Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Construction of BIBAC and BAC libraries from a variety of organisms for advanced genomics research

Abstract

Large-insert BAC (bacterial artificial chromosome) and BIBAC (binary BAC) libraries are essential for modern genomics research for all organisms. We helped pioneer the BAC and BIBAC technologies, and by using them we have constructed hundreds of BAC and BIBAC libraries for different species of plants, animals, marine animals, insects, algae and microbes. These libraries have been used globally for different aspects of genomics research. Here we describe the procedure with the latest improvements that we have made and used for construction of BIBAC libraries. The procedure includes the preparation of BIBAC vectors, the preparation of clonable fragments of the desired size from the source DNA, the construction and transformation of BIBACs and, finally, the characterization and assembly of BIBAC libraries. We also specify the modifications necessary for construction of BAC libraries using the protocol. The entire protocol takes 7 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of the procedure for construction of BIBAC libraries.
Figure 2: Demonstration of BIBAC as well as BAC library construction.
Figure 3: BIBACs and BACs constructed using this protocol.

Similar content being viewed by others

References

  1. Burke, D.T., Carle, G.F. & Olson, M.V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–811 (1987).

    Article  CAS  Google Scholar 

  2. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Echerichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797 (1992).

    Article  CAS  Google Scholar 

  3. Ioannou, P.A. et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat. Genet. 6, 84–89 (1994).

    Article  CAS  Google Scholar 

  4. Hamilton, C.M., Frary, A., Lewis, C. & Tanksley, S.D. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93, 9975–9979 (1996).

    Article  CAS  Google Scholar 

  5. Tao, Q.-Z. & Zhang, H.-B. Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors. Nucleic Acids Res. 26, 4901–4909 (1998).

    Article  CAS  Google Scholar 

  6. Liu, Y. et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl. Acad. Sci. USA 96, 6535–6540 (1999).

    Article  CAS  Google Scholar 

  7. Zhang, H.-B. Map-based cloning of genes and quantitative trait loci. In Principles and Practices of Plant Genomics Vol. 1 Genome Mapping (eds. Kole, C. & Abbott A.G.) 229–267 (Science Publishers, 2007).

  8. Gregory, S.G., Howell, G.R. & Bentley, D.R. Genome mapping by fluorescent fingerprinting. Genome Res. 7, 1162–1168 (1997).

    Article  CAS  Google Scholar 

  9. Marra, M. et al. High throughput fingerprint analysis of large-insert clones. Genome Res. 7, 1072–1084 (1997).

    Article  CAS  Google Scholar 

  10. Zhang, H.-B. & Wing, R.A. Physical mapping of the rice genome with BACs. Plant Mol. Biol. 35, 115–127 (1997).

    Article  CAS  Google Scholar 

  11. Wu, C. et al. Whole genome physical mapping: an overview on methods for DNA fingerprinting. In Handbook of Plant Genome Mapping: Genetic and Physical Mapping (eds. Meksem, K. & Kahl, G.) 257–284 (Wiley-VCH, 2005).

  12. Chang, Y.-L., Tao, Q.-Z., Scheuring, C., Meksem, K. & Zhang, H.-B. An integrated map of Arabidopsis thaliana for functional analysis of its genome sequence. Genetics 159, 1231–1242 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tao, Q.-Z. et al. Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis. Genetics 158, 1711–1724 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ren, C. et al. A BAC-based physical map of the chicken genome. Genome Res. 13, 2754–2758 (2003).

    Article  CAS  Google Scholar 

  15. Wallis, J.W. et al. A physical map of the chicken genome. Nature 432, 761–764 (2004).

    Article  CAS  Google Scholar 

  16. Wu, C. et al. A BAC and BIBAC-based physical map of the soybean genome. Genome Res. 14, 319–326 (2004).

    Article  CAS  Google Scholar 

  17. Zhang, X. et al. An integrated BAC and genome sequence physical map of Phytophthora sojae. Mol. Plant-Microbe Interact. 19, 1302–1310 (2006).

    Article  CAS  Google Scholar 

  18. Zhang, X. et al. A BAC/BIBAC-based physical map of chickpea, Cicer arietinum L. BMC Genomics 11, 501 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y. et al. A comparative physical map reveals the pattern of chromosomal evolution between the turkey (Meleagris gallopavo) and chicken (Gallus gallus) genomes. BMC Genomics 12, 447 (2011).

    Article  CAS  Google Scholar 

  20. Venter, J.C., Smith, H.O. & Hood, L. A new strategy for genome sequencing. Nature 381, 364–366 (1996).

    Article  CAS  Google Scholar 

  21. Zhang, H.-B. & Wu, C.C. BACs as tools for genome sequencing. Plant Physiol. Biochem. 39, 195–209 (2001).

    Article  CAS  Google Scholar 

  22. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  23. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

    Article  Google Scholar 

  24. Tyler, B.M. et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313, 1261–1266 (2006).

    Article  CAS  Google Scholar 

  25. Schnable, P.S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

    Article  CAS  Google Scholar 

  26. Steuernagel, B. et al. De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley. BMC Genomics 10, 247 (2009).

    Article  Google Scholar 

  27. Dalloul, R.A. et al. Multi-platform next generation sequencing of the domestic turkey (Meleagris gallopavo): Genome assembly and analysis. PLoS Biol. 8, e1000475 (2010).

    Article  Google Scholar 

  28. Sato, K., Motoi, Y., Yamaji, N. & Yoshida, H. 454 sequencing of pooled BAC clones on chromosome 3H of barley. BMC Genomics 12, 246 (2011).

    Article  CAS  Google Scholar 

  29. Song, R., Segal, G. & Messing, J. Expression of the sorghum 10-member kafirin gene cluster in maize endosperm. Nucleic Acids Res. 32, e189 (2004).

    Article  Google Scholar 

  30. Chang, Y.-L. et al. A plant-transformation-ready large-insert BIBAC library of Arabidopsis and bombardment transformation and expression of its large-insert BIBACs in tobacco. Genome 54, 437–447 (2011).

    Article  CAS  Google Scholar 

  31. Heintz, N. BAC to the future: the use of BAC transgenic mice for neuroscience research. Nat. Rev. Neurosci. 2, 861–870 (2001).

    Article  CAS  Google Scholar 

  32. Marshall, V.M., Janette Allison, J., Templeton, T. & Foote, S.J. Generation of BAC transgenic mice. Methods Mol Biol. 256, 159–182 (2004).

    CAS  PubMed  Google Scholar 

  33. Valjent, E., Bertran-Gonzalez, J., Hervé, D., Fisone, G. & Girault, J.A. Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci. 32, 538–547 (2009).

    Article  CAS  Google Scholar 

  34. Johnson, S.J. & Wade-Martins, R. A BACwards glance at neurodegeneration: molecular insights into disease from LRRK2, SNCA and MAPT BAC-transgenic mice. Biochem. Soc. Trans. 39, 862–867 (2011).

    Article  CAS  Google Scholar 

  35. Ren, C. et al. Genomic DNA libraries and physical mapping. In Handbook of Plant Genome Mapping: Genetic and Physical Mapping (eds. Meksem, K. & Kahl, G.) 173–213 (Wiley-VCH, 2005).

  36. Wu, C., Xu, Z. & Zhang, H.-B. DNA Libraries. In Encyclopedia of Molecular Cell Biology and Molecular Medicine, 2nd edn. Vol. 3 (ed. Meyers, R.A.) 385–425 (Wiley-VCH, 2004).

  37. Zhang, H.-B., Woo, S.-S. & Wing, R.A. BAC, YAC and cosmid library construction. In Plant Gene Isolation: Principles and Practice (eds. Foster, G. & Twell, D.) 75–99 (John Wiley & Sons., 1996).

  38. Sambrook, J., Fritsch, E.E. & Maniatis, T. Molecular Cloning: Laboratory Manual 2 edn. Vol. 1, 1.42–1.43, 1.46, 1.90–1.104 (Cold Spring Harbor Laboratory Press, 1989).

  39. Panter, S. et al. Molecular breeding of transgenic white clover (Trifolium repens L.) with field resistance to Alfalfa mosaic virus through the expression of its coat protein gene. Transgenic Res. doi: 10.1007/s11248-011-9557-z63 (2011).

  40. Kamo, K., Jordan, R., Guaragna, M.A., Hsu, H.-T. & Ueng, P. Resistance to cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase or coat protein subgroup II gene from Cucumber mosaic virus. Plant Cell Rep. 29, 695–704 (2010).

    Article  CAS  Google Scholar 

  41. Strong, S.J., Ohta, Y., Litman, G.W. & Amemiya, C.T. Marked improvement of PAC and BAC cloning is achieved using electroelution of pulsed-field gel-separated partial digests of genomic DNA. Nucleic Acids Res. 25, 3959–3961 (1997).

    Article  CAS  Google Scholar 

  42. Osoegawa, K. et al. An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52, 1–8 (1998).

    Article  CAS  Google Scholar 

  43. Zhang, H.-B., Choi, S.-D., Woo, S.-S., Li, Z.-K. & Wing, R.A. Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population. Mol. Breed 2, 11–24 (1996).

    Article  CAS  Google Scholar 

  44. Hamilton, C.M., Frary, A., Xu, Y., Tanksley, S.D. & Zhang, H.-B. Construction of tomato genomic DNA libraries in a binary-BAC (BIBAC) vector. Plant J. 18, 223–229 (1999).

    Article  CAS  Google Scholar 

  45. Lee, M.-K. et al. Construction and characterization of three complementary BAC libraries for analysis of the chicken genome. Animal Genet. 34, 151–152 (2003).

    Article  CAS  Google Scholar 

  46. Zhang, Y. et al. Construction and characterization of two bacterial artificial chromosome libraries of Zhikong Scallop, Chlamys farreri Jones et Preston, and identification of BAC clones containing the genes involved in its innate immune system. Marine Biotechnol. 10, 358–365 (2008).

    Article  Google Scholar 

  47. Zhang, X. et al. Construction and characterization of a bacterial artificial chromosome (BAC) library of pacific white shrimp, Liptopenaeus vannamei. Marine Biotechnol. 12, 141–149 (2010).

    Article  CAS  Google Scholar 

  48. Shao, C.-W. et al. Construction of two BAC libraries of half-smooth tongue sole Cynoglossus semilaevis and isolation of clones containing candidate sex-determination genes. Marine Biotechnol. 12, 558–568 (2010).

    Article  CAS  Google Scholar 

  49. Hong, Y.S. et al. Construction and characterization of a BAC library and generation of BAC end sequence-tagged connectors for genome sequencing of the malaria mosquito, Anopheles gambiae. Mol. Genet. Genomics 268, 720–728 (2003).

    PubMed  Google Scholar 

  50. Wu, C.-C. et al. Construction and sequence sampling of deep-coverage, large-insert BAC libraries for three model Lepidopteran species. BMC Genomics 10, 283 (2009).

    Article  Google Scholar 

  51. Xu, Z. et al. Genome-wide physical mapping from large-insert clones by fingerprint analysis with capillary electrophoresis: A robust physical map of Penicillium chrysogenum. Nucleic Acids Res. 33, e50 (2005).

    Article  Google Scholar 

  52. Frary, A. & Hamilton, C.M. Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res. 10, 121–132 (2001).

    Article  CAS  Google Scholar 

  53. Liu, Y.G. et al. Development of new transformation-competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning. Gene 282, 247–255 (2002).

    Article  CAS  Google Scholar 

  54. He, R.F. et al. Construction of a genomic library of wild rice and Agrobacterium-mediated transformation of large insert DNA linked to BPH resistance locus. Gene 321, 113–121 (2003).

    Article  CAS  Google Scholar 

  55. Ercolano, M.R. et al. Functional complementation analysis in potato via biolistic transformation with BAC large DNA fragments. Mol. Breed. 13, 15–22 (2004).

    Article  CAS  Google Scholar 

  56. Phan, B.H. et al. Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Res. 16, 341–351 (2007).

    Article  CAS  Google Scholar 

  57. Li, Y. et al. A plant-transformation-competent BIBAC/BAC-based map of rice for functional analysis and genetic engineering of its genomic sequence. Genome 50, 278–288 (2007).

    Article  CAS  Google Scholar 

  58. Zhang, M.P. et al. Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nat. Protoc. 7, 467–478 (2012).

    Article  CAS  Google Scholar 

  59. Larin, Z., Monaco, A.P. & Lehrach, H. Generation of large insert YAC library. Methods Mol. Biol. 54, 1–11 (1996).

    CAS  PubMed  Google Scholar 

  60. Vinatzer, B.A., Zhang, H.-B. & Sanasavini, S. Construction and characterization of a BAC library of apple (Malus x domestica Borkh.). Theor. Appl. Genet. 97, 1183–1190 (1998).

    Article  CAS  Google Scholar 

  61. Jones, J.D.G. et al. Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res. 1, 285–297 (1992).

    Article  CAS  Google Scholar 

  62. Hamilton, C.M. A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200, 107–116 (1997).

    Article  CAS  Google Scholar 

  63. Frijters, A.C.J. et al. Construction of a bacterial artificial chromosome library containing large Eco RI and Hind III genomic fragments of lettuce. Theor. Appl. Genet. 94, 390–399 (1997).

    Article  CAS  Google Scholar 

  64. Kim, U.J. et al. Construction and characterization of a human bacterial artificial chromosome library. Genomics 34, 213–218 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the former members of H.-B.Z.'s laboratory who have used the methods described in this article for their research and thus might have directly or indirectly contributed to the procedures. This work is supported in part by Research Grant Award no. IS-4427-11C from BARD, the United States-Israel Binational Agricultural Research and Development Fund (H.-B.Z.) and grants (124329-85360; 124475-85360) from the Texas AgriLife Research Cotton and Monocot Crop Improvement Program (H.-B.Z.).

Author information

Authors and Affiliations

Authors

Contributions

H.-B.Z., C.F.S., M.Z., Y.Z., C.-C.W., J.J.D. and Y.L. conducted the experiments on different species with the protocols presented here, and improved and extended the original protocol through these experiments. Furthermore, H.-B.Z. developed the original concept of the protocols and the original protocols, designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Hong-Bin Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

BAC and BIBAC vectors widely used in the construction of BIBAC and BAC libraries. (a) pECBAC1 (ref. 63) and (b) pBeloBAC11 (ref. 64) are both BAC vectors, whereas (c) pCLD04541 (561, d) BIBAC2 (462) and (e) pYLTAC7 (ref. 6) are BIBAC vectors. The cloning sites of restriction enzyme(s), the gene marker for selection of transformants (CMR, chloramphenicol; TetR, tetracycline; KmR, kanamycin) and the gene marker for selection of clones (Lac Z or Sac B) containing inserts or recombinant clones are highlighted or in bold. The figure was from Ref. 35 with permission from its publisher, Wiley-VCH. (TIFF 5426 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, HB., Scheuring, C., Zhang, M. et al. Construction of BIBAC and BAC libraries from a variety of organisms for advanced genomics research. Nat Protoc 7, 479–499 (2012). https://doi.org/10.1038/nprot.2011.456

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.456

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing