Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry

Abstract

Single-cell mass spectrometry (MS) empowers metabolomic investigations by decreasing analytical dimensions to the size of individual cells and subcellular structures. We describe a protocol for investigating and quantifying metabolites in individual isolated neurons using single-cell capillary electrophoresis (CE) coupled to electrospray ionization (ESI) time-of-flight (TOF) MS. The protocol requires 2 h for sample preparation, neuron isolation and metabolite extraction, and 1 h for metabolic measurement. We used the approach to detect more than 300 distinct compounds in the mass range of typical metabolites in various individual neurons (25–500 μm in diameter) isolated from the sea slug (Aplysia californica) central and rat (Rattus norvegicus) peripheral nervous systems. We found that a subset of identified compounds was sufficient to reveal metabolic differences among freshly isolated neurons of different types and changes in the metabolite profiles of cultured neurons. The protocol can be applied to the characterization of the metabolome in a variety of smaller cells and/or subcellular domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup of the single-cell CE-ESI-MS system.
Figure 2: Targeted CE-ESI-MS analysis of single neurons, 25–500 μm in diameter.
Figure 3: Chemical profiling, quantification and comparison of metabolites among individual cells.

Similar content being viewed by others

References

  1. Wishart, D.S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009).

    Article  CAS  Google Scholar 

  2. Stephens, D.J. & Allan, V.J. Light microscopy techniques for live cell imaging. Science 300, 82–86 (2003).

    Article  CAS  Google Scholar 

  3. Fischer, R.S., Wu, Y.C., Kanchanawong, P., Shroff, H. & Waterman, C.M. Microscopy in 3D: a biologist′s toolbox. Trends Cell Biol. 21, 682–691 (2011).

    Article  CAS  Google Scholar 

  4. Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  Google Scholar 

  5. Planchon, T.A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–U468 (2011).

    Article  CAS  Google Scholar 

  6. Yan, R.X. et al. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 7, 191–196 (2012).

    Article  CAS  Google Scholar 

  7. Wang, D.J. & Bodovitz, S. Single cell analysis: the new frontier in ′omics′. Trends Biotechnol. 28, 281–290 (2010).

    Article  CAS  Google Scholar 

  8. Amantonico, A., Urban, P.L. & Zenobi, R. Analytical techniques for single-cell metabolomics: state of the art and trends. Anal. Bioanal. Chem. 398, 2493–2504 (2010).

    Article  CAS  Google Scholar 

  9. Rubakhin, S.S., Romanova, E., Nemes, P. & Sweedler, J.V. Profiling metabolites and peptides in single cells. Nat. Methods 8, S20–S29 (2011).

    Article  CAS  Google Scholar 

  10. Lin, Y.Q., Trouillon, R., Safina, G. & Ewing, A.G. Chemical analysis of single cells. Anal. Chem. 83, 4369–4392 (2011).

    Article  CAS  Google Scholar 

  11. Nemes, P. & Vertes, A. Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. Trac-Trends Anal. Chem. 34, 22–34 (2012).

    Article  CAS  Google Scholar 

  12. Lee, Y.J., Perdian, D.C., Song, Z.H., Yeung, E.S. & Nikolau, B.J. Use of mass spectrometry for imaging metabolites in plants. Plant J. 70, 81–95 (2012).

    Article  CAS  Google Scholar 

  13. Rubakhin, S.S., Lanni, E.J. & Sweedler, J.V. Progress toward single cell metabolomics. Curr. Opin. Biotechnol. 24, 95–104 (2013).

    Article  CAS  Google Scholar 

  14. Rubakhin, S.S., Churchill, J.D., Greenough, W.T. & Sweedler, J.V. Profiling signaling peptides in single mammalian cells using mass spectrometry. Anal. Chem. 78, 7267–7272 (2006).

    Article  CAS  Google Scholar 

  15. Li, L. & Sweedler, J.V. Peptides in the brain: mass spectrometry-based measurement approaches and challenges. Annu. Rev. Anal. Chem. 1, 451–483 (2008).

    Article  CAS  Google Scholar 

  16. Neupert, S., Rubakhin, S.S. & Sweedler, J.V. Targeted single cell microchemical analysis: MS-based peptidomics of individual paraformaldehyde-fixed immunolabeled neurons. Chem. Biol. 19, 1010–1019 (2012).

    Article  CAS  Google Scholar 

  17. Rubakhin, S.S. & Sweedler, J.V. Characterizing peptides in individual mammalian cells using mass spectrometry. Nat. Protoc. 2, 1987–1997 (2007).

    Article  CAS  Google Scholar 

  18. Northen, T.R. et al. Clathrate nanostructures for mass spectrometry. Nature 449, 1033–1036 (2007).

    Article  CAS  Google Scholar 

  19. Greving, M.P., Patti, G.J. & Siuzdak, G. Nanostructure-initiator mass spectrometry metabolite analysis and imaging. Anal. Chem. 83, 2–7 (2011).

    Article  CAS  Google Scholar 

  20. Urban, P.L., Amantonico, A., Fagerer, S.R., Gehrig, P. & Zenobi, R. Mass spectrometric method incorporating enzymatic amplification for attomole-level analysis of target metabolites in biological samples. Chem. Commun. 46, 2212–2214 (2010).

    Article  CAS  Google Scholar 

  21. Stolee, J.A., Walker, B.N., Zorba, V., Russo, R.E. & Vertes, A. Laser-nanostructure interactions for ion production. PCCP 14, 8453–8471 (2012).

    Article  CAS  Google Scholar 

  22. Monroe, E.B., Jurchen, J.C., Lee, J., Rubakhin, S.S. & Sweedler, J.V. Vitamin E imaging and localization in the neuronal membrane. J. Am. Chem. Soc. 127, 12152–12153 (2005).

    Article  CAS  Google Scholar 

  23. Yang, H.J. et al. Detection of characteristic distributions of phospholipid head groups and fatty acids on neurite surface by time-of-flight secondary ion mass spectrometry. Med. Mol. Morphol. 43, 158–164 (2010).

    Article  CAS  Google Scholar 

  24. Kurczy, M.E. et al. Mass spectrometry imaging of mating Tetrahymena show that changes in cell morphology regulate lipid domain formation. Proc. Natl Acad. Sci. USA 107, 2751–2756 (2010).

    Article  CAS  Google Scholar 

  25. Tsuyama, N., Mizuno, H. & Masujima, T. Mass spectrometry for cellular and tissue analyses in a very small region. Anal. Sci. 27, 163–170 (2011).

    Article  CAS  Google Scholar 

  26. Nemes, P. & Vertes, A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098–8106 (2007).

    Article  CAS  Google Scholar 

  27. Shrestha, B., Patt, J.M. & Vertes, A. In situ cell-by-cell imaging and analysis of small cell populations by mass spectrometry. Anal. Chem. 83, 2947–2955 (2011).

    Article  CAS  Google Scholar 

  28. Coello, Y., Jones, A.D., Gunaratne, T.C. & Dantus, M. Atmospheric-pressure femtosecond laser imaging mass spectrometry. Anal. Chem. 82, 2753–2758 (2010).

    Article  CAS  Google Scholar 

  29. Cecala, C. & Sweedler, J.V. Sampling techniques for single-cell electrophoresis. Analyst 137, 2922–2929 (2012).

    Article  CAS  Google Scholar 

  30. Lapainis, T. & Sweedler, J.V. Contributions of capillary electrophoresis to neuroscience. J. Chromatogr. A 1184, 144–158 (2008).

    Article  CAS  Google Scholar 

  31. Lapainis, T., Rubakhin, S.S. & Sweedler, J.V. Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal. Chem. 81, 5858–5864 (2009).

    Article  CAS  Google Scholar 

  32. Page, J.S., Rubakhin, S.S. & Sweedler, J.V. Single-neuron analysis using CE combined with MALDI MS and radionuclide detection. Anal. Chem. 74, 497–503 (2002).

    Article  CAS  Google Scholar 

  33. Nemes, P., Knolhoff, A.M., Rubakhin, S.S. & Sweedler, J.V. Metabolic differentiation of neuronal phenotypes by single-cell capillary electrophoresis-electrospray ionization-mass spectrometry. Anal. Chem. 83, 6810–6817 (2011).

    Article  CAS  Google Scholar 

  34. Nemes, P., Knolhoff, A.M., Rubakhin, S.S. & Sweedler, J.V. Single-cell metabolomics: Changes in the metabolome of freshly isolated and cultured neurons. ACS Chem. Neurosci. 3, 782–792 (2012).

    Article  CAS  Google Scholar 

  35. Bonner, R.F. et al. Cell sampling-laser capture microdissection: Molecular analysis of tissue. Science 278, 1481–1483 (1997).

    Article  CAS  Google Scholar 

  36. Espina, V. et al. Laser-capture microdissection. Nat. Protoc. 1, 586–603 (2006).

    Article  CAS  Google Scholar 

  37. Miao, J. & Cui, L.W. Rapid isolation of single malaria parasite–infected red blood cells by cell sorting. Nat. Protoc. 6, 140–146 (2011).

    Article  CAS  Google Scholar 

  38. Cohen, D. et al. Chemical cytometry: fluorescence-based single-cell analysis. Annu. Rev. Anal. Chem. 1, 165–190 (2008).

    Article  CAS  Google Scholar 

  39. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867 (2012).

    Article  CAS  Google Scholar 

  40. Mellors, J.S., Jorabchi, K., Smith, L.M. & Ramsey, J.M. Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal. Chem. 82, 967–973 (2010).

    Article  CAS  Google Scholar 

  41. Schoenherr, R.M., Ye, M.L., Vannatta, M. & Dovichi, N.J. CE-microreactor-CE-MS/MS for protein analysis. Anal. Chem. 79, 2230–2238 (2007).

    Article  CAS  Google Scholar 

  42. Barbula, G.K., Safi, S., Chingin, K., Perry, R.H. & Zare, R.N. Interfacing capillary-based separations to mass spectrometry using desorption electrospray ionization. Anal. Chem. 83, 1955–1959 (2011).

    Article  CAS  Google Scholar 

  43. Harris, G.A., Nyadong, L. & Fernandez, F.M. Recent developments in ambient ionization techniques for analytical mass spectrometry. Analyst 133, 1297–1301 (2008).

    Article  CAS  Google Scholar 

  44. Knolhoff, A.M., Nemes, P., Rubakhin, S.S. & Sweedler, J.V. in Methodologies for metabolomics: Experimental strategies and techniques (eds. Norbert Lutz, Jonathan V. Sweedler & Ron A. Wevers) 119–139 (Cambridge University Press, 2013).

  45. Patti, G.J., Tautenhahn, R. & Siuzdak, G. Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nat. Protoc. 7, 508–516 (2012).

    Article  CAS  Google Scholar 

  46. Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010).

    Article  Google Scholar 

  47. Baran, R. et al. MathDAMP: a package for differential analysis of metabolite profiles. BMC Bioinformatics 7, 530 (2006).

    Article  Google Scholar 

  48. Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M. & Altman, D.G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    Article  Google Scholar 

  49. Smith, C.A. et al. METLIN - a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article  CAS  Google Scholar 

  50. Southey, B.R., Amare, A., Zimmerman, T.A., Rodriguez-Zas, S.L. & Sweedler, J.V. NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res. 34, W267–W272 (2006).

    Article  CAS  Google Scholar 

  51. Geigl, J.B. & Speicher, M.R. Single-cell isolation from cell suspensions and whole genome amplification from single cells to provide templates for CGH analysis. Nat. Protoc. 2, 3173–3184 (2007).

    Article  CAS  Google Scholar 

  52. Neupert, S. & Predel, R. Mass spectrometric analysis of single identified neurons of an insect. Biochem. Biophys. Res. Commun. 327, 640–645 (2005).

    Article  CAS  Google Scholar 

  53. Eyer, K., Kuhn, P., Hanke, C. & Dittrich, P.S. A microchamber array for single cell isolation and analysis of intracellular biomolecules. Lab Chip 12, 765–772 (2012).

    Article  CAS  Google Scholar 

  54. De Sousa, B.N. & Horrocks, L.A. Development of rat spinal cord. I. Weight and length with a method for rapid removal. Dev. Neurosci. 2, 115–121 (1979).

    Article  Google Scholar 

  55. Nemes, P., Marginean, I. & Vertes, A. Spraying mode effect on droplet formation and ion chemistry in electrosprays. Anal. Chem. 79, 3105–3116 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T. Lapainis contributed to the development of the CE-ESI-MS platform, X. Wang facilitated the single-neuron preparation work and A.M. Knolhoff helped with the interpretation of CE-ESI-MS data in the original CE-MS studies. This work was supported by the National Science Foundation under award no. CHE 11-11705, the National Institute of Neurological Disorders and Stroke under award no. NS031609, the National Institute of Dental and Craniofacial Research and the Office of the Director, US National Institutes of Health under award no. DE018866 and the National Institute on Drug Abuse under award no. P30 DA018310. The mention of commercial products, their sources or their use in connection with material reported herein is not to be construed as either actual or implied endorsement of such products by the Department of Health and Human Services. The authors thank S. Baker for assistance in the preparation of this publication and the machine shop of the School of Chemical Sciences, University of Illinois at Urbana-Champaign, for providing various components for the construction of the CE-ESI system. They also thank M. Kim for help in photography.

Author information

Authors and Affiliations

Authors

Contributions

The contributions of the authors to the original studies that were used to generate the protocol are indicated in the original cited articles. For the protocols described here, P.N. generated many of the protocol steps related to CE-MS operation and wrote the data analysis script and virtual instrument; J.T.A. modified the protocols and validated them using the DRG neurons; S.S.R. performed the cell isolations and optimized the protocols for cell handling; and J.V.S. modified and clarified the protocol. All authors participated in the writing of the protocol.

Corresponding author

Correspondence to Jonathan V Sweedler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data

Supplementary sequence archive (ZIP 120 kb)

Supplementary Methods

Stable ion generation, reproducible separation, and semiautomated data analysis (PDF 901 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemes, P., Rubakhin, S., Aerts, J. et al. Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry. Nat Protoc 8, 783–799 (2013). https://doi.org/10.1038/nprot.2013.035

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.035

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research