Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

ZIC-cHILIC as a fractionation method for sensitive and powerful shotgun proteomics

Abstract

Multidimensional liquid chromatography (LC) combined with mass spectrometry (MS) has become a standard technique in proteomics to reduce sample complexity and to tackle the dynamic range in protein abundance. Fractionation is necessary to obtain a comprehensive analysis of complex biological samples such as tissue and mammalian cell lines. However, extensive fractionation comes at the expense of sample loss, presenting a bottleneck in the analysis of limited amounts of material. In this protocol, we describe a two-dimensional chromatographic strategy based on a combination of hydrophilic interaction liquid chromatography (HILIC; with a zwitterionic packing material, ZIC-cHILIC) and reversed-phase chromatography, which allows proteomic analyses with minimal sample loss. Experimental aspects related to obtaining maximum recovery are discussed, including how to optimally prepare samples for this system. Examples involving protein lysates originating from cultured cell lines and cells sorted by flow cytometry are used to show the power, sensitivity and versatility of the technique. Once the ZIC-cHILIC fractionation system has been optimized and standardized, this protocol requires 5–6 d, including sample preparation and fraction analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the nanoflow ZIC-cHILIC system.
Figure 2: Schematic representation of the fused silica capillaries during different steps of the packing procedure.
Figure 3: Schematic design of a two-dimensional HILIC-RP approach.
Figure 4: Experimental setups.
Figure 5: LC-MS chromatograms for the analysis of 1 pmol of a standard peptide mixture (BSA, α-casein and β-casein) using the ZIC-cHILIC configuration.
Figure 6: Fractional distributions of unique peptides from a HeLa digest after ZIC-cHILIC fractionation.

Similar content being viewed by others

References

  1. Bensimon, A., Heck, A.J.R. & Aebersold, R. Mass spectrometry–based proteomics and network biology. Annu. Rev. Biochem. 81, 379–405 (2012).

    Article  CAS  Google Scholar 

  2. Cox, J. & Mann, M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem. 80, 273–299 (2011).

    Article  CAS  Google Scholar 

  3. Anderson, N.L. et al. A human proteome detection and quantitation project. Mol. Cell. Proteomics 8, 883–886 (2009).

    Article  CAS  Google Scholar 

  4. Waanders, L.F. et al. Quantitative proteomic analysis of single pancreatic islets. Proc. Natl. Acad. Sci. USA 106, 18902–18907 (2009).

    Article  CAS  Google Scholar 

  5. Di Palma, S. et al. Highly sensitive proteome analysis of FACS-sorted adult colon stem cells. J. Proteome Res. 10, 3814–3819 (2011).

    Article  CAS  Google Scholar 

  6. Thakur, D. et al. Microproteomic analysis of 10,000 laser captured microdissected breast tumor cells using short-range sodium dodecyl sulfate-polyacrylamide gel electrophoresis and porous layer open tubular liquid chromatography tandem mass spectrometry. J. Chromatogr. A 1218, 8168–8174 (2011).

    Article  CAS  Google Scholar 

  7. Masuda, T., Sugiyama, N., Tomita, M. & Ishihama, Y. Microscale phosphoproteome analysis of 10,000 cells from human cancer cell lines. Anal. Chem. 83, 7698–7703 (2011).

    Article  CAS  Google Scholar 

  8. Nagaraj, N. et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 7, 548 (2011).

    Article  Google Scholar 

  9. Koroleva, O.A. & Cramer, R. Single-cell proteomic analysis of glucosinolate-rich S-cells in Arabidopsis thaliana. Methods 54, 413–423 (2011).

    Article  CAS  Google Scholar 

  10. Makarov, A. & Scigelova, M. Coupling liquid chromatography to Orbitrap mass spectrometry. J. Chromatogr. A 1217, 3938–3945 (2010).

    Article  CAS  Google Scholar 

  11. Nagaraj, N. et al. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top orbitrap. Mol. Cell. Proteomics 11, M111.013722 (2012).

    Article  Google Scholar 

  12. Wisniewski, J.R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis 6, 359–362 (2009).

  13. Liu, W. et al. Sample preparation method for isolation of single-cell types from mouse liver for proteomic studies. Proteomics 11, 3556–3564 (2011).

    Article  CAS  Google Scholar 

  14. Thakur, S.S. et al. Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation. Mol. Cell. Proteomics 10, M110.003699 (2011).

    Article  Google Scholar 

  15. Kocher, T., Pichler, P., Swart, R. & Mechtler, K. Analysis of protein mixtures from whole-cell extracts by single-run nanoLC-MS/MS using ultralong gradients. Nat. Protoc. 7, 882–890 (2012).

    Article  Google Scholar 

  16. Waanders, L.F. et al. A novel chromatographic method allows on-line reanalysis of the proteome. Mol. Cell. Proteomics 7, 1452–1459 (2008).

    Article  CAS  Google Scholar 

  17. Unwin, R.D., Griffiths, J.R. & Whetton, A.D. Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS. Nat. Protoc. 5, 1574–1582 (2010).

    Article  CAS  Google Scholar 

  18. Shen, Y., Smith, R.D., Unger, K.K., Kumar, D. & Lubda, D. Ultrahigh-throughput proteomics using fast RPLC separations with ESI-MS/MS. Anal. Chem. 77, 6692–6701 (2005).

    Article  CAS  Google Scholar 

  19. Dai, J. et al. Protein phosphorylation and expression profiling by yin-yang multidimensional liquid chromatography (Yin-Yang MDLC) mass spectrometry. J. Proteome Res. 6, 250–262 (2006).

    Article  Google Scholar 

  20. Motoyama, A., Venable, J.D., Ruse, C.I. & Yates, J.R. Automated ultra-high-pressure multidimensional protein identification technology (UHP-MudPIT) for improved peptide identification of proteomic samples. Anal. Chem. 78, 5109–5118 (2006).

    Article  CAS  Google Scholar 

  21. Altelaar, A.F.M. & Heck, A.J.R. Trends in ultrasensitive proteomics. Curr. Opin. Chem. Biol. 16, 206–213 (2012).

    Article  CAS  Google Scholar 

  22. Bandura, D.R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    Article  CAS  Google Scholar 

  23. Salehi-Reyhani, A. et al. A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection. Lab. Chip. 11, 1256–1261 (2011).

    Article  CAS  Google Scholar 

  24. Washburn, M.P., Wolters, D. & Yates, J.R. 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    Article  CAS  Google Scholar 

  25. Wolters, D.A., Washburn, M.P. & Yates, J.R. 3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690 (2001).

    Article  CAS  Google Scholar 

  26. Motoyama, A., Xu, T., Ruse, C.I., Wohlschlegel, J.A. & Yates, J.R. 3rd. Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal. Chem. 79, 3623–3634 (2007).

    Article  CAS  Google Scholar 

  27. Opiteck, G.J., Jorgenson, J.W. & Anderegg, R.J. Two-dimensional SEC/RPLC coupled to mass spectrometry for the analysis of peptides. Anal. Chem. 69, 2283–2291 (1997).

    Article  CAS  Google Scholar 

  28. Dai, J. et al. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry. J. Proteome Res. 8, 133–141 (2009).

    Article  CAS  Google Scholar 

  29. Geng, M., Ji, J. & Regnier, F.E. Signature-peptide approach to detecting proteins in complex mixtures. J. Chromatogr. A 870, 295–313 (2000).

    Article  CAS  Google Scholar 

  30. Gilar, M., Olivova, P., Daly, A.E. & Gebler, J.C. Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 28, 1694–1703 (2005).

    Article  CAS  Google Scholar 

  31. Hao, P. et al. Novel application of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) in shotgun proteomics: comprehensive profiling of rat kidney proteome. J. Proteome Res. 9, 3520–3526 (2010).

    Article  CAS  Google Scholar 

  32. Beausoleil, S.A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 101, 12130–12135 (2004).

    Article  CAS  Google Scholar 

  33. Gauci, S. et al. Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal. Chem. 81, 4493–4501 (2009).

    Article  CAS  Google Scholar 

  34. Ballif, B.A., Villen, J., Beausoleil, S.A., Schwartz, D. & Gygi, S.P. Phosphoproteomic analysis of the developing mouse brain. Mol. Cell. Proteomics 3, 1093–1101 (2004).

    Article  CAS  Google Scholar 

  35. Lewandrowski, U., Zahedi, R.P., Moebius, J., Walter, U. & Sickmann, A. Enhanced N-glycosylation site analysis of sialoglycopeptides by strong cation exchange prefractionation applied to platelet plasma membranes. Mol. Cell. Proteomics 6, 1933–1941 (2007).

    Article  CAS  Google Scholar 

  36. Boersema, P.J., Divecha, N., Heck, A.J. & Mohammed, S. Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. J. Proteome Res. 6, 937–946 (2007).

    Article  CAS  Google Scholar 

  37. Di Palma, S., Hennrich, M.L., Heck, A.J.R. & Mohammed, S. Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. J. Proteomics 75, 3791–3813 (2012).

    Article  CAS  Google Scholar 

  38. Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. 499, 177–196 (1990).

    Article  CAS  Google Scholar 

  39. Want, E.J. et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 5, 1005–1018 (2010).

    Article  CAS  Google Scholar 

  40. Palmisano, G. et al. Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nat. Protoc. 5, 1974–1982 (2010).

    Article  CAS  Google Scholar 

  41. Jandera, P. Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts. J. Sep. Sci. 31, 1421–1437 (2008).

    Article  CAS  Google Scholar 

  42. McNulty, D.E. & Annan, R.S. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol. Cell. Proteomics 7, 971–980 (2008).

    Article  CAS  Google Scholar 

  43. Kolarich, D., Jensen, P.H., Altmann, F. & Packer, N.H. Determination of site-specific glycan heterogeneity on glycoproteins. Nat. Protoc. 7, 1285–1298 (2012).

    Article  CAS  Google Scholar 

  44. Lindner, H., Sarg, B., Meraner, C. & Helliger, W. Separation of acetylated core histones by hydrophilic-interaction liquid chromatography. J. Chromatogr. A 743, 137–144 (1996).

    Article  CAS  Google Scholar 

  45. Alpert, A.J. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal. Chem. 80, 62–76 (2008).

    Article  CAS  Google Scholar 

  46. Intoh, A., Kurisaki, A., Fukuda, H. & Asashima, M. Separation with zwitterionic hydrophilic interaction liquid chromatography improves protein identification by matrix-assisted laser desorption/ionization-based proteomic analysis. Biomed. Chromatogr. 23, 607–614 (2009).

    Article  CAS  Google Scholar 

  47. Jiang, W. & Irgum, K. Tentacle-type Zwitterionic stationary phase, prepared by surface-initiated graft polymerization of 3-N,N-dimethyl-N-(methacryloyloxyethyl)-ammonium propanesulfonate through peroxide groups tethered on porous silica. Anal. Chem. 74, 4682–4687 (2002).

    Article  CAS  Google Scholar 

  48. Di Palma, S., Boersema, P.J., Heck, A.J.R. & Mohammed, S. Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis. Anal. Chem. 83, 3440–3447 (2011).

    Article  CAS  Google Scholar 

  49. Fountain, K.J., Xu, J., Diehl, D.M. & Morrison, D. Influence of stationary phase chemistry and mobile-phase composition on retention, selectivity, and MS response in hydrophilic interaction chromatography. J. Sep. Sci. 33, 740–751 (2010).

    Article  CAS  Google Scholar 

  50. Boersema, P.J., Mohammed, S. & Heck, A.J. Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Anal. Bioanal. Chem. 391, 151–159 (2008).

    Article  CAS  Google Scholar 

  51. Grumbach, E.S., Diehl, D.M. & Neue, U.D. The application of novel 1.7 μm ethylene bridged hybrid particles for hydrophilic interaction chromatography. J. Sep. Sci. 31, 1511–1518 (2008).

    Article  CAS  Google Scholar 

  52. Gilar, M., Olivova, P., Daly, A.E. & Gebler, J.C. Orthogonality of separation in two-dimensional liquid chromatography. Anal. Chem. 77, 6426–6434 (2005).

    Article  CAS  Google Scholar 

  53. Jiang, W., Fischer, G., Girmay, Y. & Irgum, K. Zwitterionic stationary phase with covalently bonded phosphorylcholine type polymer grafts and its applicability to separation of peptides in the hydrophilic interaction liquid chromatography mode. J. Chromatogr. A 1127, 82–91 (2006).

    Article  CAS  Google Scholar 

  54. Di Palma, S., Raijmakers, R., Heck, A.J.R. & Mohammed, S. Evaluation of the deuterium isotope effect in zwitterionic hydrophilic interaction liquid chromatography separations for implementation in a quantitative proteomic approach. Anal. Chem. 83, 8352–8356 (2011).

    Article  CAS  Google Scholar 

  55. Hemstrom, P. & Irgum, K. Hydrophilic interaction chromatography. J. Sep. Sci. 29, 1784–1821 (2006).

    Article  Google Scholar 

  56. Boersema, P.J., Aye, T.T., van Veen, T.A., Heck, A.J. & Mohammed, S. Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 8, 4624–4632 (2008).

    Article  CAS  Google Scholar 

  57. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A.J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

    Article  CAS  Google Scholar 

  58. Raijmakers, R. et al. Automated online sequential isotope labeling for protein quantitation applied to proteasome tissue-specific diversity. Mol. Cell. Proteomics 7, 1755–1762 (2008).

    Article  CAS  Google Scholar 

  59. Meiring, H.D., van der Heeft, E., ten Hove, G.J. & de Jong, A.P.J.M Nanoscale LC–MS(n): technical design and applications to peptide and protein analysis. J. Sep. Sci. 25, 557–568 (2002).

    Article  CAS  Google Scholar 

  60. Frese, C.K. et al. Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J. Proteome Res. 10, 2377–2388 (2011).

    Article  CAS  Google Scholar 

  61. Cortes, H.J., Pfeiffer, C.D., Richter, B.E. & Stevens, T.S. Porous ceramic bed supports for fused silica packed capillary columns used in liquid chromatography. J. High Resol. Chromatogr. 10, 446–448 (1987).

    Article  CAS  Google Scholar 

  62. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P.J. Boersema and R. Raijmakers for suggestions and critical reading of the manuscript. We thank all members of the Biomolecular Mass Spectrometry and Proteomics Group, particularly H. Post, A. Barendregt and S. Goerdayal, for their help. This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union Seventh Framework Program. The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative and The Netherlands Organization for Scientific Research (NWO) with the VIDI grant 700.10.429 (for S.M.), is acknowledged for funding.

Author information

Authors and Affiliations

Authors

Contributions

S.D.P. designed and performed the experiments, analyzed data and wrote the paper. S.M. and A.J.R.H. designed the experiments, supervised the project and wrote the paper.

Corresponding authors

Correspondence to Shabaz Mohammed or Albert J R Heck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Alternative sample preparation procedure for larger amounts of starting material (PDF 395 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Palma, S., Mohammed, S. & Heck, A. ZIC-cHILIC as a fractionation method for sensitive and powerful shotgun proteomics. Nat Protoc 7, 2041–2055 (2012). https://doi.org/10.1038/nprot.2012.124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.124

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing