Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

SILEC: a protocol for generating and using isotopically labeled coenzyme A mass spectrometry standards

Abstract

Stable isotope labeling by essential nutrients in cell culture (SILEC) was recently developed to generate isotopically labeled coenzyme A (CoA) and short-chain acyl-CoA thioesters. This was accomplished by modifying the widely used technique of stable isotope labeling by amino acids in cell culture to include [13C315N]-pantothenate (vitamin B5), a CoA precursor, instead of the isotopically labeled amino acids. The lack of a de novo pantothenate synthesis pathway allowed for efficient and near-complete labeling of the measured CoA species. This protocol provides a step-by-step approach for generating stable isotope-labeled short-chain acyl-CoA internal standards in mammalian and insect cells as well as instructions on how to use them in stable isotope dilution mass spectrometric-based analyses. Troubleshooting guidelines, as well as a list of unlabeled and labeled CoA species, are also included. This protocol represents a prototype for generating stable isotope internal standards from labeled essential nutrients such as pantothenate. The generation and use of SILEC standards takes approximately 2–3 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LC-MS analysis of acyl-CoA thioesters.
Figure 2
Figure 3: Pantothenate and coenzyme A biosynthesis.
Figure 4: General scheme for stable isotope labeling by essential nutrients in cell culture (SILEC).
Figure 5: SILEC labeling and 'customization' of CoA metabolome.
Figure 6: Biosynthetic generation of isotopically labeled menadione-CoA.
Figure 7: LC-SRM/MS chromatograms of CoASH harvested from [13C315N]-pantothenate-labeled cells.

Similar content being viewed by others

References

  1. Hsieh, Y. HPLC-MS/MS in drug metabolism and pharmacokinetic screening. Expert Opin. Drug Metab. Toxicol. 4, 93–101 (2008).

    Article  CAS  Google Scholar 

  2. Brown, S.C., Kruppa, G. & Dasseux, J.L. Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom. Rev. 24, 223–231 (2005).

    Article  CAS  Google Scholar 

  3. Hu, Q.Z. et al. The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40, 430–443 (2005).

    Article  CAS  Google Scholar 

  4. Whalen, K., Gobey, J. & Janiszewski, J. A centralized approach to tandem mass spectrometry method development for high-throughput ADME screening. Rapid Commun. Mass Spectrom. 20, 1497–1503 (2006).

    Article  CAS  Google Scholar 

  5. Taylor, C.F. et al. A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nat. Biotechnol. 21, 247–254 (2003).

    Article  CAS  Google Scholar 

  6. Cox, J. et al. A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat. Protoc. 4, 698–705 (2009).

    Article  CAS  Google Scholar 

  7. Madalinski, G. et al. Direct introduction of biological samples into a LTQ-Orbitrap hybrid mass spectrometer as a tool for fast metabolome analysis. Anal. Chem. 80, 3291–3303 (2008).

    Article  CAS  Google Scholar 

  8. Wu, C.C. & Yates, J.R. III . The application of mass spectrometry to membrane proteomics. Nat. Biotechnol. 21, 262–267 (2003).

    Article  CAS  Google Scholar 

  9. Jemal, M. High-throughput quantitative bioanalysis by LC/MS/MS. Biomed. Chromatogr. 14, 422–429 (2000).

    Article  CAS  Google Scholar 

  10. Remane, D., Wissenbach, D.K., Meyer, M.R. & Maurer, H.H. Systematic investigation of ion suppression and enhancement effects of fourteen stable-isotope-labeled internal standards by their native analogues using atmospheric-pressure chemical ionization and electrospray ionization and the relevance for multi-analyte liquid chromatographic/mass spectrometric procedures. Rapid Commun. Mass Spectrom. 24, 859–867 (2010).

    Article  CAS  Google Scholar 

  11. Prakash, C., Shaffer, C.L. & Nedderman, A. Analytical strategies for identifying drug metabolites. Mass Spectrom. Rev. 26, 340–369 (2007).

    Article  CAS  Google Scholar 

  12. Bonfiglio, R., King, R.C., Olah, T.V. & Merkle, K. The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun. Mass Spectrom. 13, 1175–1185 (1999).

    Article  CAS  Google Scholar 

  13. King, R., Bonfiglio, R., Fernandez-Metzler, C., Miller-Stein, C. & Olah, T. Mechanistic investigation of ionization suppression in electrospray ionization. J. Am. Soc. Mass Spectrom. 11, 942–950 (2000).

    Article  CAS  Google Scholar 

  14. Matuszewski, B.K. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis. J. Chromatogr. B 830, 293–300 (2006).

    Article  CAS  Google Scholar 

  15. Ciccimaro, E. & Blair, I.A. Stable-isotope dilution LC-MS for quantitative biomarker analysis. Bioanalysis 2, 311–341 (2010).

    Article  CAS  Google Scholar 

  16. Bennett, B.D., Yuan, J., Kimball, E.H. & Rabinowitz, J.D. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat. Protoc. 3, 1299–1311 (2008).

    Article  CAS  Google Scholar 

  17. Ong, S.E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1, 2650–2660 (2006).

    Article  CAS  Google Scholar 

  18. Basu, S.S., Mesaros, C., Gelhaus, S.L. & Blair, I.A. Stable isotope labeling by essential nutirents in cell culture for the preparation of labeled coenzyme A and its thioesters. Anal. Chem. 83, 1363–1369 (2011).

    Article  CAS  Google Scholar 

  19. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  20. Yan, Y., Weaver, V.M. & Blair, I.A. Analysis of protein expression during oxidative stress in breast epithelial cells using a stable isotope labeled proteome internal standard. J. Proteome Res. 4, 2007–2014 (2005).

    Article  CAS  Google Scholar 

  21. Shah, S.J., Yu, K.H., Sangar, V., Parry, S.I. & Blair, I.A. Identification and quantification of preterm birth biomarkers in human cervicovaginal fluid by liquid chromatography/tandem mass spectrometry. J. Proteome Res. 8, 2407–2417 (2009).

    Article  CAS  Google Scholar 

  22. Rangiah, K. et al. Differential secreted proteome approach in murine model for candidate biomarker discovery in colon cancer. J. Proteome Res. 8, 5153–5164 (2009).

    Article  CAS  Google Scholar 

  23. Geiger, T. et al. Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat. Protoc. 6, 147–157 (2011).

    Article  CAS  Google Scholar 

  24. Brass, E.P. Overview of coenzyme A metabolism and its role in cellular toxicity. Chem. Biol. Interact 90, 203–214 (1994).

    Article  CAS  Google Scholar 

  25. Robishaw, J.D. & Neely, J.R. Coenzyme A metabolism. Am. J. Physiol. 248, E1–E9 (1985).

    Article  CAS  Google Scholar 

  26. Li, L.O., Klett, E.L. & Coleman, R.A. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim. Biophys. Acta 1801, 246–251 (2010).

    Article  CAS  Google Scholar 

  27. Magnes, C., Sinner, F.M., Regittnig, W. & Pieber, T.R. LC/MS/MS method for quantitative determination of long-chain fatty acyl-CoAs. Anal. Chem. 77, 2889–2894 (2005).

    Article  CAS  Google Scholar 

  28. Gao, L. et al. Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phase HPLC/MS. J. Chromatogr. B 853, 303–313 (2007).

    Article  CAS  Google Scholar 

  29. MacDonald, M.J., Smith, A.D. III, Hasan, N.M., Sabat, G. & Fahien, L.A. Feasibility of pathways for transfer of acyl groups from mitochondria to the cytosol to form short chain acyl-CoAs in the pancreatic beta cell. J. Biol. Chem. 282, 30596–30606 (2007).

    Article  CAS  Google Scholar 

  30. MacDonald, M.J. Synergistic potent insulin release by combinations of weak secretagogues in pancreatic islets and INS-1 cells. J. Biol. Chem. 282, 6043–6052 (2007).

    Article  CAS  Google Scholar 

  31. Lowe, D.M. & Tubbs, P.K. Succinylation and inactivation of 3-hydroxy-3-methylglutaryl-CoA synthase by succinyl-CoA and its possible relevance to the control of ketogenesis. Biochem. J. 232, 37–42 (1985).

    Article  CAS  Google Scholar 

  32. O'Donovan, D.J. et al. CoASH and CoASSG levels in lungs of hyperoxic rats as potential biomarkers of intramitochondrial oxidant stresses. Pediatr. Res. 51, 346–353 (2002).

    Article  CAS  Google Scholar 

  33. Wong, Y.L., Smith, C.V., McMicken, H.W., Rogers, L.K. & Welty, S.E. Mitochondrial thiol status in the liver is altered by exposure to hyperoxia. Toxicol. Lett. 123, 179–193 (2001).

    Article  CAS  Google Scholar 

  34. Feliz, B., Witt, D.R. & Harris, B.T. Propionic acidemia: a neuropathology case report and review of prior cases. Arch. Pathol. Lab. Med. 127, e325–e328 (2003).

    PubMed  Google Scholar 

  35. Mitchell, G.A. et al. Hereditary and acquired diseases of acyl-coenzyme A metabolism. Mol. Genet. Metab. 94, 4–15 (2008).

    Article  CAS  Google Scholar 

  36. Van Hove, J.L. et al. D, L-3-hydroxybutyrate treatment of multiple acyl-CoA dehydrogenase deficiency (MADD). Lancet 361, 1433–1435 (2003).

    Article  CAS  Google Scholar 

  37. van Grunsven, E.G. et al. Peroxisomal D-hydroxyacyl-CoA dehydrogenase deficiency: resolution of the enzyme defect and its molecular basis in bifunctional protein deficiency. Proc. Natl. Acad. Sci. USA 95, 2128–2133 (1998).

    Article  CAS  Google Scholar 

  38. van Maldegem, B.T., Wanders, R.J. & Wijburg, F.A. Clinical aspects of short-chain acyl-CoA dehydrogenase deficiency. J. Inherit. Metab. Dis. 33, 507–511 (2010).

    Article  Google Scholar 

  39. Steghens, J.P., Flourie, F., Arab, K. & Collombel, C. Fast liquid chromatography-mass spectrometry glutathione measurement in whole blood: micromolar GSSG is a sample preparation artifact. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 798, 343–349 (2003).

    Article  CAS  Google Scholar 

  40. Blair, I.A. Endogenous glutathione adducts. Curr. Drug Metab. 7, 853–872 (2006).

    Article  CAS  Google Scholar 

  41. Zhu, P., Oe, T. & Blair, I.A. Determination of cellular redox status by stable isotope dilution liquid chromatography/mass spectrometry analysis of glutathione and glutathione disulfide. Rapid. Commun. Mass Spectrom. 22, 432–440 (2008).

    Article  CAS  Google Scholar 

  42. Hayashi, O. & Satoh, K. Determination of acetyl-CoA and malonyl-CoA in germinating rice seeds using the LC-MS/MS technique. Biosci. Biotechnol. Biochem. 70, 2676–2681 (2006).

    Article  CAS  Google Scholar 

  43. Perera, M.A., Choi, S.Y., Wurtele, E.S. & Nikolau, B.J. Quantitative analysis of short-chain acyl-coenzymeAs in plant tissues by LC-MS-MS electrospray ionization method. J. Chromatogr. B 877, 482–488 (2009).

    Article  CAS  Google Scholar 

  44. Dalluge, J.J. et al. Separation and identification of organic acid-coenzyme A thioesters using liquid chromatography/electrospray ionization-mass spectrometry. Anal. Bioanal. Chem. 374, 835–840 (2002).

    Article  CAS  Google Scholar 

  45. Magnes, C. et al. Validated comprehensive analytical method for quantification of coenzyme A activated compounds in biological tissues by online solid-phase extraction LC/MS/MS. Anal. Chem. 80, 5736–5742 (2008).

    Article  CAS  Google Scholar 

  46. Minkler, P.E., Kerner, J., Kasumov, T., Parland, W. & Hoppel, C.L. Quantification of malonyl-coenzyme A in tissue specimens by high-performance liquid chromatography/mass spectrometry. Anal. Biochem. 352, 24–32 (2006).

    Article  CAS  Google Scholar 

  47. Park, J.W., Jung, W.S., Park, S.R., Park, B.C. & Yoon, Y.J. Analysis of intracellular short organic acid-coenzyme A esters from actinomycetes using liquid chromatography-electrospray ionization-mass spectrometry. J. Mass Spectrom. 42, 1136–1147 (2007).

    Article  CAS  Google Scholar 

  48. Leonardi, R., Zhang, Y.M., Rock, C.O. & Jackowski, S. Coenzyme A: back in action. Prog. Lipid Res. 44, 125–153 (2005).

    Article  CAS  Google Scholar 

  49. Kasuya, F., Oti, Y., Tatsuki, T. & Igarashi, K. Analysis of medium-chain acyl-coenzyme A esters in mouse tissues by liquid chromatography-electrospray ionization mass spectrometry. Anal. Biochem. 325, 196–205 (2004).

    Article  CAS  Google Scholar 

  50. Minkler, P.E., Kerner, J., Ingalls, S.T. & Hoppel, C.L. Novel isolation procedure for short-, medium-, and long-chain acyl-coenzyme A esters from tissue. Anal. Biochem. 376, 275–276 (2008).

    Article  CAS  Google Scholar 

  51. Zhang, G.F. et al. Catabolism of 4-hydroxyacids and 4-hydroxynonenal via 4-hydroxy-4-phosphoacyl-CoAs. J. Biol. Chem. 284, 33521–33534 (2009).

    Article  CAS  Google Scholar 

  52. Haynes, C.A. et al. Quantitation of fatty acyl-coenzyme As in mammalian cells by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Lipid Res. 49, 1113–1125 (2008).

    Article  CAS  Google Scholar 

  53. Mauriala, T., Herzig, K.H., Heinonen, M., Idziak, J. & Auriola, S. Determination of long-chain fatty acid acyl-coenzyme A compounds using liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. B 808, 263–268 (2004).

    Article  CAS  Google Scholar 

  54. Bennett, M.J. & Hale, D.E. Medium chain acyl-coenzyme A dehydrogenase deficiency. N. J. Med. 89, 675–678 (1992).

    CAS  PubMed  Google Scholar 

  55. Boneh, A. et al. VLCAD deficiency: pitfalls in newborn screening and confirmation of diagnosis by mutation analysis. Mol. Genet. Metab. 88, 166–170 (2006).

    Article  CAS  Google Scholar 

  56. Wood, J.C. et al. Diagnosis of very long chain acyl-dehydrogenase deficiency from an infant's newborn screening card. Pediatrics 108, E19 (2001).

    Article  CAS  Google Scholar 

  57. Chang, S.H. & Wilken, D.R. Identity of a bovine liver nucleotide peptide with the unsymmetrical disulfied of coenzyme A and glutathione. J. Biol. Chem. 240, 3136–3139 (1965).

    CAS  PubMed  Google Scholar 

  58. Kawaguchi, A., Yoshimura, T. & Okuda, S. A new method for the preparation of acyl-CoA thioesters. J. Biochem. 89, 337–339 (1981).

    Article  CAS  Google Scholar 

  59. Olsen, J., Bjornsdottir, I., Tjornelund, J. & Honore, H.S. Chemical reactivity of the naproxen acyl glucuronide and the naproxen coenzyme A thioester towards bionucleophiles. J. Pharm. Biomed. Anal. 29, 7–15 (2002).

    Article  CAS  Google Scholar 

  60. van Wyk, M. & Strauss, E. One-pot preparation of coenzyme A analogues via an improved chemo-enzymatic synthesis of pre-CoA thioester synthons. Chem. Commun. 398–400 (2007).

  61. Cooper, S. Reappraisal of serum starvation, the restriction point, G0, and G1 phase arrest points. FASEB J. 17, 333–340 (2003).

    Article  CAS  Google Scholar 

  62. Hasan, N.M., Adams, G.E. & Joiner, M.C. Effect of serum starvation on expression and phosphorylation of PKC-alpha and p53 in V79 cells: implications for cell death. Int. J. Cancer 80, 400–405 (1999).

    Article  CAS  Google Scholar 

  63. Shin, J.S. et al. Serum starvation induces G1 arrest through suppression of Skp2-CDK2 and CDK4 in SK-OV-3 cells. Int. J. Oncol. 32, 435–439 (2008).

    CAS  PubMed  Google Scholar 

  64. Cornille, E. et al. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury. BMC Neurosci. 11, 51 (2010).

    Article  Google Scholar 

  65. MacDonald, M.J. et al. Acetoacetate and beta-hydroxybutyrate in combination with other metabolites release insulin from INS-1 cells and provide clues about pathways in insulin secretion. Am. J. Physiol. Cell Physiol. 294, C442–C450 (2008).

    Article  CAS  Google Scholar 

  66. Iwasaki, K. et al. Effects of antiprogestins on the rate of proliferation of breast cancer cells. Mol. Cell Biochem. 198, 141–149 (1999).

    Article  CAS  Google Scholar 

  67. Cao, Z. et al. Effects of resin or charcoal treatment on fetal bovine serum and bovine calf serum. Endocr. Res. 34, 101–108 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The support of US National Institutes of Health grants U01ES016004, P30ES013508 and 5T32HL007439 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote the paper and designed the experiments. S.S.B. conducted the actual experiments.

Corresponding author

Correspondence to Ian A Blair.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Protonated molecule m/z values for endogenous and labeled CoA species. (PPT 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Blair, I. SILEC: a protocol for generating and using isotopically labeled coenzyme A mass spectrometry standards. Nat Protoc 7, 1–11 (2012). https://doi.org/10.1038/nprot.2011.421

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.421

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing