Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Monitoring local synaptic activity with astrocytic patch pipettes

Abstract

Rapid signal exchange between astroglia and neurons has emerged as a key player in neural communication in the brain. To understand the mechanisms involved, it is often important to have access to individual astrocytes while monitoring the activity of nearby synapses. Achieving this with standard electrophysiological tools is not always feasible. The protocol presented here enables the monitoring of synaptic activity using whole-cell current-clamp recordings from a local astrocyte. This approach takes advantage of the fact that the low input resistance of electrically passive astroglia allows extracellular currents to pass through the astrocytic membrane with relatively little attenuation. Once the slice preparation is ready, it takes 30 min to several hours to implement this protocol, depending on the experimental design, which is similar to other patch-clamp techniques. The technique presented here can be used to directly access the intracellular medium of individual astrocytes while examining synapses functioning in their immediate proximity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Whole-cell recordings using an astrocyte patch pipette are sensitive to extracellular field potentials.
Figure 2: The amplitude of field responses recorded through an astrocytic whole-cell pipette (a-fEPSPs) faithfully represents the initial slope of fEPSPs recorded with a standard extracellular electrode.
Figure 3: The electrophysiological makeup of a-fEPSPs makes them suitable for representing extracellular fEPSPs.
Figure 4: The a-fEPSP amplitude measured using an astrocyte pipette robustly represents extracellular fEPSPs during long-term potentiation.
Figure 5: Testing the suitability of other a-fEPSP components to represent the classical fEPSP initial slope measure.
Figure 6: Individual astrocytes influence LTP induction mainly at nearby synapses: an experiment enabled by the recording of local synaptic activity through an astrocytic patch pipette.

Similar content being viewed by others

References

  1. Haydon, P.G. Glia: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193 (2001).

    Article  CAS  Google Scholar 

  2. Volterra, A. & Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626–640 (2005).

    Article  CAS  Google Scholar 

  3. Nedergaard, M., Rodriguez, J.J. & Verkhratsky, A. Glial calcium and diseases of the nervous system. Cell Calcium 47, 140–149 (2010).

    Article  CAS  Google Scholar 

  4. Perea, G. & Araque, A. Glia modulates synaptic transmission. Brain Res. Rev. 63, 93–102 (2010).

    Article  CAS  Google Scholar 

  5. Han, J. et al. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 148, 1039–1050 (2012).

    Article  CAS  Google Scholar 

  6. Navarrete, M. et al. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol. 10, e1001259 (2012).

    Article  CAS  Google Scholar 

  7. Takata, N. et al. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J. Neurosci. 31, 18155–18165 (2011).

    Article  CAS  Google Scholar 

  8. Hamilton, N.B. & Attwell, D. Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11, 227–238 (2010).

    Article  CAS  Google Scholar 

  9. Kang, J., Jiang, L., Goldman, S.A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).

    Article  CAS  Google Scholar 

  10. Pascual, O. et al. Astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113–116 (2005).

    Article  CAS  Google Scholar 

  11. Serrano, A., Haddjeri, N., Lacaille, J.C. & Robitaille, R. Gabaergic network activation of glial cells underlies hippocampal heterosynaptic depression. J. Neurosci. 26, 5370–5382 (2006).

    Article  CAS  Google Scholar 

  12. Navarrete, M. & Araque, A. Endocannabinoids mediate neuron-astrocyte communication. Neuron 57, 883–893 (2008).

    Article  CAS  Google Scholar 

  13. Navarrete, M. & Araque, A. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68, 113–126 (2010).

    Article  CAS  Google Scholar 

  14. Agulhon, C. et al. What is the role of astrocyte calcium in neurophysiology? Neuron 59, 932–946 (2008).

    Article  CAS  Google Scholar 

  15. Perea, G., Navarrete, M. & Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32, 421–431 (2009).

    Article  CAS  Google Scholar 

  16. Panatier, A. et al. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146, 785–798 (2011).

    Article  CAS  Google Scholar 

  17. Bergles, D.E. & Jahr, C.E. Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19, 1297–1308 (1997).

    Article  CAS  Google Scholar 

  18. Bergles, D.E. & Jahr, C.E. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J. Neurosci. 18, 7709–7716 (1998).

    Article  CAS  Google Scholar 

  19. Diamond, J.S., Bergles, D.E. & Jahr, C.E. Glutamate release monitored with astrocyte transporter currents during LTP. Neuron 21, 425–433 (1998).

    Article  CAS  Google Scholar 

  20. Luscher, C., Malenka, R.C. & Nicoll, R.A. Monitoring glutamate release during LTP with glial transporter currents. Neuron 21, 435–441 (1998).

    Article  CAS  Google Scholar 

  21. Scimemi, A., Fine, A., Kullmann, D.M. & Rusakov, D.A. NR2B-containing receptors mediate cross talk among hippocampal synapses. J. Neurosci. 24, 4767–4777 (2004).

    Article  CAS  Google Scholar 

  22. Steinhäuser, C., Berger, T., Frotscher, M. & Kettenmann, H. Heterogeneity in the membrane current pattern of identified glial cells in the hippocampal slice. Eur. J. Neurosci. 4, 472–484 (1992).

    Article  Google Scholar 

  23. Henneberger, C., Papouin, T., Oliet, S.H. & Rusakov, D.A. Long-term potentiation depends on release of D-serine from astrocytes. Nature 463, 232–236 (2010).

    Article  CAS  Google Scholar 

  24. Ge, W.P. & Duan, S.M. Persistent enhancement of neuron-glia signaling mediated by increased extracellular K+ accompanying long-term synaptic potentiation. J. Neurophysiol. 97, 2564–2569 (2007).

    Article  CAS  Google Scholar 

  25. Tsukada, S., Iino, M., Takayasu, Y., Shimamoto, K. & Ozawa, S. Effects of a novel glutamate transporter blocker, (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), on activities of hippocampal neurons. Neuropharmacology 48, 479–491 (2005).

    Article  CAS  Google Scholar 

  26. Molleman, A. Patch Clamping: An Introductory Guide to Patch Clamp Electrophysiology (Wiley & Sons, 2002).

  27. Lein, P.J., Barnhart, C.D. & Pessah, I.N. Acute hippocampal slice preparation and hippocampal slice cultures. Methods Mol. Biol. 758, 115–134 (2011).

    Article  CAS  Google Scholar 

  28. Anderson, P., Bliss, T.V. & Skrede, K.K. Lamellar organization of hippocampal pathways. Exp. Brain Res. 13, 222–238 (1971).

    Google Scholar 

  29. Teyler, T.J. Brain slice preparation: hippocampus. Brain Res. Bull. 5, 391–403 (1980).

    Article  CAS  Google Scholar 

  30. Schwartzkroin, P.A. Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res. 85, 423–436 (1975).

    Article  CAS  Google Scholar 

  31. Scott, R., Ruiz, A., Henneberger, C., Kullmann, D.M. & Rusakov, D.A. Analog modulation of mossy fiber transmission is uncoupled from changes in presynaptic Ca2+. J. Neurosci. 28, 7765–7773 (2008).

    Article  CAS  Google Scholar 

  32. Nimmerjahn, A., Kirchhoff, F., Kerr, J.N. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods 1, 31–37 (2004).

    Article  CAS  Google Scholar 

  33. Kang, K. & Song, M.R. Diverse FGF receptor signaling controls astrocyte specification and proliferation. Biochem. Biophys. Res. Comm. 395, 324–329 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Frontier Science Programme, the Wellcome Trust (D.A.R.), the Medical Research Council (D.A.R.), a UCL Excellence Fellowship (C.H.) and the NRW-Rückkehrerprogramm (C.H.).

Author information

Authors and Affiliations

Authors

Contributions

C.H. carried out experimental studies; D.A.R. and C.H. designed the study, analyzed the data and wrote the paper.

Corresponding authors

Correspondence to Christian Henneberger or Dmitri A Rusakov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henneberger, C., Rusakov, D. Monitoring local synaptic activity with astrocytic patch pipettes. Nat Protoc 7, 2171–2179 (2012). https://doi.org/10.1038/nprot.2012.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.140

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing