Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis of an electron-rich KITPHOS monophosphine, preparation of derived metal complexes and applications in catalysis

Abstract

This protocol describes the synthesis of a representative example of the electron-rich biaryl-like KITPHOS class of monophosphine, 11-dicyclohexylphosphino-12-phenyl-9,10-dihydro-9,10-ethenoanthracene (H-KITPHOS). The bicyclic architecture of H-KITPHOS is constructed via [4+2] Diels-Alder cycloaddition between 1-(dicyclohexylphosphinoylethynyl)benzene and anthracene. H-KITPHOS monophosphine is prepared via an operationally straightforward three-step procedure and is isolated in an overall yield of 55%. The synthesis of palladium and gold precatalysts of H-KITPHOS are also described; the yields of analytically pure complexes are high (75–85% and 85–90%, respectively). The palladium complex of H-KITPHOS forms a highly active catalyst for C-C and C-N cross-coupling of a range of aryl and heteroaryl chlorides and bromides, and the electrophilic Lewis acid gold complex efficiently catalyzes a host of cycloisomerizations. The total time required for the synthesis of H-KITPHOS is 95 h; the preparation of corresponding palladium and gold precatalysts requires an additional 7–8 h, and, if necessary, crystallizations will require a further 48 h.

This is a preview of subscription content, access via your institution

Access options

Figure 1
Figure 2
Figure 3: KITPHOS monophosphine 9 and complexes described here.
Figure 4: Synthesis of electron-rich biaryl-like KITPHOS monophosphines.
Figure 5: Synthesis of the palladium and gold precatalysts.
Figure 6

Similar content being viewed by others

References

  1. Surry, D.S. & Buchwald, S.L. Biaryl phosphine ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. 47, 6338–6361 (2008).

    Article  CAS  Google Scholar 

  2. Martin, R. & Buchwald, S.L. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res. 41, 1461–1473 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Noyori, R. Asymmetric Catalysis in Organic Synthesis (Wiley, 1994).

  4. Berthod, M., Mignani, G., Woodward, D. & Lemaire, M. Modified BINAP: the how and the why. Chem. Rev. 105, 1801–1836 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Shimizu, H., Nagasaki, I. & Saito, T. Recent advances in biaryl-type bisphosphine ligands. Tetrahedron 61, 5405–5432 (2005).

    Article  CAS  Google Scholar 

  6. Noyori, R. Asymmetric catalysis: science and opportunities. Adv. Synth. Catal. 345, 15–32 (2003).

    Article  CAS  Google Scholar 

  7. Buchwald, S.L., Mauger, C., Mignani, G. & Scholz, U. Industrial-scale palladium-catalyzed coupling of aryl halides and amines—a personal account. Adv. Synth. Catal. 348, 23–39 (2006).

    Article  CAS  Google Scholar 

  8. Surry, D.S. & Buchwald, S.L. Dialkylbiaryl phosphines in Pd-catalyzed aminations: a user's guide. Chem. Sci. 2, 27–50 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thommen, M. & Blaser, H.-U. Industrial aspects. in Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications Vol. 3 (ed. Börner, A.) 1455–1469 (Wiley-VCH, 2008).

  10. Shimizu, H., Nagasaki, I., Matsumura, K., Sayo, N. & Saito, T. Developments in asymmetric hydrogenation from an industrial perspective. Acc. Chem. Res. 40, 1385–1392 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Blaser, H.-Y. et al. Selective hydrogenation for fine chemicals: recent trends and new developments. Adv. Synth. Catal. 345, 103–151 (2003).

    Article  CAS  Google Scholar 

  12. Ratovelomanana-Vidal, V. et al. Enantioselective hydrogenation of β-keto esters using chiral diphosphine-ruthenium complexes: optimization for academic and industrial purposes and synthetic applications. Adv. Synth. Catal. 345, 261–274 (2003).

    Article  CAS  Google Scholar 

  13. Old, D.W., Wolfe, J.P. & Buchwald, S.L. A highly active catalyst for palladium-catalyzed cross-coupling reactions: room-temperature Suzuki coupling and amination of unactivated aryl chlorides. J. Am. Chem. Soc. 120, 9722–9723 (1998).

    Article  CAS  Google Scholar 

  14. Wolfe, J.P., Singer, R.A., Yang, B.H. & Buchwald, S.L. Highly active palladium catalysts for Suzuki coupling reactions. J. Am. Chem. Soc. 121, 9550–9561 (1999).

    Article  CAS  Google Scholar 

  15. Yin, J., Rainka, M.P., Zhang, X.-X. & Buchwald, S.L. A highly active catalyst for the synthesis of sterically hindered biaryls: novel ligand coordination. J. Am. Chem. Soc. 124, 1162–1163 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Milne, J.E. & Buchwald, S.L. An extremely active catalyst for the Negishi cross-coupling reactions. J. Am. Chem. Soc. 126, 13028–13032 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Sahoo, A.K., Oda, T., Nakato, Y. & Hiyama, T. Cross-coupling of triallyl(aryl)silanes with aryl bromides and chlorides: an alternative convenient biaryl synthesis. Adv. Synth. Catal. 246, 1715–1727 (2004).

    Article  CAS  Google Scholar 

  18. Maiti, D., Fors, B.P., Henderson, J.L., Nakamura, Y. & Buchwald, S.L. Palladium-catalyzed coupling of functionalized primary and secondary amines with aryl and heteroaryl halides: two ligands suffice in most cases. Chem. Sci. 2, 57–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Billingsley, K.L. & Buchwald, S.L. An improved system for the palladium-catalyzed borylation of aryl halides with pinacol borane. J. Org. Chem. 73, 5589–5591 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Billingsley, K.L., Barder, T.E. & Buchwald, S.L. Palladium-catalyzed borylation of aryl chlorides: scope, applications, and computational studies. Angew. Chem. Int. Ed. 46, 5359–5363 (2007).

    Article  CAS  Google Scholar 

  21. McNeil, E., Barder, T.E. & Buchwald, S.L. Palladium-catalyzed silylation of aryl chlorides with hexamethyldisilane. Org. Lett. 9, 3785–3788 (2007).

    Article  CAS  Google Scholar 

  22. Anderson, K.W., Ikawa, T., Tundel, R.E. & Buchwald, S.L. The selective reaction of aryl halides with KOH: synthesis of phenols, aromatic ethers, and benzofurans. J. Am. Chem. Soc. 128, 10694–10695 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Burgos, C.H., Barder, T.E., Huang, X.H. & Buchwald, S.L. Significantly improved method for the Pd-catalyzed coupling of phenols with aryl halides: understanding ligand effects. Angew. Chem. Int. Ed. 45, 4321–4326 (2006).

    Article  CAS  Google Scholar 

  24. Surya Prakash, G.K. & Mathew, T. ipso-Nitration of arenes. Angew. Chem. Int. Ed. 49, 1726–1728 (2010).

    Article  CAS  Google Scholar 

  25. Leblanc, M. & Fagnou, K. Allocolchicinoid synthesis via direct arylation. Org. Lett. 7, 2849–2852 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Lafrance, M., Shore, D. & Fagnou, K. Mild and general conditions for the cross-coupling of aryl halides with pentafluorobenzene and other perfluoroaromatics. Org. Lett. 8, 5097–5100 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Gorin, D.J., Sherry, B.D. & Toste, D.F. Ligand effects in homogeneous Au catalysis. Chem. Rev. 108, 3351–3378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arcadi, A. Alternative synthetic methods through new developments in catalysis by gold. Chem. Rev. 108, 3266–3325 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Li, Z., Brouwer, C. & He, C. Gold-catalyzed organic transformations. Chem. Rev. 108, 3239–3265 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Sengupta, S. & Shi, Z. Recent advances in asymmetric gold catalysis. ChemCatChem. 2, 609–619 (2010).

    Article  CAS  Google Scholar 

  31. Mukherjee, P. & Widenhoefer, R.A. Gold(I)-catalyzed intramolecular amination of allylic alcohols with alkylamines. Org. Lett. 13, 1334–1337 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barabé, F., Bétournay, G., Bellavance, G. & Barriault, L. Gold-catalyzed synthesis of carbon-bridged medium-sized rings. Org. Lett. 11, 4236–4338 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Nieto-Oberhuber, C., López, S. & Echavarren, A.M. Intramolecular [4 + 2] cycloadditions of 1,3-enynes or arylalkynes with alkenes with highly reactive cationic phosphine Au(I) complexes. J. Am. Chem. Soc. 127, 6178–6179 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Kuram, M.R., Bhanuchandra, M. & Sahoo, A.K. Gold-catalyzed intermolecular hydrophenoxylation of unactivated internal alkynes. J. Org. Chem. 75, 2247–2258 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Xiao, J. & Li, X. Gold α-oxo carbenoids in catalysis: catalytic oxygen-atom transfer to alkynes. Angew. Chem. Int. Ed. 50, 7226–7236 (2011).

    Article  CAS  Google Scholar 

  36. Ye, L., He, W. & Zhang, L. A flexible and stereoselective synthesis of azetidin-3-ones through gold-catalyzed intermolecular oxidation of alkynes. Angew. Chem. Int. Ed. 50, 3236–3239 (2011).

    Article  CAS  Google Scholar 

  37. Martin, A., Casto, K., Morris, W. & Morgan, J.B. Phosphine-catalyzed Heine reaction. Org. Lett. 13, 5444–5447 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Strieter, E.R., Blackmond, D.G. & Buchwald, S.L. Insights into the origin of high activity and stability of catalysts derived from bulky, electron-rich monophosphinobiaryl ligands in the Pd-catalyzed C-N bond formation. J. Am. Chem. Soc. 125, 13978–13980 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Walker, S.D., Barder, T.E., Martinelli, J.R. & Buchwald, S.L. A rationally designed universal catalyst for Suzuki-Miyaura coupling processes. Angew. Chem. Int. Ed. 43, 1871–1876 (2004).

    Article  CAS  Google Scholar 

  40. Barder, T.E., Walker, S.D., Martinelli, J.R. & Buchwald, S.L. Catalysts for Suzuki-Miyaura coupling processes: scope and studies of the effect of ligand structure. J. Am. Chem. Soc. 127, 4685–4696 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Billingsley, K.L., Anderson, K.W. & Buchwald, S.L. A highly active catalyst for Suzuki-Miyaura cross-coupling reactions of heteroaryl compounds. Angew. Chem. Int. Ed. 45, 3484–3488 (2006).

    Article  CAS  Google Scholar 

  42. Wolfe, J.P. & Buchwald, S.L. A highly active catalyst for the room-temperature amination and Suzuki coupling of aryl chlorides. Angew. Chem. Int. Ed. 38, 2413–2416 (1999).

    Article  CAS  Google Scholar 

  43. Christmann, U. & Vilar, R. Monoligated palladium species as catalysts in cross-coupling reactions. Angew. Chem. Int. Ed. 44, 366–374 (2005).

    Article  CAS  Google Scholar 

  44. Strieter, E.R. & Buchwald, S.L. Evidence for the formation and structure of palladacycles during Pd-catalyzed C-N bond formation with catalysts derived from bulky monophosphinobiaryl ligands. Angew. Chem. Int. Ed. 45, 925–925 (2006).

    Article  CAS  Google Scholar 

  45. Barder, T.E., Biscoe, M.R. & Buchwald, S.L. Structural insights into active catalyst structures and oxidative addition to biaryl(phosphine)-palladium complexes via density functional theory and experimental studies. Organometallics 26, 2183–2192 (2007).

    Article  CAS  Google Scholar 

  46. Barder, T.E. & Buchwald, S.L. Insights into amine binding to biaryl phosphine palladium oxidative addition complexes and reductive elimination from biaryl phosphine arylpalladium amido complexes via density functional theory. J. Am. Chem. Soc. 129, 12003–12010 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Biscoe, M.R., Barder, T.E. & Buchwald, S.L. Electronic effects on the selectivity of Pd-catalyzed C-N bond-forming reactions using biarylphosphine ligands: the competitive roles of amine binding and acidity. Angew. Chem. Int. Ed. 46, 7232–7235 (2007).

    Article  CAS  Google Scholar 

  48. Christmann, U. et al. Experimental and theoretical investigations of new dinuclear palladium complexes as precatalysts for the amination of aryl chlorides. J. Am. Chem. Soc. 128, 6376–6390 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Salvi, L., Davis, N.R., Ali, S.Z. & Buchwald, S.L. A new biarylphosphine ligand for the Pd-catalyzed synthesis of diaryl ethers under mild conditions. Org. Lett. 14, 170–173 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, X., Fors, B.P. & Buchwald, S.L. A single phosphine ligand allows palladium-catalyzed intermolecular C-O bond formation with secondary and primary alcohols. Angew. Chem. Int. Ed. 50, 9943–9947 (2011).

    Article  CAS  Google Scholar 

  51. Fors, B.P., Watson, D.A., Biscoe, M.R. & Buchwald, S.L. A highly active catalyst for Pd-catalyzed amination reactions: cross-coupling reactions using aryl mesylates and the highly selective monoarylation of primary amines using aryl chlorides. J. Am. Chem. Soc. 130, 13552–13554 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zapf, A. et al. Practical synthesis of new and highly efficient ligands for the Suzuki reaction of aryl chlorides. Chem. Commun. 38–39 (2004).

  53. So, C.M., Lau, C.P. & Kwong, F.Y. A general palladium-catalyzed Suzuki-Miyaura coupling of aryl mesylates. Angew. Chem. Int. Ed. 47, 8059–8063 (2008).

    Article  CAS  Google Scholar 

  54. Withbroe, G.J., Singer, R.A. & Sieser, J.E. Streamlined synthesis of the Bippyphos family of ligands and cross-coupling applications. Process Res. Dev. 12, 480–489 (2008).

    Article  CAS  Google Scholar 

  55. Tang, W. et al. A general and special catalyst for Suzuki-Miyaura coupling processes. Angew. Chem. Int. Ed. 49, 5879–5883 (2010).

    Article  CAS  Google Scholar 

  56. Doherty, S., Knight, J.G., Smyth, C.H. & Jorgensen, G.A. Electron-rich bicyclic biaryl-like KITPHOS monophosphines via [4 + 2] cycloaddition between 1-alknylphosphine oxides and anthracene: highly efficient ligands for palladium-catalyzed C-N and C-C bond formation. Adv. Synth. Catal. 350, 1801–1806 (2008).

    Article  CAS  Google Scholar 

  57. Doherty, S. et al. ortho,ortho′-Substituted KITPHOS monophosphines: highly efficient ligands for palladium-catalyzed C-C and C-N bond formation. Adv. Synth. Catal. 352, 201–211 (2010).

    Article  CAS  Google Scholar 

  58. Kaye, S., Fox, J.M., Hicks, F.A. & Buchwald, S.L. The use of catalytic amounts of CuCl and other improvements in the benzyne route to biphenyl-based phosphine ligands. Adv. Synth. Catal. 343, 789–794 (2001).

    Article  CAS  Google Scholar 

  59. Ashburn, B.O., Carter, R.G. & Zakharov, L.N. Synthesis of tetra-ortho-substituted, phosphorus-containing and carbonyl-containing biaryls utilizing a Diels-Alder approach. J. Am. Chem. Soc. 129, 9109–9116 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Doherty, S., Smyth, C.H., Harrington, R.W. & Clegg, W. Synthesis of biaryl diphosphines via a stepwise regioselective double Diels-Alder cycloaddition-elimination sequence: efficient ligands for the palladium-catalyzed amination of aromatic bromides. Organometallics 28, 5273–5276 (2009).

    Article  CAS  Google Scholar 

  61. Kondoh, A., Yorimitsu, H. & Oshima, K. Synthesis of bulky phosphines by rhodium-catalyzed formal [2+2+2] cycloaddition reactions of tethered diynes with 1-alkynylphosphine sulfides. J. Am. Chem. Soc. 129, 6996–6997 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Nishida, G., Noguchi, K., Hirano, M. & Tanaka, K. Asymmetric assembly of aromatic rings to produce tetra-ortho-substituted axially chiral biaryl phosphorus compounds. Angew. Chem. Int. Ed. 46, 3951–3954 (2007).

    Article  CAS  Google Scholar 

  63. Doherty, S., Knight, J.G., Smyth, C.H., Harrington, R.W. & Clegg, W. Rhodium-catalyzed double [2+2+2] cycloaddition of 1,4-bis(diphenylphosp-hinoyl)buta-1,3-diyne with tethered diynes: a modular, highly versatile single-pot synthesis of NU-BIPHEP biaryl diphosphines. Org. Lett. 9, 4925–4928 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Doherty, S., Smyth, C.H., Harrington, R.W. & Clegg, W. Highly enantioselective synthesis of pseudo-C2-symmetric axially chiral biaryl diphosphines via rhodium-catalyzed double [2+2+2] cycloaddition. Organometallics 27, 4837–4840 (2008).

    Article  CAS  Google Scholar 

  65. Doherty, S. et al. Efficient cycloisomerisation of propargyl amides by electrophilic gold(I) complexes of KITPHOS monophosphines: a comparative study. Organometallics 29, 4139–4147 (2010).

    Article  CAS  Google Scholar 

  66. Hashmi, A.S.K. et al. Gold(I) complexes of KITPHOS monophosphines: efficient cycloisomerization catalysts. Adv. Synth. Catal. 351, 576–582 (2009).

    Article  CAS  Google Scholar 

  67. Hashmi, A.S.K. et al. Gold-catalyzed cyclizations: a comparative study of ortho,ortho′-substituted KITPHOS monophosphines with their biaryl monophosphine counterpart SPHOS. Adv. Synth. Catal. 353, 749–759 (2011).

    Article  CAS  Google Scholar 

  68. Doherty, S. et al. Ruthenium complexes of κ(P)- and κ(P)-η6-coordinated KITPHOS monophosphines: efficient catalysts for the direct ortho arylation of 2-phenylpyridine and N-phenylpyrazole with aryl chlorides. Organometallics 30, 6010–6016 (2011).

    Article  CAS  Google Scholar 

  69. Faller, J.W. & D'Alliessi, D.G. Planar chirality in tethered η61-(phosphinophenylenearene-P)ruthenium(II) complexes and their potential use as asymmetric catalysts. Organometallics 22, 2749–2757 (2003).

    Article  CAS  Google Scholar 

  70. Doherty, S., Knight, J.G., Smyth, C.H., Harrington, R.W. & Clegg, W. Biaryl-like CATPHOS diphosphines via double Diels-Alder cycloaddition between 1,4-bis(diphenylphosphinoyl)buta-1,3-diyne and anthracene: efficient ligands for the palladium-catalyzed aminations or aromatic bromides and α-arylation of ketones. Organometallics 27, 1679–1682 (2008).

    Article  CAS  Google Scholar 

  71. Doherty, S., Smyth, C.H., Harriman, A., Harrington, R.W. & Clegg, W. Can a butadiene-based architecture compete with its biaryl counterpart in asymmetric catalysis? Enantiopure Me2-CATPHOS, a remarkably efficient ligand for asymmetric hydrogenation. Organometallics 28, 888–895 (2009).

    Article  CAS  Google Scholar 

  72. Doherty, S. & Smyth, C.H. Synthesis and resolution of the Biaryl-like diphosphine (S)-Me2-CATPHOS, preparation of a derived rhodium precatalyst and applications in asymmetric hydrogenation. Nat. Protoc. 7, 1884–1896 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Doherty, S. et al. Rhodium complexes of (R)-Me2-CATPHOS and (R)-(S)-JOSIPHOS: highly enantioselective catalysts for the asymmetric hydrogenation of (E)- and (Z)-β-aryl-β-(enamido)phosphonates. Tetrahedron: Asymmetry 20, 1437–1444 (2009).

    Article  CAS  Google Scholar 

  74. Doherty, S., Knight, J.G. & Mehdi-Zodeh, H. Asymmetric carbonyl-ene and Friedel-Crafts reactions catalyzed by Lewis acid platinum group metal complexes of the enantiopure atropisomeric biaryl-like diphosphine (S)-Me2-CATPHOS: a comparison with BINAP. Tetrahedron: Asymmetry 23, 209–216 (2012).

    Article  CAS  Google Scholar 

  75. Johansson Seechurn, C.C.C., Kitching, M.O., Colacot, T.J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 57, 5062–5085 (2012).

    Article  CAS  Google Scholar 

  76. Magano, J. & Dunetz, J.R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 111, 2177–2250 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Torborg, C. & Beller, M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical and fine chemicals industries. Adv. Synth. Catal. 351, 3027–3043 (2009).

    Article  CAS  Google Scholar 

  78. Corbet, J.-P. & Mignani, G. Selected patented cross-coupling technologies. Chem. Rev. 106, 2651–2710 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Nicolaou, K.C., Bulger, P.G. & Sarlah, D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4442–4489 (2005).

    Article  CAS  Google Scholar 

  80. Blaser, H.-U., Indolese, A., Naud, F., Nettekoven, U. & Schnydera, A. Industrial R&D on catalytic C-C and C-N coupling reactions: a personal account on goals, approaches and results. Adv. Synth. Catal. 346, 1583–1598 (2004).

    Article  CAS  Google Scholar 

  81. Schlummer, B. & Scholz, U. Palladium-catalyzed C-N and C-O coupling—a practical guide from an industrial vantage point. Adv. Synth. Catal. 346, 1599–1626 (2004).

    Article  CAS  Google Scholar 

  82. Guram, A.S. et al. New air-stable catalysts for general and efficient Suzuki-Miyaura cross-coupling reactions of heteroaryl chlorides. Org. Lett. 8, 1787–1789 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Tucker, C.E. & de Vries, J.G. Homogeneous catalysis for the production of fine chemicals. Palladium- and nickel catalyzed carbon-carbon bond formation. Top. Catal. 19, 111–118 (2002).

    Article  CAS  Google Scholar 

  84. Albert, J. et al. Reactivity of cyclopalladated compounds derived from biphenyl-2-ylamine towards carbon monoxide, tbutyl isocyanide and alkynes. J. Organomet. Chem. 691, 4895–4902 (2007).

    Article  CAS  Google Scholar 

  85. Whittles, I.R., Humphrey, M.G., Samoc, M., Luther-Davies, B. & Hockless, D.C.R. Organometallic complexes for non-linear optics XII syntheses and second-order susceptibilities of (neomenthyldiphenylphosphine) gold σ-arylacetylides: X-ray crystal structures of Au(C≡CPh) (nmdpp) and Au((E)-4,4′-C≡CC6H4CH=CHC6H4NO2)(nmdpp). J. Organomet. Chem. 544, 189–196 (1997).

    Article  Google Scholar 

  86. Mézailles, N., Ricard, L. & Gagosz, F. Phosphine gold(I) bis-(trifluoromethanesulfonyl)imidate complexes as new highly efficient and air-stable catalysts for the cycloisomerization of enynes. Org. Lett. 7, 4133–4136 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Gilman, H. & Cartledge, F.K. The analysis of organolithium compounds. J. Organomet. Chem. 2, 447–454 (1964).

    Article  CAS  Google Scholar 

  88. Errington, R.J. Advanced Practical Inorganic and Metalorganic Chemistry (Chapman & Hall, 1997).

  89. Wipf, P., Yasunori, A. & Benedum, T.E. A practical method for oxazole synthesis by cycloisomerization of propargyl amides. Org. Lett. 6, 3593–3596 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the UK Engineering and Physical Science Research Council (EPSRC) for funding (C.H.S.) and J. Matthey for generous loans of platinum group metal salts.

Author information

Authors and Affiliations

Authors

Contributions

S.D. supervised the project and wrote the manuscript, C.H.S. conducted all the synthesis, as well as the palladium-based catalysis reported in the original papers, tested the protocols and edited the manuscript. J.G.K. edited the manuscript and S.A.K.H. conducted the gold catalysis and edited the manuscript.

Corresponding author

Correspondence to Simon Doherty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Photograph showing the Asynt DrySyn® multi-position heating block and Wheaton V-20 reaction vials used for the Diels-Alder cycloaddition between anthracene and (dicyclohexylphosphinoylethynyl)benzene. (PDF 14519 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doherty, S., Smyth, C., Knight, J. et al. Synthesis of an electron-rich KITPHOS monophosphine, preparation of derived metal complexes and applications in catalysis. Nat Protoc 7, 1870–1883 (2012). https://doi.org/10.1038/nprot.2012.107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.107

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing