Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regioselective monodeprotection of peracetylated carbohydrates

Abstract

This protocol describes the regioselective deprotection of single hydroxyls in peracetylated monosaccharides and disaccharides by enzymatic or chemoenzymatic strategies. The introduction of a one-pot enzymatic step by using immobilized biocatalysts obviates the requirement to carry out tedious workups and time-consuming purifications. By using this straightforward protocol, different per-O-acetylated glycopyranosides (mono- or disaccharides, 1-substituted or glycals) can be transformed into a whole set of differentially monodeprotected 1-alcohols, 3-alcohols, 4-alcohols and 6-alcohols in high yields. These tailor-made glycosyl acceptors can then be used for stereoselective glycosylation for oligosaccharide and glycoderivative synthesis. They have been successfully used as building blocks to synthesize tailor-made di- and trisaccharides involved in the structure of lacto-N-neo-tetraose and precursors of the tumor-associated carbohydrate antigen T and the antitumoral drug peracetylated β-naphtyl-lactosamine. We are able to prepare a purified monoprotected carbohydrate in between 1 and 4 d. With this protocol, the small library of monodeprotected products can be synthesized in 1–2 weeks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: General scheme of the regioselective monodeprotection of per-O-acetylated carbohydrates.
Figure 2
Figure 3: Per-O-acetylation of the different D-glycopyranosides.
Figure 4
Figure 5

References

  1. 1

    Chen, S. & Fukuda, M. Cell-type-specific roles of carbohydrates in tumor metastasis. Methods Enzymol. 416, 371–380 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Rabinovich, G.A., Toscano, M.A., Jackson, S.S. & Vasta, G.R. Functions of cell surface galectin-glycoprotein lattices. Curr. Opin. Struct. Biol. 17, 513–520 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Seeberger, P.H. & Werz, D.B. Synthesis and medical applications of oligosaccharides. Nature 446, 1046–1051 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Walker-Nasir, E., Kaleem, A., Hoessli, D.C., Khurshid, A. & Nasir-ud-Din . Galactose: a specifically recognized, terminal carbohydrate moiety in biological processes. Curr. Org. Chem. 12, 940–956 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Murrey, H.E. & Hsieh-Wilson, L.C. The chemical neurobiology of carbohydrates. Chem. Rev. 108, 1708–1731 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Weymouth-Wilson, A.C. The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14, 99–110 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Kren, V. & Rezanka, T. Sweet antibiotics—the role of glycosidic residues in antibiotic and antitumor activity and their randomization. FEMS Microbiol. Rev. 32, 858–889 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Vyas, A.A. et al. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc. Natl. Acad. Sci. USA 99, 8412–8417 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Sidransky, E. Gaucher disease: complexity in a 'simple' disorder. Mol. Genet. Metab. 83, 6–15 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Campbell, C.T. & Yarema, K.J. Large-scale approaches for glycobiology. Genome Biol. 6, 236–244 (2005).

    Article  Google Scholar 

  11. 11

    Palomo, J.M., Filice, M., Fernandez-Lafuente, R., Terreni, M. & Guisan, J.M. Regioselective hydrolysis of peracetylated β-monosaccharides by immobilized lipases. Key role of the immobilization protocol. Adv. Synth. Cat. 349, 1969–1976 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Filice, M., Fernandez-Lafuente, R., Terreni, M., Guisan, J.M. & Palomo, J.M. Screening of lipases for regioselective hydrolysis of peracetylated β-monosaccharides. J. Mol. Cat. B: Enzym. 49, 12–17 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Fernandez-Lorente, G. et al. Lecitase ultra as regioselective biocatalyst in the hydrolysis of fully protected carbohydrates. Strong modulation by using different immobilization protocols. J. Mol. Cat. B: Enzym. 51, 110–117 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Filice, M. et al. Preparation of linear oligosaccharides by a simple monoprotective chemoenzymatic approach. Tetrahedron 64, 9286–9292 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Filice, M. et al. A Chemo-biocatalytic approach in the synthesis of β-O-naphtylmethyl-N-peracetylated lactosamine. J. Mol. Cat. B: Enzym. 52–53, 106–112 (2008).

    Article  Google Scholar 

  16. 16

    Mendes, A.A. et al. Regioselective monohydrolysis of per-O-acetylated 1-O-substituted-β-glucopyranosides catalyzed by immobilized lipases. Tetrahedron 64, 10721–10727 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Filice, M. et al. Chemo-biocatalytic regioselective synthesis of different deprotected monosaccharides. Catal. Today 140, 11–18 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Rodrigues, D.S. et al. Different derivatives of a lipase display different regioselectivity in the monohydrolysis of per-O-acetylated 1-O-substituted-β-galactopyranosides. J. Mol. Cat. B: Enzym. 58, 36–40 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Filice, M., Vanna, R., Terreni, M., Guisan, J.M. & Palomo, J.M. Lipase-catalyzed regioselective one-step synthesis of Penta-O-acetyl-3-hydroxy-lactal. Eur. J. Org. Chem. 20, 3327–3329 (2009).

    Article  Google Scholar 

  20. 20

    Filice, M., Guisan, J.M. & Palomo, J.M. Recent trends in regioselective protection and deprotection of monosaccharides. Curr. Org. Chem. 14, 516–532 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Filice, M., Guisan, J.M. & Palomo, J.M. Effect of ionic liquids as additives in the catalytic properties of different immobilized preparations of Rhizomucor miehei lipase in the hydrolysis of peracetylated lactal. Green Chem. 12, 1365–1369 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Wang, P.G. Sugars synthesized in a snap. Nat. Chem. Biol. 3, 309–310 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Hung, S.-C. et al. Synthesis of heparin oligosaccharides and their interaction with eosinophil-derived neurotoxin. Org. Biomol. Chem. 10, 760–772 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Hsu, C.-H., Hung, S.-C., Wu, C.-Y. & Wong, C.-H. Toward automated oligosaccharide synthesis. Angew. Chem. Int. Ed. 50, 11872–11923 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Galan, M.C., Benito-Alifonso, D. & Watt, G.M. Carbohydrate chemistry in drug discovery. Org. Biomol. Chem. 9, 3598–3610 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Wang, W. et al. Preparation of oligosaccharides by homogenous enzymatic synthesis and solid-phase extraction. Chem. Commun. 47, 11240–11242 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Fujikawa, K., Ganesh, N.V., Tan, Y.H., Stine, K.J. & Demchenko, A.V. Reverse orthogonal strategy for oligosaccharide synthesis. Chem. Commun. 47, 10602–10604 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Chu, K.-C. et al. Efficient and stereoselective synthesis of α(2→9) oligosialic acids: from monomers to dodecamers. Angew. Chem. Int. Ed. 50, 9391–9395 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Wu, C.-Y. & Wong, C.-H. Chemistry and glycobiology. Chem. Commun. 47, 6201–6207 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Flitsch, S.L. Glycosylation with a twist. Nature 437, 201–202 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Ernst, B., Hart, G.W. & Sinay, P. (eds). Carbohydrates in Chemistry and Biology, Vol. 1 (Wiley-VCH, 2000).

  32. 32

    Wang, C.C. et al. Regioselective one-pot protection of carbohydrates. Nature 446, 896–899 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Antoine, F., Urban, D. & Beau, J.-M . Tandem catalysis for a one-pot regioselective protection of carbohydrates. The example of glucose. Angew. Chem. Int. Ed. 46, 8662–8665 (2007).

    Article  Google Scholar 

  34. 34

    Wang, C.-C., Kulkarni, S.S., Lee, J.-C., Luo, S.-Y. & Hung, S.-C. Regioselective one-pot protection of glucose. Nat. Protoc. 3, 97–113 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Pastore, A., Valerio, S., Adinolfi, M. & Iadonisi, A. An easy and versatile approach for the regioselective De-O-benzylation of protected sugars based on the I2/Et3SiH combined system. Chem. Eur. J. 17, 5881–5889 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Wuts, P.G.M. Greene's Protective Groups in Organic Synthesis, 4th edn. (John Wiley & Sons, 2007).

  37. 37

    Greene, T.W. & Wuts, P.G.M. Protective Groups in Organic Synthesis, 3th edn. (John Wiley & Sons, 1999).

  38. 38

    Jaeger, K.-E. & Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol. 13, 390–397 (2002).

    CAS  Article  Google Scholar 

  39. 39

    Reetz, M.T. Lipases as practical biocatalysts. Curr. Opin. Biotechnol. 6, 145–150 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Brady, L. et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343, 767–770 (1990).

    CAS  Article  Google Scholar 

  41. 41

    Palomo, J.M. Modulation of enzymes selectivity via immobilization. Curr. Org. Synth. 6, 1–14 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Palomo, J.M. Lipases enantioselectivity alteration by immobilization techniques. Curr. Bio. Comp. 4, 126–138 (2008).

    CAS  Article  Google Scholar 

  43. 43

    Cabrera, Z. & Palomo, J.M. Enantioselective desymmetrization of prochiral diesters catalyzed by immobilized Rhizopus oryzae lipase. Tetrahedron: Asymmetry 22, 2080–2084 (2011).

    CAS  Article  Google Scholar 

  44. 44

    Bastida, A. et al. A single step purification, immobilization and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol. Bioeng. 58, 486–493 (1998).

    CAS  Article  Google Scholar 

  45. 45

    Mateo, C. et al. Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb. Technol. 37, 456–462 (2005).

    CAS  Article  Google Scholar 

  46. 46

    Mong, T.K.K., Lee, L.V., Brown, J.R., Esko, J.D. & Wong, C.H. Synthesis of N-acetyllactosamine derivatives with variation in the aglycon moiety for the study of inhibition of sialyl Lewis x expression. ChemBioChem 4, 835–840 (2003).

    CAS  Article  Google Scholar 

  47. 47

    Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS  Article  Google Scholar 

  48. 48

    Palomo, J.M. et al. General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality. Biomacromolecules 4, 1–6 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Spanish National Research Council (CSIC) and the Spanish Ministry of Science. We acknowledge Á. Berenguer (Instituto Universitario de Materiales, Universidad de Alicante) for his help during the writing of this paper.

Author information

Affiliations

Authors

Contributions

M.F. and J.M.P. performed the experiments; M.F. and J.M.P. analyzed data; J.M.P. and M.F. wrote the manuscript; J.M.P. and J.M.G. designed the study and experiments; and M.F. and M.T. designed the study for glycoderivative synthesis.

Corresponding author

Correspondence to Jose M Palomo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Per-O-acetylation of carbohydrates (PDF 125 kb)

Supplementary Table 2

Regioselective enzymatic C-6 monodeprotection of per-O-acetylated glycopyranosides (PDF 173 kb)

Supplementary Table 3

Regioselective enzymatic monodeprotection of per-O-acetylated glycopyranosides (PDF 171 kb)

Supplementary Table 4

Synthesis of 4-hydroxy-tetraacetylated monosaccharides by acyl-chemical migration from the 6-OH monodeprotected tetraacetylated products (PDF 136 kb)

Supplementary Table 5

Synthesis of 3-hydroxy-tetraacetylated monosaccharides by acyl-chemical migration from the 6-OH monodeprotected tetraacetylated products (PDF 137 kb)

Supplementary Figure 1

HPLC trace for the regioselctive enzymatic hydrolysis of 1,2,3,4,6-Penta-O-acetyl-α-D-glucopyranose (20) (PDF 551 kb)

Supplementary Figure 2

HPLC traces for the chemical acyl-migration of 39 to form 64 and 73 (PDF 528 kb)

Supplementary Figure 3

TLC of the chemo-enzymatic process starting from 1,2,3,4,6-Penta-O-acetyl-α-D-glucopyranose (20) (PDF 427 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Filice, M., Guisan, J., Terreni, M. et al. Regioselective monodeprotection of peracetylated carbohydrates. Nat Protoc 7, 1783–1796 (2012). https://doi.org/10.1038/nprot.2012.098

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing