Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of peptide macrocycles using unprotected amino aldehydes

Abstract

This protocol describes a method for synthesizing peptide macrocycles from linear peptide precursors, isocyanides and aziridine aldehydes. The effects of the reaction components on the efficiency of the process are discussed. Macrocyclization is exemplified by the preparation of a nine-membered ring peptide macrocycle. The product is further functionalized by nucleophilic opening of the aziridine ring with a fluorescent thiol. This transformation constitutes a useful late-stage functionalization of a macrocyclic peptide molecule. The experimental section describes the selection of the required starting materials, and the preparation of a representative aziridine-2-carboxaldehyde dimer. The synthesis and isolation of the peptide macrocycle can be accomplished in 6 h, and the ring-opening requires approximately 6–8 h. The aziridine-2-carboxaldehyde reagent is commercially available or can be synthesized from readily available starting materials in approximately 4 d. The strategy described is not limited to the specific peptide, isocyanide, aziridine aldehyde or nucleophile used in the representative synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4: Aziridine formation by the Mitsunobu reaction.
Figure 5: Synthesis of aziridine aldehyde dimer by DIBAL reduction.
Figure 6: Macrocyclization of Pro-Leu.
Figure 7
Figure 8: Labeling of a macrocycle with a fluorescent thiol.
Figure 9

References

  1. Robinson, J.A. β-Hairpin peptidomimetics: design, structures and biological activities. Acc. Chem. Res. 41, 1278–1288 (2008).

    Article  CAS  Google Scholar 

  2. Chatterjee, J., Gilon, C., Hoffman, A. & Kessler, H. N-Methylation of peptides: a new perspective in medicinal chemistry. Acc. Chem. Res. 41, 1331–1342 (2008).

    Article  CAS  Google Scholar 

  3. Geyer, A., Müller, G. & Kessler, H. Conformational analysis of a cyclic RGD peptide containing a ψ[CH2–NH] bond: a positional shift in backbone structure caused by a single dipeptide mimetic. J. Am. Chem. Soc. 116, 7735–7743 (1994).

    Article  CAS  Google Scholar 

  4. Driver, R.W., Hoang, H.N., Abbenante, G. & Fairlie, D.P. A cyclic β-strand tripeptide with an α-helix like CD spectrum. Org. Lett. 11, 3092–3095 (2009).

    Article  CAS  Google Scholar 

  5. Rezai, T. et al. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc. 128, 2510–2511 (2006).

    Article  CAS  Google Scholar 

  6. Hess, S. et al. Backbone cyclic peptidomimetic melanocortin-4 receptor agonist as a novel orally administrated drug lead for treating obesity. J. Med. Chem. 51, 1026–1034 (2008).

    Article  CAS  Google Scholar 

  7. Fletcher, J.M. et al. Design of a conformationally defined and proteolytically stable circular mimetic of brain-derived neurotrophic factor. J. Biol. Chem. 283, 33375–3383 (2008).

    Article  CAS  Google Scholar 

  8. Tyndall, J.D.A., Nall, T. & Fairlie, D.P. Proteases universally recognize beta strands in their active sites. Chem. Rev. 105, 973–999 (2005).

    Article  CAS  Google Scholar 

  9. Gilon, C., Mang, C., Lohof, E., Friedler, A. & Kessler, H. 6.8 Synthesis of cyclic peptides. in Synthesis of Peptides and Peptidomimetics Vol. E 22b (ed. Goodman, M.) 461–542 (Thieme, New York, USA, 2004).

  10. Hardy, P.M., Kenner, G.W. & Sheppard, R.C. Peptides—XIII: effects of configuration on dielectric increments and cyclization of some simple peptides. Tetrahedron 19, 95–105 (1963).

    Article  CAS  Google Scholar 

  11. Dale, J. Conformational aspects of many-membered rings. Angew. Chem. Int. Ed. Engl. 5, 1000–1021 (1966).

    Article  CAS  Google Scholar 

  12. Benoiton, N.L., Lee, Y.C., Steinaur, R. & Chen, F.M.F. Studies on sensitivity to racemization of activated residues in couplings of N-benzyloxycarbonyldipeptides. Int. J. Pept. Protein Res. 40, 559–566 (1992).

    Article  CAS  Google Scholar 

  13. Tamaki, M., Akabori, S. & Muramatsu, I. Biomimetic synthesis of gramicidin S. Direct formation of the antibiotic from pentapeptide active esters having no protecting group on the side chain of the Orn residue. J. Am. Chem. Soc. 115, 10492–10496 (1993).

    Article  CAS  Google Scholar 

  14. Kessler, H. & Haase, B. Cyclic hexapeptides derived from the human thymopoietin III. Int. J. Pept. Protein Res. 39, 36–40 (1992).

    Article  CAS  Google Scholar 

  15. Schmidt, U. & Langner, J. Cyclotetrapeptides and cyclopentapeptides: occurrence and synthesis. J. Pept. Res. 49, 67–73 (1997).

    Article  CAS  Google Scholar 

  16. Mitova, M., Popov, S. & De Rosa, S. Cyclic peptides from a Ruegeria strain of bacteria associated with the sponge Suberites domuncula. J. Nat. Prod. 67, 1178–1181 (2004).

    Article  CAS  Google Scholar 

  17. Bean, J.W., Kopple, K.D. & Peishoff, C.E. Conformational analysis of cyclic hexapeptides containing the D-Pro-L-Pro sequence to fix β-turn positions. J. Am. Chem. Soc. 114, 5328–5334 (1992).

    Article  CAS  Google Scholar 

  18. Kurath, P. 116. Preparation and antimicrobial activity of enantio-[1-valine]malformin. Helv. Chim. Acta. 59, 1127–1132 (1976).

    Article  CAS  Google Scholar 

  19. Brady, S.F. et al. Large-scale synthesis of a cyclic hexapeptide analogue of somatostatin. J. Org. Chem. 52, 764–769 (1987).

    Article  CAS  Google Scholar 

  20. Schmidt, U., Lieberknecht, A., Griesser, H. & Talbiersky, J. Synthesis of peptide alkaloids. 5. New methods for synthesis of ansa peptides. Amino acids and peptides. 34. J. Org. Chem. 47, 3261–3264 (1982).

    Article  CAS  Google Scholar 

  21. Carpino, L. 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J. Am. Chem. Soc. 115, 4397–4398 (1993).

    Article  CAS  Google Scholar 

  22. Carpino, L.A., El-Faham, A. & Albericio, F. Racemization studies during solid-phase peptide synthesis using azabenzotriazole-based coupling reagents. Tetrahedron Lett. 35, 2279–2282 (1994).

    Article  CAS  Google Scholar 

  23. Tavassoli, A. & Benkovic, S.J. Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Nat. Protoc. 2, 1126–1133 (2007).

    Article  CAS  Google Scholar 

  24. Lambert, J.N., Mitchell, J.P. & Roberts, K.D. The synthesis of cyclic peptides. J. Chem. Soc. Perkin Trans. 1, 471–484 (2001).

    Article  Google Scholar 

  25. Blackwell, H.E. & Grubbs, R.H. Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew. Chem. Int. Ed. Engl. 37, 3281–3284 (1998).

    Article  CAS  Google Scholar 

  26. Schafmeister, C.E., Po, J. & Verdine, G.L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc. 122, 5891–5892 (2000).

    Article  CAS  Google Scholar 

  27. Angell, Y. & Burgess, K. Ring closure to β-turn mimics via copper-catalyzed azide/alkyne cycloadditions. J. Org. Chem. 70, 9595–9598 (2005).

    Article  CAS  Google Scholar 

  28. Hili, R., Rai, V. & Yudin, A.K. Macrocyclization of linear peptides enabled by amphoteric molecules. J. Am. Chem. Soc. 132, 2889–2891 (2010).

    Article  CAS  Google Scholar 

  29. Hili, R. & Yudin, A.K. Amphoteric amino aldehydes reroute the aza-Michael reaction. J. Am. Chem. Soc. 131, 16404–16406 (2009).

    Article  CAS  Google Scholar 

  30. Baktharaman, S., Hili, R. & Yudin, A.K. Amino carbonyl compounds in organic synthesis. Aldrichimica Acta 41, 109–119 (2008).

    CAS  Google Scholar 

  31. Hili, R. & Yudin, A.K. Readily available unprotected amino aldehydes. J. Am. Chem. Soc. 128, 14772–14773 (2006).

    Article  CAS  Google Scholar 

  32. Marcaccini, S. & Torroba, T. The use of the Ugi four-component condensation. Nat. Protoc. 2, 632–639 (2007).

    Article  CAS  Google Scholar 

  33. Dömling, A. & Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl. 39, 3168–3210 (2000).

    Article  Google Scholar 

  34. Failli, A., Immer, H. & Götz, M. The synthesis of cyclic peptide by the four component condensation (4 CC). Can. J. Chem. 57, 3257–3261 (1979).

    Article  CAS  Google Scholar 

  35. Galoni, D., Ide, N.D., van der Donk, W.A. & Gin, D.Y. Aziridine-2-carboxylic acid-containing, peptides: application to solution- and solid-phase convergent site-selective peptide modification. J. Am. Chem. Soc. 127, 7359–7369 (2005).

    Article  Google Scholar 

  36. Moss, T.A., Alba, A., Hepworth, D. & Dixon, D.J. Efficient base catalyzed alkylation reactions with aziridine electrophiles. Chem. Commun. 2474–2476 (2008).

  37. Ulrike, R. et al. Nucleophilic ring-opening of activated aziridines: a one-step method for labeling biomolecules with fluorine-18. J. Fluorine Chem. 130, 902–912 (2009).

    Article  Google Scholar 

  38. Conti, F., Lucente, G., Romeo, A. & Zanotti, G. Cyclol-formation from tripeptide systems and structure assignment by carbon-13 nuclear magnetic resonance. Int. J. Pept. Protein Res. 5, 353–357 (1973).

    Article  CAS  Google Scholar 

  39. Skorna, G. & Ugi, I. Isocyanide synthesis with diphosgene. Angew. Chem. Int. Ed. Engl. 16, 259–260 (1977).

    Article  Google Scholar 

  40. Obrecht, R., Herrmann, R. & Ugi, I. Isocyanide synthesis with phosphoryl chloride and diisopropylamine. Synthesis 400–402 (1985).

  41. Zhou, P., Chen, B.-C. & Davis, F.A. Asymmetric syntheses with aziridinecarboxylate and aziridinephosphonate building blocks. in Aziridines and Epoxides in Organic Synthesis. (ed. Yudin, A.K.) 73–115 (Wiley-VCH, Weinheim, Germany, 2006).

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.R., V.R. and R.H. carried out the syntheses and characterization. A.Y. designed the experiments and supervised the overall project. All authors co-wrote the manuscript.

Corresponding author

Correspondence to Andrei K Yudin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rotstein, B., Rai, V., Hili, R. et al. Synthesis of peptide macrocycles using unprotected amino aldehydes. Nat Protoc 5, 1813–1822 (2010). https://doi.org/10.1038/nprot.2010.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.127

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing