Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes

Abstract

Microfluidic mixing in combination with single-molecule spectroscopy allows the investigation of complex biomolecular processes under non-equilibrium conditions. Here we present a protocol for building, installing and operating microfluidic mixing devices optimized for this purpose. The mixer is fabricated by replica molding with polydimethylsiloxane (PDMS), which allows the production of large numbers of devices at a low cost using a single microfabricated silicon mold. The design is based on hydrodynamic focusing combined with diffusive mixing and allows single-molecule kinetics to be recorded over five orders of magnitude in time, from 1 ms to 100 s. Owing to microfabricated particle filters incorporated in the inlet channels, the devices provide stable flow for many hours to days without channel blockage, which allows reliable collection of high-quality data. Modular design enables rapid exchange of samples and mixing devices, which are mounted in a specifically designed holder for use with a confocal microscopy detection system. Integrated Peltier elements provide temperature control from 4 to 37 °C. The protocol includes the fabrication of a silicon master, production of the microfluidic devices, instrumentation setup and data acquisition. Once a silicon master is available, devices can be produced and experiments started within 1 d of preparation. We demonstrate the performance of the system with single-molecule Förster resonance energy transfer (FRET) measurements of kinetics of protein folding and conformational changes. The dead time of 1 ms, as predicted from finite element calculations, was confirmed by the measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microfluidic mixing device allowing observation on timescales from milliseconds to minutes.
Figure 2: Cartridge and cartridge holder for mounting the microfluidic devices on the single-molecule instrument.
Figure 3: Calibration curve for the temperature control of the microfluidic device.
Figure 4
Figure 5: Casting the PDMS devices.
Figure 6: Processing the PDMS cast.
Figure 7: Assembly of the microfluidic device.
Figure 8: Loading the cartridge holder.
Figure 9: Wide-field microscopy images of the mixing device in operation.
Figure 10: Normalized FCS curves, G(τ), of fluorescently labeled protein passing through the confocal volume positioned in the observation channel.
Figure 11: Unfolding kinetics of BdpA upon mixing with denaturant.
Figure 12: Kinetic measurement of the conformational change of ClyA upon mixing with DDM.

Similar content being viewed by others

References

  1. Selvin, P.R. & Ha, T. Single-Molecule Techniques: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2008).

  2. Dunkle, J.A. & Cate, J.H.D. Ribosome structure and dynamics during translocation and termination. Annual Review of Biophysics 39, 227–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Marshall, R.A., Aitken, C.E., Dorywalska, M. & Puglisi, J.D. Translation at the single-molecule level. Annu. Rev. Biochem. 77, 177–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Greenleaf, W.J., Woodside, M.T. & Block, S.M. High-resolution, single-molecule measurements of biomolecular motion. Annu. Rev. Biophys. Biomol. Struct. 36, 171–190 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kapanidis, A.N. & Strick, T. Biology, one molecule at a time. Trends Biochem. Sci. 34, 234–243 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Ha, T., Kozlov, A.G. & Lohman, T.M. Single-molecule views of protein movement on single-stranded DNA. Annu. Rev. Biophys. 41, 295–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smiley, R.D. & Hammes, G.G. Single-molecule studies of enzyme mechanisms. Chem. Rev. 106, 3080–3094 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Dittrich, P.S., Muller, B. & Schwille, P. Studying reaction kinetics by simultaneous FRET and cross-correlation analysis in a miniaturized continuous-flow reactor. Phys. Chem. Chem. Phys. 6, 4416–4420 (2004).

    Article  CAS  Google Scholar 

  9. Zhuang, X.W. Single-molecule RNA science. in Annu. Rev. Biophys. Biomol. Struct. 34, 399–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Schuler, B. & Hofmann, H. Single-molecule spectroscopy of protein folding dynamics-expanding scope and timescales. Curr. Opin. Struct. Biol. 23, 36–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Nettels, D., Gopich, I.V., Hoffmann, A. & Schuler, B. Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc. Natl. Acad. Sci. USA 104, 2655–2660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Soranno, A. et al. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy. Proc. Natl. Acad. Sci. USA 109, 17800–17806 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Neuweiler, H., Johnson, C.M. & Fersht, A.R. Direct observation of ultrafast folding and denatured state dynamics in single protein molecules. Proc. Natl. Acad. Sci. USA 106, 18569–74 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sherman, E. & Haran, G. Fluorescence correlation spectroscopy of fast chain dynamics within denatured protein L. Chemphyschem. 12, 696–703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chung, H.S., Cellmer, T., Louis, J.M. & Eaton, W.A. Measuring ultrafast protein folding rates from photon-by-photon analysis of single-molecule fluorescence trajectories. Chem. Phys. http://dx.doi.org/10.1016/j.chemphys.2012.08.005 (14 August 2012).

  16. Schuler, B., Lipman, E.A. & Eaton, W.A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419, 743–747 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Hoffmann, A. et al. Quantifying heterogeneity and conformational dynamics from single-molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP). Phys. Chem. Chem. Phys. 13, 1857–1871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chung, H.S. et al. Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein. J. Phys. Chem. A 115, 3642–3656 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Gopich, I.V. & Szabo, A. FRET efficiency distributions of multistate single molecules. J. Phys. Chem. B 114, 15221–15226 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chung, H.S., Louis, J.M. & Eaton, W.A. Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories. Proc. Natl. Acad. Sci. USA 106, 11837–11844 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chung, H.S., McHale, K., Louis, J.M. & Eaton, W.A. Single-molecule fluorescence experiments determine protein folding transition path times. Science 335, 981–984 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Rhoades, E., Gussakovsky, E. & Haran, G. Watching proteins fold one molecule at a time. Proc. Natl. Acad. Sci. USA 100, 3197–3202 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rhoades, E., Cohen, M., Schuler, B. & Haran, G. Two-state folding observed in individual protein molecules. J. Am. Chem. Soc. 126, 14686–14687 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Pirchi, M. et al. Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein. Nat. Commun. 2, 493 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Kuzmenkina, E.V., Heyes, C.D. & Nienhaus, G.U. Single-molecule Förster resonance energy transfer study of protein dynamics under denaturing conditions. Proc. Natl. Acad. Sci. USA 102, 15471–15476 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hofmann, H. et al. Single-molecule spectroscopy of protein folding in a chaperonin cage. Proc. Natl. Acad. Sci. USA 107, 11793–11798 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gambin, Y. et al. Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing. Nat. Methods 8, 239–241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lipman, E.A., Schuler, B., Bakajin, O. & Eaton, W.A. Single-molecule measurement of protein folding kinetics. Science 301, 1233–1235 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Borgia, A. et al. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy. Nat. Commun. 2, 1195 (2012).

    Article  CAS  Google Scholar 

  30. Hamadani, K.M. & Weiss, S. Nonequilibrium single-molecule protein folding in a coaxial mixer. Biophys. J. 95, 352–365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brody, J.P., Yager, P., Goldstein, R.E. & Austin, R.H. Biotechnology at low Reynolds numbers. Biophys. J. 71, 3430–3441 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Knight, J.B., Vishwanath, A., Brody, J.P. & Austin, R.H. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80, 3863–3866 (1998).

    Article  CAS  Google Scholar 

  33. Zimmerman, W.B.J. Multiphysics Modeling with Finite Element Methods, (World Scientific Publishing, 2006).

  34. Hoffmann, A. et al. Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy. Proc. Natl. Acad. Sci. USA 104, 105–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Kane, A.S. et al. Microfluidic mixers for the investigation of rapid protein folding kinetics using synchrotron radiation circular dichroism spectroscopy. Anal. Chem. 80, 9534–9541 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, K., Tian, Y., Burrows, S.M., Reif, R.D. & Pappas, D. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy. Analytica. Chimica. Acta. 651, 85–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Benninger, R.K. et al. Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging. Anal. Chem. 78, 2272–2278 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Pfeil, S.H., Wickersham, C.E., Hoffmann, A. & Lipman, E.A. A microfluidic mixing system for single-molecule measurements. Rev. Sci. Instrum. 80, 055105 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Lemke, E.A. et al. Microfluidic device for single-molecule experiments with enhanced photostability. J. Am. Chem. Soc. 131, 13610–13612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gambin, Y., Simonnet, C., VanDelinder, V., Deniz, A. & Groisman, A. Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics. Lab Chip 10, 598–609 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. McDonald, J.C. & Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Hofmann, H. et al. Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proc. Natl. Acad. Sci. USA 109, 16155–16160 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Arbour, T.J. & Enderlein, J. Application of dual-focus fluorescence correlation spectroscopy to microfluidic flow-velocity measurement. Lab Chip 10, 1286–1292 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Roder, H., Maki, K. & Cheng, H. Early events in protein folding explored by rapid mixing methods. Chem. Rev. 106, 1836–1861 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cooksey, G.A., Plant, A.L. & Atencia, J. A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices. Lab Chip 9, 1298–1300 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Nettels, D. et al. Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc. Natl. Acad. Sci. USA 106, 20740–20745 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kawahara, K. & Tanford, C. Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J. Biol. Chem. 241, 3228–3232 (1966).

    CAS  PubMed  Google Scholar 

  48. CRC Handbook of Chemistry and Physics, (CRC Press, 2013).

  49. Sisamakis, E., Valeri, A., Kalinin, S., Rothwell, P.J. & Seidel, C.A.M. Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol. 475, 455–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Schuler, B. Application of single-molecule Förster resonance energy transfer to protein folding. Methods Mol. Biol. 350, 115–138 (2007).

    CAS  PubMed  Google Scholar 

  51. Gösch, M., Blom, H., Holm, J., Heino, T. & Rigler, R. Hydrodynamic flow profiling in microchannel structures by single-molecule fluorescence correlation spectroscopy. Anal. Chem. 72, 3260–3265 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Dimitriadis, G. et al. Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump. Proc. Natl. Acad. Sci. USA 101, 3809–3814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arora, P., Oas, T.G. & Myers, J.K. Fast and faster: a designed variant of the B-domain of protein A folds in 3 microsec. Protein Sci. 13, 847–853 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mueller, M., Grauschopf, U., Maier, T., Glockshuber, R. & Ban, N. The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism. Nature 459, 726–730 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Eifler, N. et al. Cytotoxin ClyA from Escherichia coli assembles to a 13-meric pore independent of its redox-state. EMBO J. 25, 2652–2661 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schuler, B., Müller-Späth, S., Soranno, A. & Nettels, D. Application of confocal single-molecule FRET to intrinsically disordered proteins. Methods Mol. Biol. 896, 21–45 (2012).

    CAS  PubMed  Google Scholar 

  57. Dittrich, P.S. & Schwille, P. Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures. Anal. Chem. 74, 4472–4479 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Taylor, G. Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. Royal Soc. London A 225, 473–477 (1954).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Lipman for many helpful suggestions and discussions that have led to the routine application of the microfluidic mixer to biomolecular dynamics. We thank S. Radford for labeled BdpA and R. Glockshuber and D. Roderer for discussion and for an expression plasmid for ClyA. We thank R. Kellner for help with photography and video recording, A. Schmid for technical support, A. Soranno for help with data analysis and A. Hoffmann for help in the initial stages of the project. We thank all users of the device in the group for their feedback and suggestions. Electron microscopy was performed with support of the Center for Microscopy and Image Analysis, University of Zurich. This work was supported by the Swiss National Science Foundation, the Swiss National Center of Competence in Research (NCCR) for Structural Biology and a Starting Grant of the European Research Council (to B.S.).

Author information

Authors and Affiliations

Authors

Contributions

B.W., D.N. and B.S. designed the research and wrote the manuscript with the help of the other authors. B.W. constructed the instrumentation and mixing device, performed the microfabrication and experiments, and established the practical procedures. B.W. and D.N. performed data analysis and finite element calculations. B.W., S.B., J.C. and H.H. performed the experiments with protein samples, and S.B. and D.N. contributed to the temperature-control calibration. S.W. contributed to the design of the machined parts. S.H.P. established large parts of the practical procedures and helped with the design and handling of the device.

Corresponding authors

Correspondence to Daniel Nettels or Benjamin Schuler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Microfluidic device assembly (MOV 14641 kb)

Supplementary Video 2

Cartridge assembly and loading (MOV 11718 kb)

Supplementary Table 1

Position-to-time conversion (PDF 511 kb)

Supplementary Data 1

Mask layout (ZIP 1248 kb)

Supplementary Data 2

Casting dish technical drawings (PDF 1453 kb)

Supplementary Data 3

Casting dish CAD files (ZIP 1470 kb)

Supplementary Data 4

Cartridges for holding microfluidic devices and temperature controlled cartridge holder technical drawings (PDF 6317 kb)

Supplementary Data 5

Cartridges for holding microfluidic devices and temperature controlled cartridge holder CAD files (ZIP 4699 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wunderlich, B., Nettels, D., Benke, S. et al. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Nat Protoc 8, 1459–1474 (2013). https://doi.org/10.1038/nprot.2013.082

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.082

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing