 cell line. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich TR36) and the 'Alliance' program of the Helmholtz-Gemeinschaft Deutscher Forschungszentren (HA-202).

Author information

Authors and Affiliations

Authors

Contributions

L.L. designed the protocol, performed the experiments, analyzed the data and wrote the manuscript. T.B. supervised the project, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Liangping Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Blankenstein, T. Generation of transgenic mice with megabase-sized human yeast artificial chromosomes by yeast spheroplast–embryonic stem cell fusion. Nat Protoc 8, 1567–1582 (2013). https://doi.org/10.1038/nprot.2013.093

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.093

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing